FURTHER EXTENSION OF STOLARSKY'S INEQUALITY WITH GENERAL WEIGHTS

Shoshana Abramovich

Department of Mathematics, University of Haifa, Haifa 31905, Israel

Josip Pečarić

Faculty of Text. Techn., University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

Sanja Varošanec

Department of Mathematics, University of Zagreb, Bijenička 30. 10000 Zagreb, Croatia

Received: June 1998

MSC 1991: 26 D 15

Keywords: The Chebyshev inequality, the Jensen inequality, function of bounded variation, the Stolarsky inequality, beta and incomplete gamma function.

$$\begin{array}{c} \textbf{Abstract:} \ \text{We consider an inequality} \\ \frac{\int_a^b w_1(x)g(x)dx}{\int_a^b w_1(x)dx} \cdot \frac{\int_a^b w_2(x)g(x)dx}{\int_a^b w_2(x)dx} \leq g(a) \frac{\int_a^b w_3(x)g(x)dx}{\int_a^b w_3(x)dx}, \end{array}$$

where w_i , i = 1, 2, 3 are nonnegative and integrable functions on [a, b] and g is a nonnegative function on [a, b] and we present a number of assumptions on gand w_i when that inequality is valid.

1. Introduction

L. Maligranda, J. Pečarić, L.E. Persson in their paper "Stolarsky's Inequality with General Weights", [5], discussed the so-called Stolarsky's inequality by which new inequalities for gamma function can be pointed out. They remarked that if in Th. 1 there the function g is a nonincreasing function then the inequality (that extend Stolarsky's inequality) holds even if the assumption $W_1W_2 = W_3$ is replaced by the assumption $W_1W_2 \leq W_3$, [5, Remark 2]. In this paper we continue the discussion about that condition. In Chapter 2 of paper we present an improvement of Th. 1 from [5] using some helpful lemmas, one of which is due to Hardy, [4], and the others can be proved by elementary transformations (see [1], [2]). In Chapter 3 we present some applications to beta and incomplete gamma functions. In Chapter 4 we present Jensen's type inequality which in some special case give us a generalization of Gauss-Pólya's inequality.

In this paper if an inequality has a number (n) then its reverse version (the reversed inequality) is denoted by (Rn).

2. Main results

Let us suppose that w_i , i = 1, 2, 3, are nonnegative and integrable functions on [a, b] and W_i is defined by

$$W_i(x) = rac{\int_a^x w_i(t)dt}{\int_a^b w_i(t)dt}$$
 $i = 1, 2, 3.$

Also, let g be a function of bounded variation and

$$Q(g, w_i) = \frac{\int_a^b w_i(x)g(x)dx}{\int_a^b w_i(x)dx} \quad i = 1, 2, 3.$$

In [5] the following theorem is proven:

Theorem MPP. If g is a function of bounded variation on [a, b] = [0, 1] such that $0 \le g(1) \le g(x) \le g(0)$ for all $x \in [0, 1]$ and if

(1)
$$W_1(x)W_2(x) = W_3(x)$$
 for all $x \in [0, 1]$ then

(2)
$$g(0)Q(g, w_3) \geq Q(g, w_1)Q(g, w_2).$$

It is easy to check that the theorem still holds if the interval is [a,b], and also, if g is a function of bounded variation on [a,b] such that $0 \le g(a) \le g(x) \le g(b)$ for all $x \in [a,b]$ and if (1) holds then (R2) holds. The proof of the reverse inequality is very similar to the proof which is represented in [5], only instead of discrete Chebyshev's inequality the following inequality is used: If $p_1p_2 \le 0$, $a_1 \ge a_2$ and $b_1 \ge b_2$, then

$$(3) (p_1+p_2)(p_1a_1b_1+p_2a_2b_2) \leq (p_1a_1+p_2a_2)(p_1b_1+p_2b_2).$$

When g is a monotone function condition (1) can be replaced by a weaker assumptions. Namely, the following theorem is valid.

Theorem 1. Let g be a nonnegative function on [a, b].

a) If g is differentiable and $g'(x) \leq 0$ for all $x \in [a, b]$, g is convex on [a, b] and

(4)
$$\int_a^x W_3(t)dt \ge \int_a^x W_1(t)W_2(t)dt \text{ for all } x \in [a,b]$$

then

(5)
$$Q(g, w_1)Q(g, w_2) \le g(a)Q(g, w_3)$$

holds.

If $g'(x) \ge 0$ for all $x \in [a, b]$ and g is concave on [a, b] and if (4) holds then (R5) is valid.

b) If g is a nonnegative nonincreasing function on [a, b] and

(6)
$$W_3'(x) \ge (W_1 W_2)'(x), \text{ for } x \in [a, (a+b)/2],$$

 $W_3(b-x) - W_3(a+x) \ge (W_1 W_2)(b-x) - (W_1 W_2)(a+x)$

holds for $x \in [0, (b-a)/2]$, then (5) holds.

For the proof of Th. 1 we need the following lemmas.

Lemma 1. a) If S is a nonnegative and nondecreasing function on [a, b] and

then

$$\int_x^b H(t)dt \le 0 \quad for \ all \quad x \in [a,b],$$
 $\int_a^b H(t)S(t)dt \le 0.$

b) If S is a nonnegative and nonincreasing function on [a,b] and $\int_a^x H(t)dt \leq 0 \quad \text{for all} \quad x \in [a,b],$

then

$$\int_{a}^{b} H(t)S(t)dt \le 0.$$

Lemma 2. Let S be a nonnegative left balanced function on [a,b] (left balanced means that $S(a+x) \geq S(b-x)$ for all $x \in [0,\frac{b-a}{2}]$, [3]) and let S be nonincreasing on $[\frac{a+b}{2},b]$. If

and

$$H(x) \leq 0 \quad \text{for all} \quad x \in [a, \frac{a+b}{2}]$$

$$\int_{a+x}^{b-x} H(t)dt \leq 0 \quad \text{for} \quad x \in [0, \frac{b-a}{2}],$$

$$\int_{a+x}^{b} H(t)S(t)dt \leq 0.$$

then

The statement in Lemma 1a) appears in [4, p. 298], and other cases can be proven using integration by parts, [1], [2]. **Proof.** a) When $g' \leq 0$ then putting S = -g' and $H = W_1W_2 - W_3$ and applying Lemma 1b) we have

$$\int_a^b W_1(t)W_2(t)g'(t)dt \ge \int_a^b W_3(t)g'(t)dt.$$

Putting in the discrete Chebyshev inequality [6, p.240] $p_1 = g(b)$, $p_2 = g(a) - g(b)$, $a_1 = b_1 = 1$ and

$$a_2 = \frac{1}{g(b) - g(a)} \int_a^b W_1(x) dg(x), \quad b_2 = \frac{1}{g(b) - g(a)} \int_a^b W_2(x) dg(x)$$

after simple calculation we have: $p_1 > 0$, $p_2 > 0$, $a_1 \le a_2$ and $b_1 \le b_2$ and so,

$$\left(g(b) - \int_a^b W_1(x)dg(x)\right) \left(g(b) - \int_a^b W_2(x)dg(x)\right) \le$$

$$\le g(a) \left(g(b) - \frac{1}{g(b) - g(a)} \int_a^b W_1(x)dg(x) \int_a^b W_2(x)dg(x)\right)$$

Now, using that inequality and the integral Chebyshev inequality, [6, p.239], we obtain

$$Q(g, w_{1})Q(g, w_{2}) = \frac{\int_{a}^{b} w_{1}(x)g(x)dx}{\int_{a}^{b} w_{1}(x)dx} \cdot \frac{\int_{a}^{b} w_{2}(x)g(x)dx}{\int_{a}^{b} w_{2}(x)dx} =$$

$$= \left(g(b) - \int_{a}^{b} W_{1}(x)dg(x)\right)\left(g(b) - \int_{a}^{b} W_{2}(x)dg(x)\right) =$$

$$\leq g(a)\left(g(b) - \frac{1}{g(b) - g(a)} \int_{a}^{b} W_{1}(x)dg(x) \int_{a}^{b} W_{2}(x)dg(x)\right) \leq$$

$$\leq g(a)\left(g(b) - \int_{a}^{b} W_{1}(x)W_{2}(x)dg(x)\right)$$

Therefore,

ore,
$$Q(g,w_1)Q(g,w_2) \leq g(a) \int_a^b W_3(x)g'(x)dx = g(a)Q(g,w_3).$$

When $g' \ge 0$ we replace S = g' and the same method is used.

Let us prove the case b). Setting S=g and $H=(W_1W_2)'-W_3'$ and applying Lemma 2 we get

$$\int_{a}^{b} (W_{1}W_{2})'(x)g(x)dx \leq \int_{a}^{b} W_{3}'(x)g(x)dx.$$

Now, using (7) we have

$$\begin{split} Q(g,w_1)Q(g,w_2) & \leq g(a) \left(g(b) - \int_a^b W_1(x)W_2(x)dg(x) \right) = \\ & = g(a) \int_a^b (W_1W_2)'(x)g(x)dx \leq \\ & \leq g(a) \int_a^b W_3'(x)g(x)dx = g(a)Q(g,w_3). \Diamond \end{split}$$

In a similar way we can prove

Theorem 2. Let g be a nonnegative function on [a,b]. In cases a)-f) we will suppose that g is a differentiable function.

a) If $g'(x) \leq 0$ for all $x \in [a, b]$, g is concave on [a, b] and

(8)
$$\int_x^b W_3(t)dt \ge \int_x^b W_1(t)W_2(t)dt \text{ for all } x \in [a,b]$$

then (5) holds.

If $g'(x) \ge 0$ for $x \in [a, b]$, g is convex on [a, b] and (8) is valid then (R5) holds.

b) If g' is a nonpositive symmetrical function on [a, b] and is non-decreasing on $\left[\frac{a+b}{2}, b\right]$ and if

(9)
$$\int_{a+x}^{b-x} W_3(t)dt \ge \int_{a+x}^{b-x} W_1(t)W_2(t)dt \text{ for all } x \in [0, \frac{b-a}{2}]$$

then (5) holds.

If g' is a nonnegative symmetrical function on [a,b] and is nonincreasing on $\left[\frac{a+b}{2},b\right]$ and if (9) holds then (R5) holds.

c) If g is concave on $[a, \frac{a+b}{2}]$, g' is nonpositive left balanced on [a, b] and if

(10)
$$W_3(x) \ge W_1(x)W_2(x) \text{ for all } x \in [\frac{a+b}{2}, b]$$

and if (9) holds, then (5) holds.

If g' is a nonnegative right balanced function on [a, b], g is convex on [a, (a + b)/2] and if (10) and (9) hold, then (R5) holds.

d) If g' is a nonpositive right balanced function on [a, b], g is concave on [a, (a + b)/2], (R10) and (9) hold, then (5) holds.

If g' is a nonnegative left balanced function on [a, b], g is convex on [a, (a+b)/2], (R10) and (9) hold, then (R5) holds.

e) If g is convex on [(a+b)/2, b], g' is nonpositive right balanced on [a, b] and if

(11)
$$W_3(x) \ge W_1(x)W_2(x) \text{ for all } x \in [a, \frac{a+b}{2}]$$

and if (9) holds, then (5) holds.

If g' is a nonnegative left balanced function on [a, b], g is concave on [(a+b)/2, b] and if (11) and (9) hold, then (R5) holds.

f) If g' is a nonpositive left balanced function on [a, b], g is convex on [(a + b)/2, b], (R11) and (9) are valid, then (5) holds.

If g' is a nonnegative right balanced function on [a, b], g is concave on [(a+b)/2, b], (R11) and (9) are valid, then (R5) holds.

g) If g is a nonnegative nondecreasing function on [a, b],

$$W_3'(x) \le (W_1 W_2)'(x), \text{ for } x \in [\frac{a+b}{2}, b]$$

and if (R6) holds then (R5) holds.

The proof is based on several lemmas which are similar to lemmas 1 and 2 and are given in [2].

3. Applications on beta and incomplete gamma functions

Theorem 3. Let a_1, a_2, a_3 and y be positive real numbers such that $a_1 + a_2 \ge a_3$ and $y \ge 2$. Then

$$a_1a_2B(a_1, y)B(a_2, y) \le a_3B(a_3, y),$$

where B(x,y) is Beta function defined as $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$. **Proof.** This theorem is a consequence of case a) from Th. 1. Namely, let us suppose that

$$w_i(t) = t^{a_i - 1}, \quad t \in [0, 1], \quad i = 1, 2, 3.$$

Then $W_i(t) = t^{a_i}$, i = 1, 2, 3 and for a_1, a_2 and a_3 such that $a_1 + a_2 \ge a_3$ inequality (4) holds. If we take $g(x) = (1-x)^{y-1}$, y > 2 then g' is nonpositive and g is convex on [0,1] and we have $Q(g, w_i) = a_i B(a_i, y)$. Applying Th. 1a we obtain the above mentioned inequality for beta function. \Diamond

Remark 1. An inequality for gamma function is hidden in Th. 3. Namely, since $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ we have that

$$\frac{a_1 a_2}{a_3} \frac{\Gamma(a_1) \Gamma(a_2)}{\Gamma(a_3)} \le \frac{\Gamma(a_1 + y) \Gamma(a_2 + y)}{\Gamma(y) \Gamma(a_3 + y)}$$

for $a_1 + a_2 \ge a_3 > 0$ and $y \ge 2$.

Remark 2. From Th. 1a we can deduce an inequality for incomplete gamma function $\gamma(x) = \int_0^1 t^{x-1} e^{-t} dt$ using the same functions w_i , i = 1, 2, 3, as in Th. 3, and putting $g(x) = e^{-x}$. In fact, we have that for $a_1 + a_2 \ge a_3 > 0$

$$a_1 a_2 \gamma(a_1) \gamma(a_2) \le a_3 \gamma(a_3)$$

holds.

4. On the Jensen's type inequality

In the following theorem we get inequality of Jensen's type. **Theorem 4.** Let f be a concave function and g be a nonnegative non-increasing function on [a, b]. If

(12)
$$W_3 \le \alpha W_1 f\left(\frac{W_2}{W_1} f^{-1}\left(\frac{1}{\alpha}\right)\right) \quad on \quad [a, b],$$

then

$$Q(g, w_3) \le \alpha Q(g, w_1) f\left(\frac{Q(g, w_2)}{Q(g, w_1)} f^{-1}(\frac{1}{\alpha})\right)$$

for every α such that there is a $\beta \in [a, b]$ that satisfies $\frac{1}{\alpha} = f(\beta)$.

Proof. Using integration by parts, condition (12) and Jensen's inequality for concave function we have

$$\begin{split} Q(g,w_3) &= g(b) + \int_a^b W_3(x)d\bar{g}(x) \leq \\ &\leq g(b) + \int_a^b \alpha W_1(x)f\left(\frac{W_2(x)}{W_1(x)}f^{-1}(\frac{1}{\alpha})\right)d\bar{g}(x) \leq \\ &\leq g(b) + \alpha \int_a^b W_1(x)d\bar{g}(x)f\left(\frac{\int_a^b W_2(x)f^{-1}(\frac{1}{\alpha})d\bar{g}(x)}{\int_a^b W_1(x)d\bar{g}(x)}\right) = \\ &= \alpha g(b)f(f^{-1}(\frac{1}{\alpha})) + \alpha \int_a^b W_1(x)d\bar{g}(x)f\left(\frac{\int_a^b W_2(x)f^{-1}(\frac{1}{\alpha})d\bar{g}(x)}{\int_a^b W_1(x)d\bar{g}(x)}\right) \leq \\ &\leq \alpha \left(g(b) + \int_a^b W_1(x)d\bar{g}(x)\right)f\left(\frac{g(b) + \int_a^b W_2(x)d\bar{g}(x)}{g(b) + \int_a^b W_1(x)d\bar{g}(x)}f^{-1}(\frac{1}{\alpha})\right) = \\ &= \alpha Q(g,w_1)f\left(\frac{Q(g,w_2)}{Q(g,w_1)}f^{-1}(\frac{1}{\alpha})\right), \end{split}$$

where $\bar{g} = -g$. \Diamond

Remark 3. For the special case that $f(x) = x^{\frac{1}{p}}$, p > 1 we get from Th. 4 that when

$$W_3 \le W_1^{1 - \frac{1}{p}} W_2^{\frac{1}{p}}$$

holds, the inequality of Hölder's type

$$Q(g, w_3) \le Q(g, w_1)^{1 - \frac{1}{p}} Q(g, w_2)^{\frac{1}{p}}$$

is satisfied. This type of the inequality is discused in [2]. In that paper it is shown that for suitable choice of functions w_i , i = 1, 2, 3, we get a generalization of the so-called Gauss-Pólya inequality, [2],[8].

Remark 4. If we replace f(x) by $(1+x^{\frac{1}{p}})^p$, p>1 and denote $\alpha^{\frac{1}{p}}=p_1$, $p_2 = 1 - p_1$ we get from

$$W_3 \le \left(p_1 W_1^{\frac{1}{p}} + p_2 W_2^{\frac{1}{p}}\right)^p$$

the inequality of Minkowski's type

$$Q(g, w_3) \le (p_1 Q(g, w_1)^{\frac{1}{p}} + p_2 Q(g, w_2)^{\frac{1}{p}})^p$$

which is also considered in [2].

Remark 5. Th. 4 is an analogue of Th. MPP [5], therefore so we can state results of Jensen's type similar to Ths. 1 and 2.

References

- [1] ABRAMOVICH, S.: Monotonicity of eigenvalues under symmetrization, SIAM J. Appl. Math. 29 (1975), 350-361.
- [2] ABRAMOVICH, S., PEČARÍC, J. and VAROŠANEC, S.: New generalization of Gauss-Pólya inequality, Mathematical Inequalities and Applications to appear.
- [3] ELIASON, S.B.: The integral $T \int_{-\frac{T}{a}}^{\frac{T}{a}} p(t)dt$ and the boundary value problem x^{n} + +p(t)x = 0, $x(-\frac{T}{2}) = x(\frac{T}{2}) = 0$, J. Differential Equations 4 (1968), 646–660.
- [4] HARDY, G.H., LITTLEWOOD, J.E. and PÓLYA, G.: Inequalities, Cambridge Univ. Press, 1967.
- [5] MALIGRANDA, L., PEČARIĆ, J. and PERSSON, L.E.: Stolarsky's inequality with general weights, Proc. Amer. Math. Soc. 123/7 (1995), (2113-2118).
- [6] MITRINOVIĆ, D.S., PEČARIĆ, J.E. and FINK, A.F.: Classical and New Inequalities in Analysis, Dordrecht, Kluwer Acad. Publishers, 1993.
- [7] PEČARIĆ, J.: A Reverse Stolarsky's inequality, Amer. Math. Monthly 6 (1994), 566-568.
- [8] PÓLYA, G. and SZEGŐ, G.: Aufgaben und Lehrsätze aus der Analysis, I,II, Berlin, 1925.