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Abstract: A simple inductive method is presented by which an arbitrary
rapidly convergent iterative sequence can be constructed for approximation of
the single simple zero of a given C*®-function. Among others, these include
sequences obtained by Newton’s, Halley’s and other well known iterative al-
gorithms. The Maple computer-algebraic system is used for establishing new,
higher-order convergent iterations, as well as, for the numeric illustration of
their order.

1. Preliminaries

By speed of the convergence 0 < g, — 0 (n — oo) we mean the
least upper bound of those & > 0 satlsfymg the

(1) lim sup L < 400

n En

condition. In this case the (€,)2, sequence is said to be at least k*-order




292 J. Benké and M. Klincsik

En+1
ex

convergent (if, in addition, lim inf > 0, the order of convergence 1s
n

exactly k).

The ideal frame for iterative search of a simple root of a given C*-
function ¢ : [a,b] — R is to have a single zero ¢ € (a,b), at which the
following conditions are satisfied:

(2) 0(d) =0, #le) =1, ¢"(c) == ¢¥(c) =0.

The set of these functions will be denoted by Z®)(c). If p € Z*)(c) and
¥(z) := z — ¢(z) then

(3) Ye) =90 =¢" ()= =9®() =0

thus, by the k*-order Taylor-formula in ¢, written with Lagrangian rest,
we have for every z € [a, b]

(4) [%(z) — | < Mz — c[**,
where
M = max{|e®*V(®)|/(k + 1)! | t € [a, 8]}

Consequently, if 0 < 7 < min{1,b—c,c—a, M~*/*} and I := [c—r,c+T7],
then %(I) C I C [a,b], so for every o € I : Tny1 i= Tn — @(2Tn) =
= 1(z,) € I and

. |Znt1 — ¢l

hmnsup 7 — o H < M,
ie. (1), is at least (k + 1)™-order convergent to c.

By the first and second recursive-theorem (see (2.5) and (2.6)),

a large class of ® : 2 (c) — Z¥¢+)(c) (k € N*) mappings can be
constructed. For a fixed sequence (®x)%, taking in account that for a
smooth f : [a,b] — R, with f(c) = 0 # f'(c) for some ¢ € (a,b), the
function ¢; := f/f' € 28 (c), and consequently, the sequence g4 =
:= @ (¢x) satisfies the following
Theorem. If f : [a,b] — R is a C®-function for which f(a)f(b) < 0
and f'(z) # 0 (Vz € [a,b]) then one may recursively construct a ()pe,
sequence of C®-functions, for which ¢; = f/f' and for every k € N*
and some approprietly choosen initial value m(()k), the sequence (x,(lk))?lozo
defined by xﬁl =z — o (2 is at least (k+1)™-order convergent to
the (single) zero of f.
References. J.F. Traub in the 8% paragraph of his [4] monography in an
ambitious program generates such a (¢)%2; sequence. The adventage of
our approach is, that it does not require any pre-construction. W. Gander
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in [2] - discussing the Halley method — grasps the momentum of transition
from ¢, to p,.

The possible chaotic behaviour of the discrete dynamic systems
generated by ¢ algorithm (k € N*) and the estimation of the attraction
basin of the zero point, will be discussed elsewhere. For the complexity
of these issues in the case of Newton and Halley algoritms, see [3] and [1].

2. Iteration calculus

In the following we shall discuss Z*)(c) and some related function
classes. Following Traub, the iterative calculus terminology is used, since
iterative algorithms are behind these. We consider the following classes
of functions (where ¢ € R is an arbitrary fixed point, dom (i) is the
domain of ¢ and int is the interior of a set):

C®(c): ={p|ce€ int dom (p) Ap is C*®-function on dom (p)}

H

2W(e): ={p e C(q) | p(c) =0,¢'(c) = 1,¢"(c) = -+ = P (c) = 0}
(k> 1),

ZP(c) 1 ={p €C®(e) | p(c) = 0,¢(c) #0,¢"(c) = -+ = ¥ (c) = 0}
(k> 1),

FOe) i ={p €C®() |9(0) =9/ () = =¥ () =0} (k>1),
N®(e):={vec®(c) |v(e)=v(c)=---=vF () =0} (k>0).
The functions’ operations are deﬁned pointwise on the intersection of
their domains. It is clear that ¢ — % := idgom(y) — @ is a one-to-

one correspondence between Z¥)(c) and F®)(c). The folllowing two
statements are self-evident:

(2.1) (The multiplicity of the zero point): If v; € N®)(c) and v, € NO(c),
then vy - vy € N+ (¢),

(2.2) (Newton's normalization): If ¢ € Z¥)(c), then ol € ZE(c).
Remarks. 1. The necessity of transition from Z(c) to Z®)(c) is

imposed by the fact that for ¢ € Z®) (c) the point ¢ may be a repulsive
fixed point of 1(z) = z — ¢(z), and in this case the iterative sequence
does not converge to ¢, while for ¢ € Z¥)(c), ¥/(c) = 0, so the fixed
point is superattractive.

. Q) . . ©(zTn)
2. For an arbitrary ¢ € 2y : zp01 = 7, — o ()

is the classical

Newton-algorithm.
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3. For arbitrary k € N*, verification of ¢ € Z(( )) is done by

(210)" () =7 (¢ () = () (0<n<h).

The basic idea of the Lemma on changes of variable below, is the follow-
ing: We want to construct iterative algoritms with ¢, € Z*)(c), for the
approximation of the unknown root c of f : [a,b] — R. By the hypothesis
f'(z) # 0 (Vz € [a,d]) of the Theorem of 1§, f is a C*°-diffeomorphism
between approprietly choosen neighbourhoods of ¢ and 0 = f(c), and so
each element of C*°(c) may be uniquely represented as a composition of
f with an element of C*°(0). In this way, instead of ¢, we will work in 0.
(2.3) (Lemma on change of variable): If ¢ € Z{(c) and v € N'((O';)
(k € N), then v oy € N®)(c) and the mapping v — v o p : NB(0) —
— N®)(c) is onto.

Proof. By induction on n, it is easy to realise that for appropiately
choosen P, (1 < m < n) polinomials

n
o)W =vWop- (W) + Y ™o Pa(i, @, ™).
m=1

Since for 0 < n < k : v(™(0) = 0, it follows that (o)™ (c) = 0. Because
¢~ is also a C*-diffeomorphism, the above argument is applicable to ¢!
and means that for every v € N®)(c) : vop™ € N*)(c) and consequently
v=(voyp1)opie. the mapping of the statement is onto. ¢

The key-momentum in constructing a Z%)(c) — Z*+1(¢) map is

based on the following statement: For a given ¢ € Z®*)(c) we characterize
those 1 € € (c) for which ¢(1 + ¢) € 2%+ (c). From the equalities

0, n=20
(n) _ 1+’l,b(C), ' n=1
(p(L+9)™ = nap("=1) (), l<n<k

(k+ 190 (c) + o** () (1 +9(c)), n=k+1
immediately follows that:
(2.4) If p € ZB)(c) and ¢ € C®)(c), the following two statements are
equivalent:
(1) w1+ ) € ZE(0);
(ii) (a) v € N&(c) and
(6) o*¥D(c) + (k + 1)y (c) = 0.
Using (2.3) and (2.4), for & > 1, we prove:
(2.5) (The first recursive theorem): (i) If ¢ € Z®)(c), p*+1(¢c) £ 0,
v € N®-1(0) and v¥)(0) = —sgn o**t1)(c)/(k + 1), then
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o (1+vo (o [p*IlE)) € 240 (g

i) o e 2P(c), o* () £ 0, v € NE=D(0) and v®)(0) =

k (p(k-i—l) (C)
%)) € 2k (),

IR IO
(k+1)
ha P
” (1 +vo ((p ’ k+1
Proof. (i) If o € C*(c) and a(c) # 0, then (ap)'(c) # 0, so in (2.3) we
may choose the change of variable .- p € Z* )(c), and based on this, the
function ¢ € N*(c) from (2.4) can be written with a v € N/~ 1)(0)
as 1 = vo(ayp). Next, by (6) we can state that y*)(c) = v®)(0)a*(c), so
(7) becomes ©* 1) (c) + (k + 1)v*) (0)a*(c) = 0, and then by v®)(0) from
the statement we obtain the function o = |p*+1|% for which e(l+9) =
=¢(L+vo(ap) = w0+vow-wmﬂﬁ»
(ii) If ¢ € 20 (c) then 2 7 € Z®)(c) (cf. (2.2)). For ¢, the element

from Z®*(c) will be looked for as being of the form
p1(l +vo(a- ). Since pi(c) = —kp®+(c)/¢(c), condition (7) be-
comes (k + 1)v®)(0)[¢'(c)]*+'a*(c) = kp*+1)(c) and thus the solution is
obtained by choosing a := |+ /(/)k+1|1/E ¢

For k > 2 a more simple iteration is generated by
(2.6) (The second recursive theorem):

then

. 1
. (k) > 9 (k—2) (k1) = —
(1) IfpeZ (C),k_ ,veEN (0) and v (0) k(k*l—l)’
then |
p(1+ ¢ - voy) € ZE(C),
(i) FoezPE), k>2 ve NE=2)(0) and v*-1D(0) = —kil’

then

(k)
5 (1 + ((’;,)k Vo go) € 2%+ (e),

Proof. (i) Elements p € NO(c) and p € N*=2)(0) are determined so
that ¢ := p - v o o fulfills the conditions of (2.4) (ii). From (2.1) follows
that ¥ € N*=1(c). Since
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k

390 =3 (D)u00 0o o0 D —ht(nt-(0) =
: £=0
= —k—i—ln( );

for p:=®), (7) is also satisfied and thus @(1+p-vop) = o(14+0®).vop) €
e ZE+)(e).
(i) In this case the elements of Z(*+1)(c) will also be looked for, as

being of the form — L4 —(1+p-vop). Since
¢’

TG0

0 (k+1)
(E) () = —ke®*(c)/¥'(c),
the condition (7) can be written as ©**(c) — p'(c)(¢'(c))* = 0, this
latter, based on p(c) = 0, can be rewntten as *+(c) — (u- ™) (c) = 0,
which is satisfled by p = 90(’“)/ (¢")k.

If in (2.5), repectively (2.6), we put v(t) = at® resp. v(t) = ptF?
(a resp. [ are determined according to »*)(0) resp. »*~1(0)), then
occur the following two recursive formulas.
(2.7) (i) For ¢ € Z%)(c)
(a) if k > 1 and p*+Y(c) # 0, then

1

&+ 1)

P (0) = k! () * D (0) (9 (0)) =

Pr41 = P (1 — ‘PZ‘PSCHD) e 25+ (o);

(b) if k > 2, then
Dbl = Pk (1 (k 1)90?)) € Z(’“+1)(c).
e

(ii) For ¢y € z
(a) if k > 1 and p*+tY(c) # 0, then

1 (k+1)
Grl = % (1 _ 90k<Pk e Zk+1) (C);

k (k= Dk +1) (o)**T
(b) if k > 2, then

__ 1 o k+1
Pt = (”(k—l)!(kﬂ) (A" >€Z( )
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3. Maple applications

The recursive formulas of previous paragraph for k = 1 easily can
be computed by hand. For example if in (2.5) we choose x := 1+, then
X must satisfy the following conditions

1
——sgn ¢’(c) in the case (i)
x(0) = L and x'(0) = { 42

5 sgn ©"(c) in the case (ii) '

Here are three solutions and the corresponding third order iterations:
(a) if x(t) == 2/(2+t sgn ¢"(c)) and p € Z((i)), then

20/(2+¢y") € Z(c).
(b) if x(t) :== 1/4/T +t sgn ¢"(c) and ¢ € ZM(c), then
L e 7).

!
sgn (¢ )———m
(c) if x(t) :=2/(2 —t sgn ¢"(c)) and ¢ € VAR (c), then

2(‘090”
2(pl2 — (p(Pll
To obtain higher order recursive formulas became more difficult task be-
cause of the large amount of computations. Therefore we use the Maple
computer algebraic system to deduce more complicated formulas and nu-
merically illustrate the accuracy of convergence order. If we choose k = 2

t 2f - f'
in (2.6) (i), v(t) = ~5 and () = 5 (f,)j; ___ff T € Z%(c) (i.e.  is the
Halley-iteration of f) then we obtain by Maple the following iteration
function

p=p (1" (rop) = 2 - F{—4B(F) +96(F)°F - 1" -
~84(f ) F2(F")? +48(F)2F2(f")° = 3£ (") + +8F2(F)° " —
2P = 2 P+ AT
AP = 2V T Y[R 4 £ - P
which belongs to Z3(c). Applying this to approximate the unique zero

¢ = V2 of f(z) = z° — 2, we calculate the sequence T,4; = Tn, — ¥(zn)
(with the above ), the deviations &, = |z,11 — Z,,| and the ratios

€ ZW(c) (the classical Halley-iteration).
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En+1 En+1 En+1

o ot (n=1,2,3,4,5).
g3 gt g9

n n n

The numerical precession of Maple we set 800 digits, in order to get
nonzero £, differences. Here is a part of the Maple program illustrating
the accuracy order of this sequences:
> ‘ITERATION‘:=unapply (x-pszi(x)):
ORDER :=4;
Digits:=800:x1:=1:
ORDER1 :=NULL:0RDER2:=NULL:ORDER3:=NULL:
x2:=evalf (‘ITERATION‘(x1)) :hl:=abs(x2-x1):
‘approx‘:=evalf(x2,10):
for i from 1 to 5 do
x1:=x2:x2:=evalf (‘ITERATION (x1)):
h2:=abs(x2-x1):
‘approx‘:=‘approx‘,evalf(x2,10):
ORDER1:=0RDER1,evalf (h2/h1" (ORDER-1),10):
ORDER2:=0RDER2, evalf (h2/h1"ORDER, 10) :
ORDER3:=0RDER3, evalf (h2/h1" (ORDER+1),10) :
h1l:=h2:
od: :
> ORDER1;0RDER2; DRDERB ;
> ‘approximation‘=‘approx‘
The results of this Ma,ple program on the one hand the sequences
Ent1/€3, €nt1/el, and €,41/€2 (n=1,2,3,4,5)
1002796317, .0008979861435, 2608503162 10“11, .1851933811 10745,
4705023909 10“182,
3831579959, .4995194381, .5000000002, .4999999998, .5000000001,
1.464006670, 277.8658342, .9584040526 10!, 1349940254 10,
5313469281 1082
and on the other hand the z,, approximating sequence (n = 1,2, 3,4, 5)
approx. = (1.261718750, 1.259921050, 1.259921050, 1.259921050,
1.259921050, 1.259921050)
These sequences convince that for this new iteration function the order
of convergence is exactly 4.
Interesting to compare this result with the classical Halley-iteration.
If in the programme we substitute ITERATION : =unapply (x-Halley (x))
and ORDER:=3 then for the ratios eny1/€2, €ny1/€3, €nt1/€% we obtain
the following sequences
1587301587, .004216403843, .17427834541075, .1260398211 10~19,
4767615870 10759,
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6349206349, .4250135074, .4199738909, 4199736834, .4199736831,

2.539682540, 42.84136154, .1012048104 107, .1399382300 102,

.3699498854 105°

and the approximation sequence of the zero is

approx. = (1.250000000, 1.259920635, 1.259921050, 1.259921050,
1.259921050, 1.259921050)

These data reinforce the well known fact that the order of Halley-iteration

is exactly 3.
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