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Abstract: We loo at the product of semi-radial spaces. Slightly improving
a result of D. V. Malykhin, we show that the product of countably many
compact semi-radial spaces is almost radial. Further, we consider conditions

under which a product is semi-radial.

Considerations around the product continue to be a central theme
in the study of pseudoradial spaces, see for instance [1], [2] and [3].

In 1997 D. V. Malykhin [5] proved that the product of countably
many compact semi-radial spaces is pseudoradial and such result has
been recently improved by E. Murtinova [6] by showing that a product
of wy, compact semi-radial spaces is pseudoradial if it is sequentially
compact.

Here we present some more thinks on the product of semi-radial
spaces, We begin by proving that the product of countably many com-
pact semi-radial spaces is actually almost radial (a bit more than Ma-
lykhin’s result). Then we look at some conditions for the semi-radiality
of a product.

For more on the various kinds of pseudoradial spaces see for in-
stance [1].
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By transfinite sequence we mean any well ordered net, i.e. a set
indexed by some ordinal.

A transfinite sequence S in the topological space X converges
(strictly converges) to z € X if each neighbourhood of X contains a
final segment of S (and moreover z is not in the closure of any initial
segment of ).

Given a space X and a set A C X, we denote by A" (A°") the
smallest subset of X that contains A and is radially closed (strictly
radially closed), i.e. no sequence in A" (A°") can converge (strictly
converge) to a point outside A™ (A°").

A space is pseudoradial (almost radial) if A = A” (4 = A*") holds
for each A C X.

A subset A of a space X is x-closed (< k- closed) if B C A for
any set B C A satisfying |B| < s (|4]| < k).

A space X is semi-radial provided that every non-x- closed set
A C X contains a sequence of length at most x which converges to a
point outside A.

A space X is R-monolithic if for any A C X and any non-closed
set B C A there exists a sequence S C B which converges to a point
outside B and satisfies |S| < |A].

We have

R-monolithic => semi-radial => almost radial = pseudoradial.

Proposition 1 [7]. The product of finitely many compact semi-radial
spaces is almost radial.

Theorem 1. The product of countably many compact semi-radial
spaces is almost radial.

Proof. Let X = Hnew X,, and assume that each X, is a compact semi-
radial space. If F' C w, then np : X — Xp = [],cr Xn denotes the
projection. When F' = {n} we simply write 7.

Arguing by contradiction, we assume that there exists a non-closed
strictly radially closed set A C X. Notice first that there is some finite
set F' C w such that 7p[A] is not closed in X (otherwise we can easily
find a w-sequence in A converging to some point of A\ A). Since Xp
is almost radial, there is a sequence B C A such that wp[B] strictly
converges to some point 7 € Xr \ np[A]. In particular, we have that
tp ¢ wp[B°T].

Choose now F' and B in such a way that B has the smallest
possible length, say |B| = k. Clearly, k is a regular cardinal.



Semi-radiality in products 11

If Kk = w, then the sequential compactness of X would provide
a convergent subsequence S C B and this in turn would give zp =
= lim 7p[B] = lim 7p[S] € 7p[S°") C wp[B°®"]. Therefore  is uncount-
able. : __

Claim 1: If S C X satisfies |S| < &, then mp[S] C m,[S°"] for each
necuw.

Since m,[S] C m,[S°7] C m and X, is semi-radial, it follows
that the formula m,[S]\ m,[S*"] # @ would imply the existence of a
sequence C C §°7, of length at most |S| < s, whose projection 7,[C]
is strictly convergent to some point z,, ¢ m,[S"] 2 m,[C*"]. This is in
contradiction with the minimality of s and so Claim 1 is proved.
Claim 2: For any i € w there exist a point z; € X; and a sequence
B' C B*" such that |B'| = k, limm;[B'] = z; and lim7j[B] = z; =
= lim 7;[B’] = z; for every j € w.

Let B = {by : @ < k} and B, = {bg : B < c}. Then let z; be a
complete accumulation point of the set m;[B].

CASE 1: for any o < k there exists f(a) < « such that z; €
€ m;[Bs(a) \ Ba)- Thanks to Claim 1, we can pick by, € (Bg(a)\Ba)*" C
C B*" in such a way that m;(b’) = z;. The assertion lim 7;[B] = z;
means that for any closed neighbourhood U of z; there exists v < &
such that m;[B\ B,] C U or, equivalently, B\ B, C 7rj“1[U]. Hence, for
any a > v, we have b, € (Bg(a) \ Ba)®" C (B\ B,)" C w;l[U] and
thus, letting B’ = {b}, : @ < k}, we have lim 7;[B'] = ;. The sequence
B’ has then all the required properties.

CASE 2: by cutting off some initial segment of B, we may assume
that z; ¢ m;[Bg) for every a < k. Letting C = (J{m;[Ba] : @ < k}, we
get a non-closed subset of X; (clearly z; € m;[B] = C and z; ¢ C). Since
X; is semi-radial, there exists a sequence S C C, necessarily of length
%, which strictly converges to some point z; € C\ C. Writing S = {s, :
: o < Kk}, we may assume that so € m;[Bg(a)] \ mi[Ba] C 7i[Bg(a) \ Bal,
for some B(c) € k\ . Again by Claim 1, we may then pick points b;, €
€ (Bp(a) \ Ba)®" C B*" in such a way that m;(b,) = sq. By replacing
r; with z!, we see that the sequence B’ = {b/, : @ < x} has even in this
case all the required properties. Claim 2 is then proved.

Now, we come back to the proof of the theorem. Using countably
many times Claim 2, we can construct for each n € w a sequence B,, =
= {b" : @ < k} such that B, C B C B, lim 7, [Bp] = z,, for some
T, € X, and lim 7;[B,] = x; for each j <n.
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It is clear that if n € F then z,, = 7,(zF), therefore if = is the
point of X whose n-th coordinate is z,, then we have mp(z) = zr. For
any a < & select a point dy, € {b7 : n € w}*" C B*". The sequence D =
= {d, : @ < K} so obtained converges to . To check this, it is enough
to verify that for any finite set G C w and any closed neighbourhood
U of mg(z) in Xg there exists some v < & such that D\ D., C n5'[U].
Choose n such that G C n and observe that the formula lim 7;[By,] = z;
for every j < m actually implies that lim 7g[Bm] = 7¢/(z) holds for each
n < m. Therefore, for each m > n there exists some 7,, < « such that
B\ (Bm)4,, € 751 [U]. Since x is regular and uncountable, we may
pick some vy < & such that ~,, < v for each m > n. Consequently, for
every o > v, we have {b7 : n < m < w} C 75'[U] and this in turn
gives do, € {0 : n < m < w}*" C 7z [U]. Hence, D\ D,, C 75'[U] and
so lim D = z. Moreover, it is easy to realize that actually D is strictly
convergent to z. But then z € B*"and we have a contradiction with
zp = mp(z) ¢ T[B]. 0
Remark. The theorem above is in general the best we can hope for,
as even the product of two compact radial spaces may fail to be semi-
radial [8].

This suggests to look for possible conditions which may guarantee
the semi-radiality of a product. In this respect, we have the following
general result:

Theorem 2. If a class of compact semi-radial spaces is finitely pro-
ductive then it is countably productive.

Proof. Let {X,, : n € w} be a subfamily of some finitely productive
class of compact semi-radial spaces and put X =[], ., Xn-

Let 7, be the projection of X onto the product of the first n + 1
factors and let A be a non-k-closed subset of X. Obviously, we may
assume that x is minimal, i.e. that A is < k-closed. Choose a point
z € A\ A. If m,(z) € m,[A] for every n, then we may pick points z,, €
€ A in such a way that 7, (z,) = m,(z) for every n. It is clear that the
sequence {z, : n € w} converges to = and we are done because w < k.

Now, assume that there is some integer m so that m,(z) ¢ mm[A]
and consequently m,,[A] is not closed in 7, [X]. Thanks to the finite
productivity of our class of spaces, we can assume, without any loss of
generality, that m = 0.

It is clear that mg[A] is not s-closed and < k-closed and so there
exists a sequence {zg, : @ € K} C A such that the sequence {mo(zo,q) :
: o € K} converges to a point zy € Xo \ mo[A]. Obviously x must be
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regular.

If k = w then, taking into account that X is sequentially compact,
we can fix a subsequence {y, : n € w} C {zon : n € w} converging to
a point y € X. Since we must have mo(y) = zi ¢ mo(A), we see that
y ¢ A and we reach our target.

Then, suppose & > w and let D, = {m1(zo,p: f € o} C m1[A] and
D = UguerDg. Since D is not closed in the semi-radial space X x Xj,
there exists a sequence {y, : @ € A} C D converging to a point y € D \
\D. It is clear that we should have A =  and mo(y) = z(. Next, choose
points 71 o € A in such a way that 71(21,6) = Yo and let y = (zg, ).

By repeating this argument, we see that we can define for every
n € w a sequence {Z, o : @ € K} C A in such a way that the sequence
{7p(Zn,a) : @ € K} converges to the point (zg, zh,... ,T;,) ¢ TalA].

Let z' be the point of X whose nth coordinate is z},. For every
« select a point z!, which is the limit of a convergent subsequence of
the set {Tn o : n € w}. It is clear that the point x|, belongs to A for
every a. The sequence {z!, : @ € x} converges to z’. To check this, it
is sufficient to consider neighbourhoods of z' of the form ;! [U], where
U is a closed neighbourhood of 7, (z') in 7, [X]. By construction, for
every n > m there exists an ordinal o, € & such that 7, (2n,o) € U X
X Xmi1 X ++- X X, whenever @ > ap,. Let & = sup{on : n > m}.
For any a > & and any n > m we have z, o € 7,'[U] and therefore
zl, € _7r;11[U ]. This shows that the sequence {z,, : @ € s} converges to
z' € A\ A. The proof is then complete. ¢

A good class of spaces satisfying the hypothesis of Th. 2 is the class
of compact R-monolithic spaces. In fact such class is itself countably
productive [2].

The question now is whether some uncountable product can be
semi- radial. A result in this direction is
Proposition 2 [1]. Ifp > w; then the product of wy compact LOTS is
semi-radial.

In view of Th. 2, we may consider the product of w; compact

semi-radial spaces. The obstacle here is in the separable subsets. We
have:
Theorem 3. Let X be a finitely productive class of compact semi-radial
spaces (for instance, the class of compact R-monolithic spaces) and let
X = Ha6w1 Xo be a product of members of X. If every sequentially
closed separable subset of X is closed then X is semi-radial.
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Proof. Since every sequentially closed separable subset of X is closed,
we see that every non-w-closed subset of X has a countable sequence
converging outside it. Thus, we need to work on the non--closed subset

with A > w.
Let then A be a non-A-closed subset of X, which we can clearly

assume to be also < A-closed. Denote by g : Ha€w1 X, — Haeﬂ X
the canonical projection and select a point = € A\ A. If mg(z) € 73[4]
for each 8 € wi, then pick points zz € A in such a way that ng(z) =
= mg(xg). It is clear that the sequence {zg : § € w;} converges to =
and therefore we have found in A a sequence of length at most A which
converges to a point outside A.

Next we assume that for some § € w; 7g(z) ¢ mg[A]. This means
that mg[A] is a non A-closed subset of [] acp Xo Which moreover is < A-
closed. By Th. 2, the space [] acp X, 1s semi-radial and so there exists a
sequence {zf : ¢ € A} C A and a point z? € [Iaep Xa\7p[A] such that
the sequence {mg(z2) : o € A} converges to 2. Clearly A must be reg-
ular. Let C, = {z5 : a € y} and C = UyeaCy. Observe that mg1[C] is
a < A-closed non A-closed subset of [] acfil Xa- Again by Th. 2, there
exists a sequence {z8+!: o € w;} C C and a point zA+! ¢ [locpi1 Xa
such that {mg;1(z8™!) : @ € A} converges to 2P*1. Furthermore, the
sequence {z21! : & € A} can be chosen in such a way that b+t ¢ C,

for every v € X and consequently z8+! € {25 :v e a e A}

It is easy to see that the sequence {mg(z2*!) : o € A} must con-
verge to =P and hence zA*+! is an extension of zg, ie. zPtl(a) =
= zf(a) for every o € . Iterating this procedure, we construct se-
quences {z8+" : o € A} C A in such a way that {mpin(zBt™) : a € A}
converges to 291" € [, 5., Xa, (x) 287"+ € {z8%" .y c o € A} and
zP+7+1 is an extension of £+". At the limit step 8+ w, define z8+% —
= UpnewzP*™ and for any a € A pick a point z8+v ¢ {a:'ng” inmEw}C
C A. It is easy to check that the sequence {mg4,(z87) : a € A}
converges to z°1v.

Mimicking the same pattern, we can construct for any v € w,
sequences {z8+7 : @ € A} C A and points Pt e [acpsy Xo in
such a way that {ms,(z2%7) : @ € A} converges to z#+7 and z5+9
is an extension of z°*7 whenever v € §. Furthermore we require that
a condition analogous to (*) holds for every successor ordinal and for
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v limit 28+ is chosen in the set ﬂ{{mﬁ+5 Eebey}: £ ev} To
finish put z = U,e,, 2Pt € [Tocw, Xo \ A. We distinguish two cases.
If A = wp then put z, = 2812 for each o € w;. We claim that the
sequence {z, : @ € w; } converges to z. To this end fix a neighbourhood
W of z. Without any loss of generality, we can take W = ﬂ'ﬁ_}l_,y(V)
where V is a closed neighbourhood of z°*7 in Haeﬁ 4y Xa. Clearly

there exists & € w; such that 817 € wﬁ_iW(V) for any o > &. Since by

construction for any o > @&, we have z8+7+1 ¢ {rg T aefew}, we

see that z8+7+1 ¢ ngj_,y(V). With the same argument, we deduce that

ghtrin ¢ WEi,Y(V) for any o > & and any n € w. But then 8+t ¢
€ ng,y(V) and continuing in this manner we obtain that z8+° ¢
€ ﬂ-E—{l—’Y(V) for any a > & and any v < § € w;. Now replacing & with
max{&, v}, we see that z, = z8+* € W for any « > & and therefore
{20 : @ € w1} converges to z.

If A > wq, then for any a € A pick a complete accumulation point
Zq of the set {217 : v € wy}. Tt is evident that z, € A for every a € \.
We claim that {2, : @ € A} converges to z. Fix as before a closed
neighbourhood of z of the form W = m; +,Y(V) For every 6 > -y there
exists as € A such that 75,5(z87°) € 75,5(W) whenever o > a5.As A
is regular we can select & € A such that as € & for every § € w;. We
have 214 ¢ W for every 6 € w; and every & € o € ) and therefore z, €
ew for every & € o € A. Again we see that the sequence {za 1x € A}
converges to z and this completes the proof. {

It is easy to see that Prop. 2 is an immediate consequence of Th. 3.

The product of w; compact R-monolithic spaces would be consis-
tently semi-radial if the following question had a positive answer.
Question 1. Is there any model of ZFC where any sequentially closed
separable subset of a product of wy compact sequential spaces is always
closed?

We wonder if [PFA] could be of any help in solving such question.

Another thing emerges by comparing Th. 1 with the result of
E. Murtinova. In fact, we may ask:
Question 2. Is it true that the product of wy compact semi-radial
spaces is almost radial if it is sequentially compact?

We do not know the answer even for the very simple case of the
space 1“1,
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It is well known that I is pseudoradial if and only if s > w; and

that there are models where I“! is pseudoradial but not semi-radial
(take, for instance, a model of 2*1 > 2* = wy = 5, [4]). Thus, we have:
Question 2’. Is it true that I** is almost radial if § > wy ?
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