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Abstract: We consider an inequality
b
Lwi@e)ds [uaelg@yds o [y ws(E)g(a)da
f: wy (z)dz f: we(z)dr f: ws(z)dz
where w;, i = 1,2, 3 are nonnegative and integrable functions on [a,b] and g is

a nonnegative function on [a, b] and we present a number of assumptions on g
and w; when that inequality is valid.

1. Introduction

L. Maligranda, J. Pecari¢, L.E. Persson in their paper ”Stolarsky’s
Inequality with General Weights”, [5], discussed the so—called Stolarsky's
inequality by which new inequalities for gamma function can be pointed
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out. They remarked that if in Th. 1 there the function ¢ is a nonin-
creasing function then the inequality (that extend Stolarsky’s inequality)
holds even if the assumption W; W, = W3 is replaced by the assumption
WiW, < W3, [6, Remark 2|. In this paper we continue the discussion
about that condition. In Chapter 2 of paper we present an improvement
of Th. 1 from [5] using some helpful lemmas, one of which is due to Hardy,
[4], and the others can be proved by elementary transformations (see [1],
[2]). In Chapter 3 we present some applications to beta and incomplete
gamma functions. In Chapter 4 we present Jensen's type inequality which
in some special case give us a generalization of Gauss-Pélya’s inequality.

In this paper if an inequality has a number (n) then its reverse version
(the reversed inequality) is denoted by (Rn).

2. Main results

Let us suppose that w;,7 = 1,2, 3, are nonnegative and integrable
functions on [a, b] and W; is defined by

Wi(z) = M i=1,2,3.
[, wi(t)dt
Also, let g be a function of bounded variation and
b
Qlg, wi) = Jo wil@lg@)ds ;g
! fab w;(z)dz Y

In [5] the following theorem is proven:
Theorem MPP. If g is a function of bounded variation on [a,b] = [0,1]
such that 0 < g(1) < g(z) < g(0) for all z € [0,1] and if

(}1L) Wi(z)Wa(z) = Wa(z) for all z €]0,1]
then
(2) 9(0)Q(g, ws) > Q(g, w1)Q(g, w2).

It is easy to check that the theorem still holds if the interval is [a,b],
and also, if ¢ is a function of bounded variation on [a, b] such that 0 <
< g(a) < g(z) < g(b) for all z € [a,d] and if (1) holds then (R2) holds.
The proof of the reverse inequality is very similar to the proof which
is represented in [5], only instead of discrete Chebyshev’s inequality the
following inequality is used: If p1py < 0, a; > ap and by > by, then

(3) (p1 + p2)(Pra1bs + paagba) < (pray + paag)(p1b1 + p2bs).

When g is a monotone function condition (1) can be replaced by a
weaker assumptions. Namely, the following theorem is valid.
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Theorem 1. Let g be a nonnegative function on [a, b).

a) If g is differentiable and ¢'(z) < 0 for all z € [a,b], g is convez
on [a,b] and

(4) / “Wa(t)dt > / WAOWa()dt for all 3 € [a,b]
then

(5) Q(g, w1)Q(g, ws) < g(a)Q(g, ws)

holds. :

If g'(z) > 0 for all x € [a,b] and g is concave on [a,b] and if (4)
holds then (R5) is valid.
b) If g is a nonnegative nonincreasing function on [a, b] and
(©) Wi(z) > (WiWe)'(z), for z € [a,(a+b)/2],
Wg(b - x) b Wg(a -+ .'L') Z (W1W2) (b — .’E) - (W1W2)(a -+ l‘)
holds for x € [0, (b — a)/2], then (5) holds.

For the proof of Th. 1 we need the following lemmas.

Lemma 1. a) IfS is a nonnegative and nondecreasing function on [a, b]
and

b
/ H(t)dt <0 forall =€ |a,b],
then z

b
/ H(#)S(t)dt < 0.
b) If S is a nonnegative and nonincreasing function on [a,b] and |

/ H(t)dt <0 forall z€la,b,
then ¢

/ H@)S()dt < 0.

Lemma 2. Let S be a nonnegative left balanced function on [a,b] (left
balanced means that S(a + z) > S(b— z) for all z € [0,%2], [3]) and let
S be nonincreasing on [%£2,b]. If

b
H(z) <0 foradll z¢€]la, ot ]
and b—zx b —a
H(t)dt <0 for z€[0,—~],
then are

/ " H@)S(0di < 0.
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The statement in Lemma 1a) appears in [4, p. 298], and other cases
can be proven using integration by parts, [1], [2].
Proof. a) When g’ < 0 then putting S = —¢' and H = W1 W, — W3 and
applying Lemma 1b) we have

/W1 (O Wa(t)g' dt>/ Wi ()

Putting in the discrete Chebyshev inequality [6, p.240] p; = g(b),
pa = g(a) — g(b), ax = b, =1 and

1 b
“2:'g<b>—g(a>/aWl(””g(””)’ b= e / Wa(z)dg(a

after simple calculation we have: p; > 0, p2 > O, a1 < ag and by < be

and so,
_ / ’ Wi(2)dg(z)) (9(6) - / Wa(2)da(@)

b b
< 6(0) (90) ~ —r=—s [ W@)ds(e) | Walads(a)

Now, using that inequality and the integral Chebyshev inequality, [6,
p.239], we obtain

fuz)g@)ds [} wa(z)g(w)ds _

Q(ga wl)Q(g’ w2) =

fb wl(z)da; f: wo(z)dz
- / Wi (z)dg(z (b) / Wj(x)dg(a:)>::
g(a)(g(b)—m / Wi(a)do(a) | Wala)do(a) <
< g(a) (g(b) = /ab W1(Sv)W2(a:)dg(fv))
Therefore, ‘

Qg w)Q(g,w2) < g(a / Wa(2)g(z)dz = 9(a)Q(g, ws).

When ¢’ > 0 we replace S = ¢’ and the same method is used.
Let us prove the case b). Setting S = g and H = (W, W,) — W;
and applying Lemma 2 we get

b
/ (WaiWs)'(z)g(z)dz < / Wi(z
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Now, using (7) we have

Qg, w1)Q(g, ws) < g(a) (g(b) - Wl(x)Wz(a;)dg(:c))_—_
) [ WY @g(a)ds <

/Ws (z)g(z)dz () (9, ws).0

In a similar way we can prove
Theorem 2. Let g be a nonnegative function on [a,b]. In cases a)-f)
we will suppose that g is a diferentiable function.

a) If g'(x) < 0 for all z € [a,b], g is concave on [a,b] and

(8) / Watt)dt > / WO Wat)ds for all < [a,8

then (5) holds.

If ¢'(z) > 0 for z € [a,b], g is convez on [a b] and (8) is valid then
(R5) holds. '

b) If ¢' is a nonpositive symmetrical function on [a,b] and is non-
decreasing on [%2,b] and if

b—x b—z b

(9) Ws(t)dt > Wi () Wa(t)dt for all z € [0,
a+x a+z

then (5) holds.
If ¢' is a nonnegative symmetrical function on [a,b] and is nonin-
creasing on [%2, ] and if (9) holds then (R5) holds.

c) If g is concave on [a, 2], ¢' is nonpositive left balanced on [a’, b]

—a

]

and if

(10) Ws(z) > Wy (z)Wa(z) for all z € [a b
and if (9) holds, then (5) holds.

If ¢' is a nonnegative right balanced function on [a,b], g is conver
on [a, (a+b)/2] and if (10) and (9) hold, then (R5) holds.

d) If ¢’ is a nonpositive right balanced function on [a,b], g is concave

n [a, (a+ b)/2] (R10) and (9) hold, then (5) holds.

If g' is a nonnegative left balanced function on [a,b], g is conver on

[a, (@ + b)/2], (R10) and (9) hold, then (R5) holds.
e) If g is convez on [(a+b) / 2,b], ¢’ is nonpositive right balanced on

la,b] and if

]
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(11) Wa(z) = Wi(a)Wa(a) for all = € a, > b
and if (9) holds, then (5) holds.

If ¢’ is a nonnegative left balanced function on [a,b], g is concave

n [(a+b)/2,b] and if (11) and (9) hold, then (R5) holds.

f) If ¢’ is a nonpositive left balanced function on [a,b], g is convex
on [(a+ b)/2,b], (R11) and (9) are valid, then (5) holds.

If ¢ is a nonnegative right balanced function on [a,b], g is concave
on [(a+b)/2,b], (R11) and (9) are valid, then (R5) holds.

g) If g is a nonnegative nondecreasing function on |a, b],
b
Wi() < WiWa)' (@), for €[5l

2
and if (R6) holds then (R5) holds.
The proof is based on several lemmas which are similar to lemmas 1
and 2 and are given in [2].

3. Applications on beta and incomplete gamma
functions

Theorem 3. Let a1, az,a;3 and y be positive real numbers such that a; +
+a; > a3 andy > 2. Then

a102B(a1,y)B(as, y) < asB(as,y),

where B(z,y) is Beta function defined as B(z,y) fo 12711 — t)vdt.
Proof. This theorem is a consequence of case a) from Th 1 Na,mely,
let us suppose that

wi(t) =t tel0,1], i=1,2,3.

Then W;(t) =%, 1=1,2,3 and for a1, a; and a3 such that a; + az > a3
inequality (4) holds. If we take g(z) = (1 — z)¥"!, y > 2 then ¢' is
nonpositive and g is convex on [0, 1] and we have Q(g,w;) = a;B(a;,y).
Applying Th. 1a we obtain the above mentioned inequality for beta func-
tion. ¢

Remark 1. An inequality for gamma function is hidden in Th. 3.
Namely, since B(z,y) = L@®) we have that

T{z+y)
araz2 I'(a1)l(az2) _ T'(a1 +y)T(az +y)
a3  T(as) ~— T(y)(as+y)

fora; +a3 > a3 >0and y > 2.
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Remark 2. From Th. 1a we can deduce an inequality for incom-

plete gamma function y(z) fo t*~le~td¢ using the same functions w;,
i1 =1,2,3, as in Th. 3, a,nd putting g( ) = e~®. In fact, we have that for
ar+as>a3 >0

a1a27(a1)y(az) < asy(as)
holds.

4. On the Jensen’s type inequality

In the following theorem we get inequality of Jensen’s type.

Theorem 4. Let f be a concave function and g be a nonnegative non-
increasing function on [a,b]. If

1%
(12) Wi < oW, f <Wif (a)> on [a,b],
then

Q(g,ws) < aQ(g,w1)f (%Ez:—zgf‘l(%))

Jor every o such that there is a B € [a, b] that satisfies = = f(B).

Proof. Using integration by parts, condition (12) and Jensen’s inequality
for concave function we have

b
Q(g, ws) =g(b)+/ Wi (z)dg(z) <

< g(b) + /ab oW (z)f (%E;;f‘l(%)) dg(z) <

b)+a/ Wi (2)dg(z) f (f Wa(2)/ (5)dg(= )) .

f W -’17)d9( )
i Wa(@) £~1(L)dg (=)
s +a [ Wt ( IR Wl m)dg( ) ) <
_ g(b)‘|‘f:W2 (z)dg(z) ,_, 1)
<a (g(b) +/a Wl(x)dg(x)) f (g(b) i Wl(x)dg(x)f (a)> =
= Qo) (FE2 (),

where g = —g. ¢
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Remark 3. For the special case that f(z) = x%, p > 1 we get from
Th. 4 that when

11 1
W3 S Wl PW2P
holds, the inequality of Holder’s type

Q(g,ws) < Q(g,w)* 5 Q(g,ws)7

is satisfied. This type of the inequality is discused in [2]. In that paper
it is shown that for suitable choice of functions w;, 7 = 1,2, 3, we get a
generalization of the so—called Gauss-Pélya inequality, [2],[8].

Remark 4. If we replace f(z) by (1 + x%)”, p > 1 and denote ar = D1,
pa = 1 — py we get from

1 1\?
Wy < <p1W1p +P2W2p)

the inequality of Minkowski’s type

Qg ws) < (PLQ(g,w1)7 + PrQ(g, wn)
which is also considered in [2].
Remark 5. Th. 4 is an analogue of Th. MPP [5], therefore so we can
state results of Jensen’s type similar to Ths. 1 and 2.
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