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Abstract: In this paper we investigate connections between the condition
that every prime ideal is maximal and various generalizations of von Neumann
regularity. As a corollary of our results we show that if N is a reduced zero-
symmetric right near-ring, then every prime ideal is maximal if and only if N
is left weakly regular (i.e., z € (z) z, for all z € N, where (z) denotes the ideal
generated by z).

Throughout this paper all near-rings are zero symmetric right near-
rings, and N denotes such a near-ring. It can be shown that if N2 = N,
then every maximal ideal is a prime ideal. Since, in general, prime ideals
are not maximal even in near-rings with unity, it is natural to ask: when is
every prime ideal of N also a maximal ideal of N7 Near-rings satisfying
this condition (equivalently, every prime factor is simple) are said to
satisfy the pm condition. Surprisingly, the pm condition (a condition on
ideals) has been shown to be equivalent to various generalizations of von
Neumann regularity (a condition on elements) for large classes of rings
2], [4], [8], [9], [11], [12], [13], [14], [19], [20], [28], [29], [31] and [32]. The

survey paper [5] gives an overview of the research in this area.
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For the case of commutative rings, the first clearly established
equivalence between the pm condition and a generalization of von Neu-
mann regularity seems to have been made by Storrer [28] in the following
result. If R is a commutative ring with unity, then the following state-
ments are equivalent: (1) R is w-regular; (2) R/P(R) is von Neumann
regular (P(R) is the prime radical of R); (3) R satisfies the pm condi-
tion. For a near-ring N with unity it is well known [24, p.349] that if
N is strongly regular then N satisfies the pm condition. In the paper
we will investigate the connections between the pm condition and vari-
ous generalizations of von Neumann regularity in the class of near-rings.
In particular, we will extend the main results of [8] to near-rings. We
provide examples which illustrate the contrast between the ring and the
near-ring cases for our results.

Let Py(N) denote the prime radical and N (N) the set of nilpotent
elements of the near-ring N. From [6], an ideal I of NV is a 2-primal
ideal of N if Py(N/I) = N(N/I). If I is the zero ideal of N, then N
is a 2-primal near-ring. (This is equivalent to Py(N) = N(N). A near
ring is said to be reduced if N(R) = 0. Recall from [24] that an ideal P
is called a minimal prime ideal of an ideal I if P is minimal in the set
of all prime ideals containing I. If I is the zero ideal, then P is called
a minimal prime ideal of N. By B(I) we denote the intersection of all
prime ideals of N containing I. From [16], B(I) is the intersection of
all minimal prime ideals in N containing I. An ideal I of N, denoted
by I 4N, is a completely prime ideal (completely semi-prime ideal) if for
a,b € N, ab € I impliesa € I or b € I (a® € I implies a € I). The
completely prime radical P,(N) of the near-ring NV is the intersection of
all the completely prime ideals of N. If follows from [17] that P.(N) is
completely semi-prime ideal of N. Moreover from [7], N is 2-primal if
and only if Po(N) = P.(N).

We use N,(N), J2(N) and G(N) to represent the nilradical of N,
Jo-radical of N and the Brown-McCoy radical of N, respectively. N is
said to fulfill the insertion-of-factors property (IFP) provided that for all
a,b,x € N, then ab = 0 implies azb = 0. Also for X C N, (0: X) and
(X)) denote the left annihilator of X and the ideal of N generated by X,
respectively. For other notation and/or terminology see [24].

1. Preliminaries

In this section we discuss the various generalizations of von Neu-
mann regularity which will be used in our main results in section 3.
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In [25], Ramamurthi defined weakly regular rings, and in [18] Gupta
defined weakly 7-regular rings. Jat and Choudhary [21] extended weak
regularity to near-rings, and Goyal and Choudhary [15] did likewise for
w-regularity. Furthermore Ramakotaiah [26] gave a nonring example of a
m-regular subnear-ring of My(Z,). The following definitions will be used
in this paper (note that we are introducing the concept of a left pseudo
w-regular near-ring).

Definition 1.1. (i) N is a said to be left (right) weakly regular if z €
€(r)z (z € z(x)) forall z € N.

(ii) N is said to be m-regular if for every € N there exists a natural
number n = n(z) such that z" € z"Nz".

(iii) V is said to be left (right) weakly m-regular if for every z € N
there exists a natural number n = n(z) such that z" € (z™) z™
(z™ € z™ (z™)).

(iv) We say N is left (right) pseudo m-regular if for every z € N there
exists a natural number n = n(z) such that z” € (z)z" (z* €
€ z" (z)).

In the above definitions if N satisfies both the left and right version,
then the adjective “left” or “right” is omitted. Observe that we have
the following implications from Definition 1.1: (i) = (iii) = (iv) and
(if) = (iii) = (iv). Moreover the classes of near-rings of Definition 1.1 as
well as the class of pm near-rings are closed under homomorphic images.
Observe that if NV is left (right) weakly regular and I is an ideal of N ,
then I = I?. From (23], N is left strongly regular if for all z € N, there
exists a € N with £ = az?. Hence if NV is left strongly regular, then N is
left weakly regular. Furthermore, from [21], N is bipotent if Na = Na?
for a € N. So if N is bipotent and a € N, then (a)a® C Na? =
= (Na)a = (Na*)a = (Na)a® C (a) a®. Thus Na = (a) a?, 50 a? € (a) a?
for every a € N. Hence every bipotent near-ring is left pseudo 7-regular.
Lemma 1.2. (i) Let N be reduced. Then N is left weakly regular if and
only if N is left pseudo m-reqular. :

(ii) Let N be commutative. Then N is weakly m-regular if and only

if N is pseudo m-regular.
Proof. (i) Clearly if N is left weakly regular then N is left pseudo 7-
regular. So assume N is left pseudo m-regular. Let a € N. Then there
exists s € (a) and a natural number n such that a” = sa™. If n = 1, we
are finished. For n > 1, then (a — sa)a™ ! = 0. Since 0 is a completely
semiprime ideal, [17, Lemma 2.1] yields (a— sa)a = 0 = a(a— sa). Hence
(a —sa)®> =0. So a = sa € (a),. Therefore N is left weakly regular.




260 G. F. Birkenmeier and N. J. Groenewald

(ii) Assume N is left pseudo m-regular. Let a € N. There exists
s € {(a) and a natural number n such that a” = sa” = s(sa™) = 5
= s"a® € (a")a”. Hence N is left weakly m-regular. The converse is
clear. ¢

The following result generalizes [15, Th. 1.14].

Proposition 1.3. Let a € N.

(i) a* € Na*** for some positive integer k if and only if the de-
scending chain Na D Na?... stabilizes after a finite number of steps.

(ii) If N is finite, then N is left and right weakly m-regular.
Proof. (i) Assume a* € Naf*!. Then there exists z € N such that
a* = za*tl. Then Na* = Nzaft! C NgF*t! C Na*. Hence the chain
stabilizes. Conversely assume Na™ = Na™*!. Then there exists y € N
such that a™! = aa™ = ya™*!. There exists y; € N such that ya™ =
= y1a™t. So a™t! = (ya™)a = (y1a™*)a € Na™?. Take k =m + 1.

(ii) By part (i), there exists a positive integer k£ and z € N such
that af = za*+! = za*a = z(zab)a = 1%a*a® = ... = zFa®a* € (a*) a*.
Hence N is left weakly m-regular. Since part (i) is left-right symmetric,
N is also right weakly m-regular. ¢

Observe that every finite ring satisfies the pm condition. However
there are finite d.g. prime near-rings with unity which are not simple [22].
Thus determining when a finite near-ring satisfies the pm condition is a
notrival problem. Also from [3] there exist uncountable d.g. near-rings
with unity, but with only finitely many N-subgroups. By Prop. 1.3(ii)
such near-rings are left weakly m-regular. Also note that integral near-
rings which are finite or simple illustrate Lemma 1.2(i), and near-rings
of nilpotent index two illustrate Lemma 1.2(ii).

Proposition 1.4. Let N be a near-ring with left unity e, and k and n
are natural numbers.

(i) If N =(0:a™ + (a*), then o € (a*)a™

(i) If (0:a™) <N and a® € (a*)a®, then N = (0: a™) + (a).
Proof. (i) There exists v € (0 : a®) and s € (a*) such that e = v + 5.
Then o™ = va"™ + sa™ = sa™ € <ak> a™.

(ii) There exists s € {a*) such that a" = sa™. So (e —s) € (0: a™).
Then for any ¢t € N, we have t = (e — s + s)t = (e — s)t + st. Since
(0:a™) aN, (e — s)t € (0:a"). Therefore N = (0: a®) +(a*). O
Corollary 1.5. Let N be an IFP near-ring with a left unity. Then N is
left pseudo (weakly) m-regular if and only if for every a € N there ezists
a natural number n = n(a) such that

N=(0:a")+{a), (N=(0:a"+ (@)

a® =
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Proof. Since N is IFP, then (0 : z) <N for every z € N. Now the result
is an immediate consequence of Prop. 1.4.0

Proposition 1.6. Let I be any proper ideal of left pseudo w-regular
near-ring N. Every nonzero element of I is a divisor of zero.

Proof. Let 0 # a be any element of the ideal I. Assume a is not a
divisor of zero. Since N is left 7-weakly regular there exists n(a), a
positive integer, such that a” € (a) a™. Hence a" = za™ for some z € (a).
For every z € N we have za™ = zza™. Hence (z — 2z)a™ = 0. Since a
is not a divisor of zero, we have z = zx € I. Hence N = I which is a
contradiction.

Corollary 1.7. If N is weakly w-regular with nonzero divisors of zero,
then N is simple.

2. Completely prime ideals and the pm condition

Proposition 2.1. p(N) is completely semiprime if and only if every
prime ideal which is minimal among the prime ideals containing p(N) is
completely prime (where p(N) = Po(N), No(N), Jo(N) or G(N)).
Proof. Let P be a prime ideal which is minimal amongst the prime ideals
containing p(NN). Now clearly, P/p(N) is a minimal prime ideal of N =
= N/p(N). Since p(N) is completely semiprime, N is reduced. Since N
is reduced, it is also 2-primal and from [7, Cor. 1.3] we have that P/p(N)
is a completely prime ideal of N. Hence N/P = (N/p(N))/(P/p(N)) is
a completely prime near-ring and consequently P is a completely prime
ideal of N.

Now let B be the intersection of all the prime ideals of N which are
minimal among prime ideals of N containing p(N). Let D be the inter-
section of all the prime ideals of N containing p(NN). For p(N) = Py(N)
we have Py(N) = B and from our assumption Py(N) is the intersection
of completely prime ideals and hence Py(N) is completely semiprime.

Case p(N) = N.(N). Recall from [30] that N,(N) is the in-
tersection of all s-prime ideals and that each s-prime ideal is also a
prime ideal of N which contains N, (N). Hence N,(N) C B = D C
C N{s-prime ideals of N} = N,(N).

Case p(N) = Jo(R). Recall that a 2-primitive ideal of N is a
prime ideal of N which contains J5(N). Now J(N) € B = D C
C N {s-primitive ideals of N} = J2(N).

Case p(N) = G(N). From [1] we know that G(N) = N{M < N :
N/M is a simple near-ring with identity}. Each of the ideal in the inter-
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section is clearly a prime ideal and contains G(N). Hence G(N) C B =
=D CN{M : N/M is simple with identity} = G(N).

Thus in all four cases B = p(NN) and since B is completely semi-
prime, then so is p(N).0

The following well known result is an immediate corollary of Prop.
2.1.
Corollary 2.2. Let N be a reduced near-ring. FEvery minimal prime
ideal of N is completely prime.
Proof. Since N is reduced, Py(N) = 0. The corollary now follows from
Prop. 2.1.0
Proposition 2.3. If p(N) is a completely semiprime ideal of N and
N/p(N) is left pseudo w-regular, then N/P is a simple integral near-ring
with a right unity for every prime ideal P of N with p(N) C P (where
p(N) = Po(N), N(N), o(N) or G(N)).
Proof. Let P be any prime ideal of N such that p(N) C P. Now
there exists a prime ideal X of N which is minimal among prime ideals
containing p(N) and X C P. From Prop. 2.1, X is completely prime.
Let N =N/X. _

Since X is a completely prime ideal, N is an integral near-ring. We
show that N is simple with a right unity. Let 0 £ I <N and 0 £ v € I.
Since N is weakly w-regular, there exists y € (v) such that v* = yv*. Now
we have yv* = y?vF. Hence (y — y*)v* = 0. Since N is an integral near-
ring and v # 0, we have y = 3% Hence for any ¢t € N we have ty = t3°.
Now (t —ty)y = 0 and therefore ¢t = ty. Hence v is a right unity of N.
Now also ¢t = ty € t(vF) C ¢tI C I. Hence N = I and, therefore, NV is
simple with right unity y. Hence X is maximal and X C P, therefore
X=PO
Corollary 2.4. If the near-ring N is 2-primal and N/Py(N) is left
pseudo w-reqular, then every prime ideal of N is mazimal.
Proposition 2.5. If I a4 N, then B(I) is completely semiprime if and
only if every minimal prime ideal of I is completely prime. In particular,
if N also satisfies the pm condition, then every prime ideal containing I
18 completely prime.
Proof. The result is a consequence of [6, Lemma 2.2(v)] and [7, Th. 1.2].0
Corollary 2.6. If N is 2-primal (e.g., if N is reduced) and satisfies
the pm condition, then every prime ideal is completely prime.

3. Left weakly regular near-rings

In this section we characterise reduced left weakly regular near-
rings.
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Lemma 3.1. If I is a completely semi-prime ideal of the near-ring N
and Ty, T3, ..., Ty € I then z4q),..., To(n) € I, where o is any permutation
of {1,2,...,n}.
Proof. This follows by applying Lemma 2.1 of [17].¢
Proposition 3.2. Let N be an IFP right near-ring with left unity e
such that every completely prime ideal is mazimal. Let a € N such that
(0:a) is a 2-primal ideal of N, there ezists s € (a) such that:

(i) a® = sa® + z where s € (a) and = € N(N).

(ii) If a3(e —s)a® = (e — s)a® for some k, then there ezists m such
that a™ € (a) a™
Proof. (i) Let 0 # a € N. Since N has IFP, it follows from [24, p.
289] that (0 : a) <« N. Let N = N/(0: a). It is easy to see that every
completely prime ideal of N is also maximal. Let M be the multiplicative
semigroup generated by all elements of the form @ = Za where z € (a).

We claim Py (V) N M # @. To see this, assume Po(N) N M = 2.
Since Py (N) = N(N) (because (0 : a) is a 2- prlmal ideal - see [7]), Po(NN)
is a completely semiprime ideal of N. If follows from [17, Lemma, 3. 1] that
there exists a completely prime ideal P and N such that PN M = &.
Now (@) C P or there exists @ € (@) such that a@ ¢ P. If (@) C B,
then @ —za € PN M # @, a contradiction . So assume there exists
a € (a) such that @ ¢ P. Since P is maximal, we have P + (@) = N.
P+ 1, where p € Pand f € (@) C (a) From this we have

oe =
f :(e—f)a—paEPﬂM a contradiction. Hence Py(N)NM # @.

CDDIU)

(@—ta)(a — tQa)...(a ~ 1,a) € Po(N)
for some #; € (@). By Lemma 3.1, there exists 5 € (a) such that
(e—3)a" € Py(N).
From [17, Lemma 2.1(iii)],
(e — 8)a = ka € Py(N).

So (¢—a)a® = ka € P(N). Thus (G—3a—k)a = 0. Hence (a—sa—k)aa =
= 0, where k’a = 0 for some positive integer j. Then a3 = sa® + ka2.
Since N has IFP, (ka)! = 0 and (ka?)’ = 0. Therefore, ka? € N'(N

(ii) By part (i) there exists n such that 0 = ((e — §)a®)" = (e —
—s)a’(e — s)a’...(e — s)a® = (e — 5)a™ for some m an some 5 € (a). The
last equation 1nvolves a reduction technique which we will illustrate with
n = 3.

0=(e—s)a’(e — s)a*(e — s)a® = (e — 5)%a*(e — 5)a’.
Case (i) Assume k£ < 3. Since N has the IFP, then
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0= (e — 5)%a*a*3(e — s5)a® = (e — s)%a".

Observe there exists 5 € (a) such that (e—s)® = e—3. Hence 0 = (e—5)aF,
so af = 5a* € (a) a.
Case (ii) Assume k > 3. Let p be the least positive integer such

that k£ < 3p. Since N has the IFP, then
0= (e —5)%a%(e — 5)a® = (e — 5)2a3 P Va3(e — 5)a® =
= (e — 5)%a*® V(e — 5)a* = (e — 5)%a* P Dad(e — 5)ada®P~V) =
= (e — $)2a*P (e — 5)afT3P~V = | = (e~ 5)%a™ = (e — §)a™.

Hence a™ € (a) a™.0

From [6, Th. 4.4], we have that if every prime ideal of N is com-
pletely prime then every ideal is 2-primal (hence if (0 : a)< N, then (0 : a)
is 2-primal). Examples of such near-rings with unity are provided in [6].

From [10], N satisfies the CZ1 condition if for any z, € N and pos-
itive integer k such that (zy)* = 0, then there exists a positive integer m
such that z™y™ = 0. Observe if N'(N) is contained in the multiplicative
center of N, then N satisfies the CZ1 condition. However [10, Example
2.5] provides an example of a ring R with unity such that R satisfies CZ1,
but N (R) is not contained in the center of R.

Theorem 3.3. Let N be an IFP near-ring with left unity e which
satisfies the CZ1 condition, and (0 : a) is a 2-primal ideal for all a € N.
Then the following conditions are equivalent:

(i) N is left pseudo m-regular.

(i) Every prime ideal is mazimal.

(iii) Every completely prime ideal is mazimal.

(iv) For every a € N there exists n, possibly depending on a, such
that N = (0:a") + {(a).

Proof. (i) = (ii). This implication follows from Cor. 2.4.

(i) = (iii). This implication is obvious.

(iii) = (i). Let @ € N. By Prop. 3.2(i), there exists a positive
integer k and s € (a) such that 0 = ((e—s)a®)¥. Since N satisfies the CZ1
condition, there exists a positive integer m such that 0 = (e — s)™a®™.
There exists 5 € (a) such that (e — s)™ = e — 5. Hence a®™ = 5a™.
Therefore N is left pseudo m-regular.

(i) & (iv). This equivalence follows from Cor. 1.5.0
Lemma 3.4. If N is a reduced near-ring, and 0 # a € N, then N/(0 : a)
is reduced and @ € N/(0 : a) is not a divisor of zero.

Proof. Let 0 # a € N. From [24, Prop. 9.3], it follows that (0: a) < N.
Let z" € (0 : a). Hence z"a = 0. Since (0) is a completely semi-
prime ideal, it follows from [17, Lemma 2.1(ii)] that za = 0. Hence
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z € (0 : a) and it follows that (0 : a) is a completely semi-prime ideal
and consequently N/(0 : a) is reduced. The element @ € N/(0 : a) is
nonzero since N is reduced Now suppose ba = 0. From [17 Lemma 2.1],
it follows that @b = 0. Hence aba = 0 and, therefore, (ba)? = 0. Since N
is reduced, we have b = 0.¢

Lemma 3.5. If N is a reduced near-ring, then N has the IFP and
(0:a) is a 2-primal ideal of N for all a € N.

Proof. From [17, Lemma 2.1(ii)] N is IFP. By Lemma 3.4 N/(0 : a) i
reduced. Thus (0 : a) is a 2-primal ideal of N.{

Lemma 3.6. A near-ring N with left unity e is reduced and left weakly
regular if and only if N = (0: a) @ (a) for every a € N.

Proof. Assume N is reduced and left weakly regular. Since N is reduced,
0 is a completely semiprime ideal. By [17, Lemma 2.1], (0 : a®) = (0 : a).
From Cor. 1.6, we have N = (0 : a) + (a). We show this sum is direct.
Let z € (0: a) N {a). Now za = 0 and z € (a). Since N is reduced, we
can show that z (a) = 0. Hence z°> = 0 and since N is reduced, we have
z=0.

For the converse, suppose N = (0 : a) @ {a) for all a € N. We
first show N is reduced. Let a € N such that a® = 0. Now a € (0 :

a) N {a) = 0. Next we show N is weakly regular. Let ¢ € N. Since
e€N=(0:a)P(a), we have a. = e-a = (t; + ty)a with ¢, € (0 : a)
and ty € (a) Hence a = t;a + tya = t3a € {a) a.0

As in [27], we define O, to be {a € N | ba = 0, for some b ¢ P},
where P is a prime ideal of N

Observe if N is a reduced near-ring and e is a left unity, then e is a
unity. To see this observe (re — z)? = ze(ze — ) — z(ze — z) = 0. Hence
zEe = I.

The following corollary generalizes [23, Lemma 4 and Th. 2].
Corollary 3.7. Let N be a reduced near-ring with unity. The following
conditions are equivalent:

(i) N is left weakly regular.

(ii) N is left pseudo m-regular.

(iii) Fvery prime ideal of N is mazimal.

(iv) Every completely prime ideal of N is mazimal.

(v) For every a € N we have N = (0: a) P (a).

(vi) For each prime ideal P of N, P = O,.

Proof. The equivalence of parts (i) through (v) follows from Th. 3.3,
Lemma 3.5, and Lemma 3.6.

(i) = (vi). Let P be any prime ideal. Since (i) <> (iii) we have

that NV has the pm condition and form Cor. 2.7 we have P is completely
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prime. Let z € Op. Then there exists b ¢ P such that bz =0 € P. Now
the fact that P is completely prime forces z € P and with (1—a) € N\P.
Hence z € O, and we have O, = P.

(vi) = (iii). Suppose P = O, for each P. Let M be a maximal
ideal such that P C M. From [24, Cor. 2.72], M is also a prime ideal.
Now from our assumption we have M = Oy C Op = P.O
Corollary 3.8. Let N be a reduced near-ring with unity. N 1is left
weakly regular if and only if every prime factor near-ring of N is a
simple integral near-rings.

Observe from [24, Th. 9.36] and Corrolary 3.8, we have: if N is a
reduced left weakly regular near-ring with unity, then NV is a subdirect
product of simple integral near-rings.

Corollary 3.9. Let N be a reduced near—rmg with unity and DCC on
N-subgroups. Then every prime factor near-ring of N is a near-field.
Proof. The proof follows from Cor. 3.7, Prop. 1.3, and [24, Remarks
9.48d].¢

This corollary is in contrast to the statement after Prop. 1.3. An
alternative proof of Cor. 3.9 can be given using [24, Prop. 9.41]. Observe
there are finite simple reduced near-rings which are not near-fields [24,
Remark 9.40].

Corollary 3.10. Let N be a 2-primal near-ring with a left unity. The
following conditions are equivalent:

(i) N/Py(N) is left weakly regular.

(ii) N/Po(N) is left pseudo m-regular.

(iii) Every prime ideal of N is mazimal.

(iv) Every completely prime ideal of N is mazimal.

Proof. Since N is 2-primal, N/Py(N) is a reduced near-ring. The re-
mainder of the proof follows routinely from Cor. 3.7.0

Observe that in [8] an example was given to show that the condition
in Cor. 3.10 “N is 2-primal” is not superfluous. Also there are nonreduced
nearrings satisfying the hypothesis of Th. 3.4. For example, let B be a
reduced near-ring with unity and C is nonreduced commutative ring with
unity. Then N = B @ C satisfies the hypothesis of Th. 3.4.

Question. Is a reduced left weakly regular near—rmg (with unity) also
right weakly regular?

If we let Np = {a € N : ba € Po(N) for some b € P\N} we can
now characterize minimal prime ideals in reduced near-rings similar to
that for rings in [27].

Theorem 3.11. Let N be a reduced near-rzng If P is any prime ideal
of N, then
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Op = N{Q< N |Q prime and 0, C Q}
N{Q <N | Q prime and Q C P}.

Proof. Let P be any prime ideal and suppose () is a prime ideal such
that Q C P. We first show that Og € Q. Let z € Og. Now bz = 0 for
some b ¢ Q. Since bz = 0 and N reduced, it follows from [6, Lemma 2.5]
that (b) (2) =0 C Q. Since Q is a prime ideal and b ¢ @ we must have
z € @ hence Og C @ for any prime ideal Q. For @ C P we now have
O; € Qg C Q and consequently

O, CN{R10, CRICN{Q|QCP}.

Suppose now a ¢ O,. We shall find a prime ideal @ such that
a¢Qand QCP. Let S={a,0%,a%.}. Sisa multiplicative system
that does not contain 0. Let L = N \P, i.e. L is an m-system. Let T be
the set of all nonzero elements of N of the form a®z,ah Zy...atr-1g, gtr
where z; € L and the t;’s are positive integers with £, and ¢, allowed to
be zero. Clearly L C T. Let M = T'US. We show that M is a m-system.
Let z,y € M. If z,y € S then 2y € S C M and we are done. Let z €S
and y € T, say ¢ = @° and y = a®y,atyqa®...y,atm. If (z) (y) # 0,
then zy # 0. This follows form the fact that N is reduced and from the
contrapositive of Lemma, 2.5 of [6]. Since zy # 0 we have zy € T, hence
(z) (y) N M # @. We show zy = 0 is impossible. Suppose Ty = 0, then
we have zy = a’ - a®y a®y,...a 1y, a0’ = 0. Since 0 is a completely
semi-prime ideal, Lemma 3.1 yields zy = a y1yg.. Ym = 0, where | = s +
+to+...+tm. From [6, Lemma 2.5] it follows that (a") (1) (y2) .. (ym) =0.
Let 0 # w € (y1) (y2) ... (Ym) N L. This is possible since L is an m-system.
Now we have then a'w = 0. Since N is reduced, we have aw = 0. Hence
wa = 0 with w € N\P. So a € O, a contradiction. So a similar
argument can be used for z € T and y € S and for z,y € T. This shows
that M is an m-system disjoint from 0. From [17, Lemma 3.1] there
exists a completely prime ideal @ disjoint from M. Hence a ¢ @ and
@ C P, completing the proof.{

We have the following corollary:

Corollary 3.12. If N is a 2-primal near-ring and P is any prime ideal,
then:

(1) N, =n{Q | Qis a prime ideal and Q C P};

(ii) P is a minimal prime ideal if- and only if P= Np.

Proof. If N is 2-primal then Py(N) = P,(N) and, therefore, N /Po(N)
is reduced. Hence part (i) follows from the previous theorem, and part
(i) is a consequence of part (i).¢
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