SEMI-RADIALITY IN PRODUCTS

Angelo Bella

Dipartimento di Matematica, Città universitaria, viale A. Doria 6, 95125 Catania, Italia

Dedicated to Professor Gino Tironi on his 60th birthday

Received: November 1999

MSC 1991: 54 A 25, 54 D 55.

Keywords: Almost radial, semi-radial, R-monolithic, product.

Abstract: We loo at the product of semi-radial spaces. Slightly improving a result of D. V. Malykhin, we show that the product of countably many compact semi-radial spaces is almost radial. Further, we consider conditions under which a product is semi-radial.

Considerations around the product continue to be a central theme in the study of pseudoradial spaces, see for instance [1], [2] and [3].

In 1997 D. V. Malykhin [5] proved that the product of countably many compact semi-radial spaces is pseudoradial and such result has been recently improved by E. Murtinová [6] by showing that a product of ω_1 compact semi-radial spaces is pseudoradial if it is sequentially compact.

Here we present some more thinks on the product of semi-radial spaces, We begin by proving that the product of countably many compact semi-radial spaces is actually almost radial (a bit more than Malykhin's result). Then we look at some conditions for the semi-radiality of a product.

For more on the various kinds of pseudoradial spaces see for instance [1].

E-mail address: bella@dipmat.unict.it

10 A. Bella

By transfinite sequence we mean any well ordered net, i.e. a set indexed by some ordinal.

A transfinite sequence S in the topological space X converges (strictly converges) to $x \in X$ if each neighbourhood of X contains a final segment of S (and moreover x is not in the closure of any initial segment of S).

Given a space X and a set $A \subseteq X$, we denote by A^r (A^{sr}) the smallest subset of X that contains A and is radially closed (strictly radially closed), i.e. no sequence in A^r (A^{sr}) can converge (strictly converge) to a point outside A^r (A^{sr}).

A space is pseudoradial (almost radial) if $\overline{A} = A^r$ ($\overline{A} = A^{sr}$) holds for each $A \subseteq X$.

A subset A of a space X is κ -closed ($< \kappa$ - closed) if $\overline{B} \subseteq A$ for any set $B \subseteq A$ satisfying $|B| \le \kappa$ ($|A| < \kappa$).

A space X is semi-radial provided that every non- κ - closed set $A\subseteq X$ contains a sequence of length at most κ which converges to a point outside A.

A space X is R-monolithic if for any $A \subseteq X$ and any non-closed set $B \subseteq \overline{A}$ there exists a sequence $S \subseteq B$ which converges to a point outside B and satisfies $|S| \leq |A|$.

We have

 $R ext{-monolithic} \Longrightarrow semi ext{-radial} \Longrightarrow almost \ radial \Longrightarrow pseudoradial.$

Proposition 1 [7]. The product of finitely many compact semi-radial spaces is almost radial.

Theorem 1. The product of countably many compact semi-radial spaces is almost radial.

Proof. Let $X = \prod_{n \in \omega} X_n$ and assume that each X_n is a compact semi-radial space. If $F \subseteq \omega$, then $\pi_F : X \to X_F = \prod_{n \in F} X_n$ denotes the projection. When $F = \{n\}$ we simply write π_n .

Arguing by contradiction, we assume that there exists a non-closed strictly radially closed set $A \subseteq X$. Notice first that there is some finite set $F \subseteq \omega$ such that $\pi_F[A]$ is not closed in X_F (otherwise we can easily find a ω -sequence in A converging to some point of $\overline{A} \setminus A$). Since X_F is almost radial, there is a sequence $B \subseteq A$ such that $\pi_F[B]$ strictly converges to some point $x_F \in X_F \setminus \pi_F[A]$. In particular, we have that $x_F \notin \pi_F[B^{sr}]$.

Choose now F and B in such a way that B has the smallest possible length, say $|B| = \kappa$. Clearly, κ is a regular cardinal.

If $\kappa = \omega$, then the sequential compactness of X would provide a convergent subsequence $S \subseteq B$ and this in turn would give $x_F = \lim \pi_F[B] = \lim \pi_F[S] \in \pi_F[S^{sr}] \subseteq \pi_F[B^{sr}]$. Therefore κ is uncountable.

Claim 1: If $S \subseteq X$ satisfies $|S| < \kappa$, then $\overline{\pi_n[S]} \subseteq \pi_n[S^{sr}]$ for each $n \in \omega$.

Since $\pi_n[S] \subseteq \pi_n[S^{sr}] \subseteq \overline{\pi_n[S]}$ and X_n is semi-radial, it follows that the formula $\overline{\pi_n[S]} \setminus \pi_n[S^{sr}] \neq \emptyset$ would imply the existence of a sequence $C \subseteq S^{sr}$, of length at most $|S| < \kappa$, whose projection $\pi_n[C]$ is strictly convergent to some point $x_n \notin \pi_n[S^{sr}] \supseteq \pi_n[C^{sr}]$. This is in contradiction with the minimality of κ and so Claim 1 is proved.

Claim 2: For any $i \in \omega$ there exist a point $x_i \in X_i$ and a sequence $B' \subseteq B^{sr}$ such that $|B'| = \kappa$, $\lim \pi_i[B'] = x_i$ and $\lim \pi_j[B] = x_j \Longrightarrow \lim \pi_j[B'] = x_j$ for every $j \in \omega$.

Let $B = \{b_{\alpha} : \alpha < \kappa\}$ and $B_{\alpha} = \{b_{\beta} : \beta < \alpha\}$. Then let x_i be a complete accumulation point of the set $\pi_i[B]$.

CASE 1: for any $\alpha < \kappa$ there exists $\beta(\alpha) < \kappa$ such that $x_i \in \overline{\pi_i[B_{\beta(\alpha)} \setminus B_{\alpha}]}$. Thanks to Claim 1, we can pick $b'_{\alpha} \in (B_{\beta(\alpha)} \setminus B_{\alpha})^{sr} \subseteq \subseteq B^{sr}$ in such a way that $\pi_i(b'_{\alpha}) = x_i$. The assertion $\lim \pi_j[B] = x_j$ means that for any closed neighbourhood U of x_j there exists $\gamma < \kappa$ such that $\pi_j[B \setminus B_{\gamma}] \subseteq U$ or, equivalently, $B \setminus B_{\gamma} \subseteq \pi_j^{-1}[U]$. Hence, for any $\alpha > \gamma$, we have $b'_{\alpha} \in (B_{\beta(\alpha)} \setminus B_{\alpha})^{sr} \subseteq (B \setminus B_{\gamma})^{sr} \subseteq \pi_j^{-1}[U]$ and thus, letting $B' = \{b'_{\alpha} : \alpha < \kappa\}$, we have $\lim \pi_j[B'] = x_j$. The sequence B' has then all the required properties.

CASE 2: by cutting off some initial segment of B, we may assume that $x_i \notin \overline{\pi_i[B_{\alpha}]}$ for every $\alpha < \kappa$. Letting $C = \bigcup \{\overline{\pi_i[B_{\alpha}]} : \alpha < \kappa\}$, we get a non-closed subset of X_i (clearly $x_i \in \overline{\pi_i[B]} = \overline{C}$ and $x_i \notin C$). Since X_i is semi-radial, there exists a sequence $S \subseteq C$, necessarily of length κ , which strictly converges to some point $x_i' \in \overline{C} \setminus C$. Writing $S = \{s_{\alpha} : \alpha < \kappa\}$, we may assume that $s_{\alpha} \in \overline{\pi_i[B_{\beta(\alpha)}]} \setminus \overline{\pi_i[B_{\alpha}]} \subseteq \overline{\pi_i[B_{\beta(\alpha)} \setminus B_{\alpha}]}$, for some $\beta(\alpha) \in \kappa \setminus \alpha$. Again by Claim 1, we may then pick points $b_{\alpha}' \in (B_{\beta(\alpha)} \setminus B_{\alpha})^{sr} \subseteq B^{sr}$ in such a way that $\pi_i(b_{\alpha}') = s_{\alpha}$. By replacing x_i with x_i' , we see that the sequence $B' = \{b_{\alpha}' : \alpha < \kappa\}$ has even in this case all the required properties. Claim 2 is then proved.

Now, we come back to the proof of the theorem. Using countably many times Claim 2, we can construct for each $n \in \omega$ a sequence $B_n = \{b_{\alpha}^n : \alpha < \kappa\}$ such that $B_{n+1} \subseteq B_n^{sr} \subseteq B^{sr}$, $\lim \pi_n[B_n] = x_n$ for some $x_n \in X_n$ and $\lim \pi_i[B_n] = x_i$ for each $i \in X_n$.

12 A. Bella

It is clear that if $n \in F$ then $x_n = \pi_n(x_F)$, therefore if x is the point of X whose n-th coordinate is x_n then we have $\pi_F(x) = x_F$. For any $\alpha < \kappa$ select a point $d_{\alpha} \in \{b_{\alpha}^n : n \in \omega\}^{sr} \subseteq B^{sr}$. The sequence D = $= \{d_{\alpha} : \alpha < \kappa\}$ so obtained converges to x. To check this, it is enough to verify that for any finite set $G \subseteq \omega$ and any closed neighbourhood U of $\pi_G(x)$ in X_G there exists some $\gamma < \kappa$ such that $D \setminus D_{\gamma} \subseteq \pi_G^{-1}[U]$. Choose n such that $G \subseteq n$ and observe that the formula $\lim \pi_i[B_m] = x_i$ for every $j \leq m$ actually implies that $\lim \pi_G[B_m] = \pi_G(x)$ holds for each $n \leq m$. Therefore, for each $m \geq n$ there exists some $\gamma_m < \kappa$ such that $B_m \setminus (B_m)_{\gamma_m} \subseteq \pi_G^{-1}[U]$. Since κ is regular and uncountable, we may pick some $\gamma < \kappa$ such that $\gamma_m < \gamma$ for each $m \geq n$. Consequently, for every $\alpha \geq \gamma$, we have $\{b_{\alpha}^m : n \leq m < \omega\} \subseteq \pi_G^{-1}[U]$ and this in turn gives $d_{\alpha} \in \{b_{\alpha}^m : n \leq m < \omega\}^{sr} \subseteq \pi_G^{-1}[U]$. Hence, $D \setminus D_{\gamma} \subseteq \pi_G^{-1}[U]$ and so $\lim D = x$. Moreover, it is easy to realize that actually D is strictly convergent to x. But then $x \in B^{sr}$ and we have a contradiction with $x_F = \pi_F(x) \notin \pi_f[B^{sr}]. \diamondsuit$

Remark. The theorem above is in general the best we can hope for, as even the product of two compact radial spaces may fail to be semiradial [8].

This suggests to look for possible conditions which may guarantee the semi-radiality of a product. In this respect, we have the following general result:

Theorem 2. If a class of compact semi-radial spaces is finitely productive then it is countably productive.

Proof. Let $\{X_n : n \in \omega\}$ be a subfamily of some finitely productive class of compact semi-radial spaces and put $X = \prod_{n \in \omega} X_n$.

Let π_n be the projection of X onto the product of the first n+1 factors and let A be a non- κ -closed subset of X. Obviously, we may assume that κ is minimal, i.e. that A is $< \kappa$ -closed. Choose a point $x \in \overline{A} \setminus A$. If $\pi_n(x) \in \pi_n[A]$ for every n, then we may pick points $x_n \in A$ in such a way that $\pi_n(x_n) = \pi_n(x)$ for every n. It is clear that the sequence $\{x_n : n \in \omega\}$ converges to x and we are done because $\omega \leq \kappa$.

Now, assume that there is some integer m so that $\pi_m(x) \notin \pi_m[A]$ and consequently $\pi_m[A]$ is not closed in $\pi_m[X]$. Thanks to the finite productivity of our class of spaces, we can assume, without any loss of generality, that m = 0.

It is clear that $\pi_0[A]$ is not κ -closed and $< \kappa$ -closed and so there exists a sequence $\{x_{0,\alpha} : \alpha \in \kappa\} \subseteq A$ such that the sequence $\{\pi_0(x_{0,\alpha}) : \alpha \in \kappa\}$ converges to a point $x_0' \in X_0 \setminus \pi_0[A]$. Obviously κ must be

regular.

If $\kappa = \omega$ then, taking into account that X is sequentially compact, we can fix a subsequence $\{y_n : n \in \omega\} \subseteq \{x_{0,n} : n \in \omega\}$ converging to a point $y \in X$. Since we must have $\pi_0(y) = x_0' \notin \pi_0(A)$, we see that $y \notin A$ and we reach our target.

Then, suppose $\kappa > \omega$ and let $D_{\alpha} = \overline{\{\pi_1(x_{0,\beta} : \beta \in \alpha\}} \subseteq \pi_1[A]$ and $D = \bigcup_{\alpha \in \kappa} D_{\alpha}$. Since D is not closed in the semi-radial space $X_0 \times X_1$, there exists a sequence $\{y_{\alpha} : \alpha \in \lambda\} \subseteq D$ converging to a point $y \in \overline{D} \setminus D$. It is clear that we should have $\lambda = \kappa$ and $\pi_0(y) = x'_0$. Next, choose points $x_{1,\alpha} \in A$ in such a way that $\pi_1(x_{1,\alpha}) = y_{\alpha}$ and let $y = (x'_0, x'_1)$.

By repeating this argument, we see that we can define for every $n \in \omega$ a sequence $\{x_{n,\alpha} : \alpha \in \kappa\} \subseteq A$ in such a way that the sequence $\{\pi_n(x_{n,\alpha}) : \alpha \in \kappa\}$ converges to the point $(x'_0, x'_1, \ldots, x'_n) \notin \pi_n[A]$.

Let x' be the point of X whose nth coordinate is x'_n . For every α select a point x'_{α} which is the limit of a convergent subsequence of the set $\{x_{n,\alpha}:n\in\omega\}$. It is clear that the point x'_{α} belongs to A for every α . The sequence $\{x'_{\alpha}:\alpha\in\kappa\}$ converges to x'. To check this, it is sufficient to consider neighbourhoods of x' of the form $\pi_m^{-1}[U]$, where U is a closed neighbourhood of $\pi_m(x')$ in $\pi_m[X]$. By construction, for every $n\geq m$ there exists an ordinal $\alpha_n\in\kappa$ such that $\pi_n(x_{n,\alpha})\in U\times X_{m+1}\times\cdots\times X_n$ whenever $\alpha\geq\alpha_n$. Let $\hat{\alpha}=\sup\{\alpha_n:n\geq m\}$. For any $\alpha\geq\hat{\alpha}$ and any $n\geq m$ we have $x_{n,\alpha}\in\pi_m^{-1}[U]$ and therefore $x'_{\alpha}\in\pi_m^{-1}[U]$. This shows that the sequence $\{x'_{\alpha}:\alpha\in\kappa\}$ converges to $x'\in\overline{A}\setminus A$. The proof is then complete. \Diamond

A good class of spaces satisfying the hypothesis of Th. 2 is the class of compact R-monolithic spaces. In fact such class is itself countably productive [2].

The question now is whether some uncountable product can be semi-radial. A result in this direction is

Proposition 2 [1]. If $\mathfrak{p} > \omega_1$ then the product of ω_1 compact LOTS is semi-radial.

In view of Th. 2, we may consider the product of ω_1 compact semi-radial spaces. The obstacle here is in the separable subsets. We have:

Theorem 3. Let \mathcal{X} be a finitely productive class of compact semi-radial spaces (for instance, the class of compact R-monolithic spaces) and let $X = \prod_{\alpha \in \omega_1} X_{\alpha}$ be a product of members of \mathcal{X} . If every sequentially closed separable subset of X is closed then X is semi-radial.

14 A. Bella

Proof. Since every sequentially closed separable subset of X is closed, we see that every non- ω -closed subset of X has a countable sequence converging outside it. Thus, we need to work on the non- λ -closed subset with $\lambda > \omega$.

Let then A be a non- λ -closed subset of X, which we can clearly assume to be also $< \lambda$ -closed. Denote by $\pi_{\beta} : \prod_{\alpha \in \omega_1} X_{\alpha} \to \prod_{\alpha \in \beta} X_{\alpha}$ the canonical projection and select a point $x \in \overline{A} \setminus A$. If $\pi_{\beta}(x) \in \pi_{\beta}[A]$ for each $\beta \in \omega_1$, then pick points $x_{\beta} \in A$ in such a way that $\pi_{\beta}(x) = \pi_{\beta}(x_{\beta})$. It is clear that the sequence $\{x_{\beta} : \beta \in \omega_1\}$ converges to x and therefore we have found in x a sequence of length at most x which converges to a point outside x.

Next we assume that for some $\beta \in \omega_1$ $\pi_{\beta}(x) \notin \pi_{\beta}[A]$. This means that $\pi_{\beta}[A]$ is a non λ -closed subset of $\prod_{\alpha \in \beta} X_{\alpha}$ which moreover is $< \lambda$ -closed. By Th. 2, the space $\prod_{\alpha \in \beta} X_{\alpha}$ is semi-radial and so there exists a sequence $\{x_{\alpha}^{\beta} : \alpha \in \lambda\} \subseteq A$ and a point $x^{\beta} \in \prod_{\alpha \in \beta} X_{\alpha} \setminus \pi_{\beta}[A]$ such that the sequence $\{\pi_{\beta}(x_{\alpha}^{\beta}) : \alpha \in \lambda\}$ converges to x^{β} . Clearly λ must be regular. Let $C_{\gamma} = \{x_{\alpha}^{\beta} : \alpha \in \gamma\}$ and $C = \bigcup_{\gamma \in \lambda} C_{\gamma}$. Observe that $\pi_{\beta+1}[C]$ is a $< \lambda$ -closed non λ -closed subset of $\prod_{\alpha \in \beta+1} X_{\alpha}$. Again by Th. 2, there exists a sequence $\{x_{\alpha}^{\beta+1} : \alpha \in \omega_1\} \subseteq C$ and a point $x^{\beta+1} \in \prod_{\alpha \in \beta+1} X_{\alpha}$ such that $\{\pi_{\beta+1}(x_{\alpha}^{\beta+1}) : \alpha \in \lambda\}$ converges to $x^{\beta+1}$. Furthermore, the sequence $\{x_{\alpha}^{\beta+1} : \alpha \in \lambda\}$ can be chosen in such a way that $x_{\gamma}^{\beta+1} \notin C_{\gamma}$ for every $\gamma \in \lambda$ and consequently $x_{\gamma}^{\beta+1} \in \{x_{\alpha}^{\beta} : \gamma \in \alpha \in \lambda\}$.

It is easy to see that the sequence $\{\pi_{\beta}(x_{\alpha}^{\beta+1}): \alpha \in \lambda\}$ must converge to x^{β} and hence $x^{\beta+1}$ is an extension of x_{β} , i.e. $x^{\beta+1}(\alpha) = x^{\beta}(\alpha)$ for every $\alpha \in \beta$. Iterating this procedure, we construct sequences $\{x_{\alpha}^{\beta+n}: \alpha \in \lambda\} \subseteq A$ in such a way that $\{\pi_{\beta+n}(x_{\alpha}^{\beta+n}): \alpha \in \lambda\}$ converges to $x^{\beta+n} \in \prod_{\alpha \in \beta+n} X_{\alpha}$, $(*) x_{\gamma}^{\beta+n+1} \in \{x_{\alpha}^{\beta+n}: \gamma \in \alpha \in \lambda\}$ and $x^{\beta+n+1}$ is an extension of $x^{\beta+n}$. At the limit step $\beta+\omega$, define $x^{\beta+\omega}=\omega$ and for any $\alpha \in \lambda$ pick a point $x_{\alpha}^{\beta+\omega} \in \{x_{\alpha}^{\beta+n}: n \in \omega\} \subseteq A$. It is easy to check that the sequence $\{\pi_{\beta+\omega}(x_{\alpha}^{\beta+\omega}): \alpha \in \lambda\}$ converges to $x^{\beta+\omega}$.

Mimicking the same pattern, we can construct for any $\gamma \in \omega_1$ sequences $\{x_{\alpha}^{\beta+\gamma}: \alpha \in \lambda\} \subset A$ and points $x^{\beta+\gamma} \in \prod_{\alpha \in \beta+\gamma} X_{\alpha}$ in such a way that $\{\pi_{\beta+\gamma}(x_{\alpha}^{\beta+\gamma}): \alpha \in \lambda\}$ converges to $x^{\beta+\gamma}$ and $x^{\beta+\delta}$ is an extension of $x^{\beta+\gamma}$ whenever $\gamma \in \delta$. Furthermore we require that a condition analogous to (*) holds for every successor ordinal and for

 $\gamma \text{ limit } x_{\alpha}^{\beta+\gamma} \text{ is chosen in the set } \bigcap \{ \overline{\{x_{\alpha}^{\beta+\delta} : \xi \in \delta \in \gamma\}} : \xi \in \gamma \}. \text{ To finish put } z = \cup_{\gamma \in \omega_1} x^{\beta+\gamma} \in \prod_{\alpha \in \omega_1} X_{\alpha} \setminus A. \text{ We distinguish two cases. If } \lambda = \omega_1 \text{ then put } z_{\alpha} = x_{\alpha}^{\beta+\alpha} \text{ for each } \alpha \in \omega_1. \text{ We claim that the sequence } \{z_{\alpha} : \alpha \in \omega_1\} \text{ converges to } z. \text{ To this end fix a neighbourhood } W \text{ of } z. \text{ Without any loss of generality, we can take } W = \pi_{\beta+\gamma}^{-1}(V) \text{ where } V \text{ is a closed neighbourhood of } x^{\beta+\gamma} \text{ in } \prod_{\alpha \in \beta+\gamma} X_{\alpha}. \text{ Clearly there exists } \hat{\alpha} \in \omega_1 \text{ such that } x_{\alpha}^{\beta+\gamma} \in \pi_{\beta+\gamma}^{-1}(V) \text{ for any } \alpha \geq \hat{\alpha}. \text{ Since by construction for any } \alpha \geq \hat{\alpha}, \text{ we have } x_{\alpha}^{\beta+\gamma+1} \in \overline{\{x_{\xi}^{\beta+\gamma} : \hat{\alpha} \in \xi \in \omega_1\}}, \text{ we see that } x_{\alpha}^{\beta+\gamma+1} \in \pi_{\beta+\gamma}^{-1}(V). \text{ With the same argument, we deduce that } x_{\alpha}^{\beta+\gamma+n} \in \pi_{\beta+\gamma}^{-1}(V) \text{ for any } \alpha \geq \hat{\alpha} \text{ and any } n \in \omega. \text{ But then } x_{\alpha}^{\beta+\gamma+\omega} \in \pi_{\beta+\gamma}^{-1}(V) \text{ and continuing in this manner we obtain that } x_{\alpha}^{\beta+\delta} \in \pi_{\beta+\gamma}^{-1}(V) \text{ for any } \alpha \geq \hat{\alpha} \text{ and any } \gamma \leq \delta \in \omega_1. \text{ Now replacing } \hat{\alpha} \text{ with } \max\{\hat{\alpha},\gamma\}, \text{ we see that } z_{\alpha} = x_{\alpha}^{\beta+\alpha} \in W \text{ for any } \alpha \geq \hat{\alpha} \text{ and therefore } \{z_{\alpha} : \alpha \in \omega_1\} \text{ converges to } z.$

If $\lambda > \omega_1$, then for any $\alpha \in \lambda$ pick a complete accumulation point z_{α} of the set $\{x_{\alpha}^{\beta+\gamma}: \gamma \in \omega_1\}$. It is evident that $z_{\alpha} \in A$ for every $\alpha \in \lambda$. We claim that $\{z_{\alpha}: \alpha \in \lambda\}$ converges to z. Fix as before a closed neighbourhood of z of the form $W = \pi_{\beta+\gamma}^{-1}(V)$. For every $\delta \geq \gamma$ there exists $\alpha_{\delta} \in \lambda$ such that $\pi_{\beta+\delta}(x_{\alpha}^{\beta+\delta}) \in \pi_{\beta+\delta}(W)$ whenever $\alpha \geq \alpha_{\delta}$. As λ is regular we can select $\hat{\alpha} \in \lambda$ such that $\alpha_{\delta} \in \hat{\alpha}$ for every $\delta \in \omega_1$. We have $x_{\alpha}^{\beta+\delta} \in W$ for every $\delta \in \omega_1$ and every $\hat{\alpha} \in \alpha \in \lambda$ and therefore $z_{\alpha} \in \omega$ for every $\hat{\alpha} \in \alpha \in \lambda$. Again we see that the sequence $\{z_{\alpha}: \alpha \in \lambda\}$ converges to z and this completes the proof. \Diamond

It is easy to see that Prop. 2 is an immediate consequence of Th. 3.

The product of ω_1 compact R-monolithic spaces would be consistently semi-radial if the following question had a positive answer.

Question 1. Is there any model of ZFC where any sequentially closed separable subset of a product of ω_1 compact sequential spaces is always closed?

We wonder if [PFA] could be of any help in solving such question.

Another thing emerges by comparing Th. 1 with the result of E. Murtinová. In fact, we may ask:

Question 2. Is it true that the product of ω_1 compact semi-radial spaces is almost radial if it is sequentially compact?

We do not know the answer even for the very simple case of the space $I^{\omega_1}.$

It is well known that I^{ω_1} is pseudoradial if and only if $\mathfrak{s} > \omega_1$ and that there are models where I^{ω_1} is pseudoradial but not semi-radial (take, for instance, a model of $2^{\omega_1} > 2^{\omega} = \omega_2 = \mathfrak{s}$, [4]). Thus, we have: Question 2'. Is it true that I^{ω_1} is almost radial if $\mathfrak{s} > \omega_1$?

References

- [1] A. BELLA, A.: Few remarks and questions on pseudoradial spaces, *Topology Appl.* **70** (1996), 113–123.
- [2] BELLA, A. and DOW, A.: On R-monolithic spaces, Topology Appl., to appear.
- [3] BELLA, A., DOW, A. and TIRONI, G.: Pseudoradial spaces: separable subsets, products and maps onto Tychonoff cubes, *Topology Appl.*, to appear.
- [4] van DOUWEN, E. K.: The integers and topology, Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan editors, North-Holland, Amsterdam, The Netherlands, 1984, 111–167.
- [5] MALYKHIN, D. V.: A product of countably many compact semi-radial spaces is pseudoradial, to appear.
- [6] MURTINOVÁ, E.: On products of pseudoradial spaces, to appear.
- [7] OBERSNEL, F. and TIRONI, G.: Product of pseudoradial spaces, Mathematica Pannonica 6 (1995), 29–38.
- [8] SIMON, P. and TIRONI, G.: Pseudoradial spaces: finite products and an example from CH, Serdica Math. J. 24 (1998), 127–134.