A NEW CLASS OF QUASI-UNIFORM SPACES

Salvador Romaguera

Escuela de Caminos, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46071 Valencia, Spain.

Dedicated to Professor Gino Tironi on his 60th birthday

Received: October 1999

MSC 1991: 54 E 15, 54 E 50, 54 D 35

Keywords: Fitting quasi-uniform space, quiet, bicomplete, bicompletion, totally bounded, uniform space, uniformly R_0 , half-complete, (strongly) D-complete.

Abstract: We introduce and study the notion of a fitting quasi-uniform space. Every quiet quasi-uniform space is fitting. We show that any bicompletion of a fitting quasi-uniform space is fitting and deduce that every fitting totally bounded quasi-uniformity is a uniformity. We also characterize those T_1 quasi-uniform spaces whose bicompletion is T_1 . Finally, we discuss other kinds of completeness on fitting quasi-uniform spaces.

1. Introduction and preliminaries

In [9] Doitchinov introduced the notion of a quiet quasi-uniform space and obtained a consistent theory of completion for these spaces (see also [10]). By using Doitchinov's completion, Fletcher and Hunsaker proved in [11] the interesting result that every quiet totally

E-mail address: sromague@mat.upv.es

The author acknowledges the support of the DGES, grant PB98-0564.

bounded quasi-uniform space is a uniform space (see [15] for an alternative proof). In [7] Deák generalized quietness in several directions and extended in this way parts of the theory of quiet quasi-uniform spaces, although at cost of losing the good property, cited above, that every quiet totally bounded quasi-uniformity is a uniformity (see [17] Section 6).

In this paper we introduce and study the notion of a fitting quasi-uniform space. Every quiet quasi-uniform space is fitting and each nonregular quasi-metric space (X,d) such that the supremum metric $d \vee d^{-1}$ is the discrete metric on X provides an example of a fitting quasi-uniform space which is not quiet. We show that fittingness is preserved by bicompletion of each quasi-uniform space and deduce that every fitting totally bounded quasi-uniform space is a uniform space. Finally, other completeness properties on fitting quasi-uniform spaces are discussed. In many cases, these properties are obtained in the more general context of uniformly weakly regular quasi-uniform spaces, concept introduced in [1], which permits us to generalize and extend several known results.

The letter $\mathbb N$ will denote the set of positive integers and $\mathbb R$ the set of real numbers.

Our basic references for quasi-uniform and quasi-metric spaces are [13] and [16].

We recall some pertinent concepts.

If \mathcal{U} is a quasi-uniformity on a set X, then $\mathcal{U}^{-1} = \{U^{-1} : U \in \mathcal{U}\}$ is also a quasi-uniformity on X called the conjugate of \mathcal{U} , and

 $\mathcal{T}(U) = \{A \subseteq X : \text{ for each } x \in A \text{ there is } U \in \mathcal{U} \text{ such that } U(x) \subseteq A\}$

is the topology generated by \mathcal{U} , where as usual $U(x) = \{y \in X : (x,y) \in U\}$ for all $U \in \mathcal{U}$. The coarsest uniformity on X finer than the quasi-uniformity \mathcal{U} will be denoted by \mathcal{U}^s , i.e. $\mathcal{U}^s = \mathcal{U} \vee \mathcal{U}^{-1}$. If $U \in \mathcal{U}$, the element $U \cap U^{-1}$ of \mathcal{U}^s will be denoted by U^s .

A quasi-uniform space (X, \mathcal{U}) is called *bicomplete* if (X, \mathcal{U}^s) is a complete uniform space. In this case we say that \mathcal{U} is a bicomplete quasi-uniformity.

A bicompletion of a quasi-uniform space (X, \mathcal{U}) is a bicomplete quasi-uniform space (Y, \mathcal{V}) such that (X, \mathcal{U}) is quasi-unimorphic to a $\mathcal{T}(\mathcal{V}^s)$ -dense subset of Y. It was proved in [3] and in [24] (see also [13]) that every quasi-uniform space admits a bicompletion. Moreover (Y, \mathcal{V}^{-1}) is a bicompletion of (X, \mathcal{U}^{-1}) . In addition, if (X, \mathcal{U})

is a T_0 quasi-uniform space, then (X, \mathcal{U}) has a unique (up to quasi-isomorphism) T_0 bicompletion $(\widetilde{X}, \widetilde{\mathcal{U}})$. In this case $(\widetilde{X}, \widetilde{\mathcal{U}})$ is called the bicompletion of (the T_0 quasi-uniform space) (X, \mathcal{U}) .

A quasi-pseudometric on a set X is a nonnegative real-valued function d on $X \times X$ such that for all $x, y, z \in X : d(x, x) = 0$ and $d(x, y) \leq d(x, z) + d(z, y)$.

A quasi-metric on X is a quasi-pseudometric d on X such that d(x, y) = 0 if and only if x = y.

Each quasi-pseudometric d on X generates a topology $\mathcal{T}(d)$ on X, where the basic open sets of $\mathcal{T}(d)$ are the d-balls $B_d(x,r) = \{y \in X : d(x,y) < r\}$ for all $x \in X$ and r > 0. Note that if d is a quasi-metric, then $\mathcal{T}(d)$ is a T_1 topology.

Each quasi-(pseudo)metric d on X induces a (pseudo)metric d^s on X defined by $d^s(x,y) = \max\{d(x,y), d^{-1}(x,y)\}$ for all $x,y \in X$, where d^{-1} is the conjugate quasi-(pseudo)metric of $d: d^{-1}(x,y) = d(y,x)$ for all $x,y \in X$.

A quasi-pseudometric d on X induces a quasi-uniformity \mathcal{U}_d on X with basic entourages of the form $\{(x,y):d(x,y)<2^{-n}\}, n\in\mathbb{N}$.

2. Bicompletion of fitting quasi-uniform spaces

In order to obtain a consistent theory of quasi-uniform completion based on a notion of completeness which provided $\mathcal{T}(U)$ -convergence of Cauchy filters, Doitchinov introduced the concept of a quiet quasi-uniform space ([9], [10]).

A filter \mathcal{F} on a quasi-uniform space (X,\mathcal{U}) is said to be D-Cauchy ([9], [12]) if there is a so-called co-filter \mathcal{G} of \mathcal{F} such that $(\mathcal{G},\mathcal{F})\to 0$, where $(\mathcal{G},\mathcal{F})\to 0$ if for each $U\in\mathcal{U}$ there are $G\in\mathcal{G}$ and $F\in\mathcal{F}$ such that $G\times F\subseteq U$.

A quasi-uniform space (X, \mathcal{U}) is called *quiet* ([9], [12]) if for each $U \in \mathcal{U}$ there is $V \in \mathcal{U}$ such that whenever \mathcal{F} and \mathcal{G} are filters on X satisfying $(G, \mathcal{F}) \to 0$ and x and y are points of X satisfying $V(x) \in \mathcal{F}$ and $V^{-1}(y) \in \mathcal{G}$, then $(x, y) \in \mathcal{U}$.

In this case, we say that V is quiet for U and \mathcal{U} is called a *quiet quasi-uniformity*.

The Sorgenfrey line and the Kofner plane are interesting examples of nonmetrizable spaces which admit compatible quasi-metrics such that the induced quasi-uniformities are quiet.

Clearly, each uniform space is quiet. It is also well known that each quiet quasi-uniform space (X, \mathcal{U}) is regular, i.e. $\mathcal{T}(U)$ is a regular topology, and that a quasi-uniform space (X, \mathcal{U}) is quiet if and only if (X, \mathcal{U}^{-1}) is quiet. Thus, in a certain sense, quietness is a symmetric property.

Motivated by the existence of many interesting examples of non-regular quasi-uniform spaces having useful symmetry properties (see Ex. 1 below), we introduce the following generalization of the notion of a quiet quasi-uniform space.

Definition 1. A quasi-uniform space (X, \mathcal{U}) is called *fitting* if for each $U \in \mathcal{U}$ there is $V \in \mathcal{U}$ such that whenever \mathcal{F} and \mathcal{G} are filters on X satisfying $(G, \mathcal{F}) \to 0$ and x and y are points of X satisfying $V^s(x) \in \mathcal{F}$ and $V^s(y) \in \mathcal{G}$, then $(x, y) \in U$.

In this case, we say that V is fitting for U and U is called a fitting quasi-uniformity.

Remark 1. (a) It is easily seen that every fitting quasi-uniform space is R_0 , and, hence, every fitting T_0 quasi-uniform space is T_1 . Furthermore, a quasi-uniform space (X, \mathcal{U}) is fitting if and only if (X, \mathcal{U}^{-1}) is fitting.

(b) Similarly to the quiet case, fittingness is a hereditary and productive property.

Example 1. Let (X, d) be a quasi-metric space such that d^s is the discrete metric on X. We show that then \mathcal{U}_d is a fitting quasi-uniformity on X.

Indeed, given $k \in \mathbb{N}$ put $U_k = \{(x,y) \in X \times X : d(x,y) < 2^{-k}\}$. We shall prove that U_k is fitting for U_k : Let $(\mathcal{G}, \mathcal{F}) \to 0$ and $x, y \in X$ such that $U_k^s(x) \in \mathcal{F}$ and $U_k^s(y) \in \mathcal{G}$. Since d^s is the discrete metric on X, $U_k^s(x) = \{x\}$ and $U_k^s(y) = \{y\}$. Therefore the filters \mathcal{F} and \mathcal{G} are generated by $\{x\}$ and $\{y\}$, respectively. Thus d(y,x) = 0, so x = y.

Next we give an example of a fitting quasi-uniform space (X, \mathcal{U}) such that both $\mathcal{T}(U)$ and $\mathcal{T}(U^{-1})$ are the discrete topology on X but \mathcal{U} is not a quiet quasi-uniformity.

Example 2. Let d be the function defined on $\mathbb{N} \times \mathbb{N}$ by

 $\begin{array}{ll} d(n,m) = \mid 1/n - 1/m \mid & \text{if n is odd and m is even;} \\ d(n,m) = \mid 1/n - 1/m \mid & \text{if n and m are odd with $n > m$;} \\ d(n,m) = \mid 1/n - 1/m \mid & \text{if n and m are even with $n < m$;} \\ d(n,n) = 0 & \text{for all $n \in \mathbb{N}$;} \end{array}$

and

d(n, m) = 1 otherwise.

It is easily seen that d is a quasi-metric on \mathbb{N} such that $\mathcal{T}(d)$ and $\mathcal{T}(d^{-1})$ are the discrete topology on \mathbb{N} . Moreover d^s is the discrete metric on \mathbb{N} , so \mathcal{U}_d is a fitting quasi-uniformity (see Ex. 1).

Put $U = \{(n,m) \in \mathbb{N} \times \mathbb{N} : d(n,m) < 1\}$. Let \mathcal{F} and \mathcal{G} be the filters on \mathbb{N} generated by $\{\{2k: k \geq n\} : n \in \mathbb{N}\}$ and $\{\{2k-1: k \geq k \geq n\} : n \in \mathbb{N}\}$, respectively. Clearly $(\mathcal{G}, \mathcal{F}) \to 0$ with respect to \mathcal{U}_d . Furthermore, for each $\varepsilon > 0$ there are $j, k \in \mathbb{N}$ such that $B_d(2j, \varepsilon) \in \mathcal{F}$ and $B_{d^{-1}}(2k-1, \varepsilon) \in \mathcal{G}$. But d(2j, 2k-1) = 1, so $(2j, 2k-1) \notin U$. We have shown that \mathcal{U}_d is not a quiet quasi-uniformity on \mathbb{N} .

It was proved in [18] that any bicompletion of a quiet quasiuniform space is quiet. We next extend this result to fitting quasiuniform spaces.

Proposition 1. Let (Y, \mathcal{U}) be a quasi-uniform space and let X be a $\mathcal{T}(U^s)$ -dense subset of Y. Then (Y, \mathcal{U}) is fitting if and only if $(X, \mathcal{U} \mid X \times X)$ is fitting.

Proof. Since the necessity is obvious (see Remark 1 (b)), we only prove the sufficiency. Let $U_0 \in \mathcal{U}$. Choose $U_1 \in \mathcal{U}$ such that $U_1^3 \subseteq U_0$. Then, there is $V \in \mathcal{U}$ such that $V \subseteq U_1$ and $V \cap (X \times X)$ is fitting for $U_1 \cap (X \times X)$. Let $W \in \mathcal{U}$ such that $W^3 \subseteq V$. We shall show that W is fitting for U_0 .

Indeed, let \mathcal{F} and \mathcal{G} be filters on Y such that $(\mathcal{G}, \mathcal{F}) \to 0$ and let $x, y \in Y$ be such that $W^s(x) \in \mathcal{F}$ and $W^s(y) \in \mathcal{G}$. Since X is a $\mathcal{T}(U^s)$ -dense subset of Y, \mathcal{F}_1 and \mathcal{G}_1 are filter bases on X, where

$$\mathcal{F}_1 = \{U^s(F) \cap X : F \in \mathcal{F}, \ U \in \mathcal{U}\}$$
 and $\mathcal{G}_1 = \{U^s(G) \cap X : G \in \mathcal{G}, \ U \in \mathcal{U}\}.$

Furthermore $(\mathcal{G}_1, \mathcal{F}_1) \to 0$ because $(\mathcal{G}, \mathcal{F}) \to 0$. Now let $a \in W^s(x) \cap X$ and $b \in W^s(y) \cap X$. Then $W^s(W^s(x)) \cap X \subseteq V^s(a) \cap X$. Since $W^s(x) \in \mathcal{F}$ we deduce that $V^s(a) \cap X \in \mathcal{F}_1$. Similarly, we obtain that $V^s(b) \cap X \in \mathcal{G}_1$. So, by our assumption, $(a,b) \in U_1$. Thus $(x,y) \in U_1^3 \subseteq U_0$. We conclude that (Y,\mathcal{U}) is fitting. \Diamond

From Prop. 1 we immediately deduce the following result.

Theorem 1. Let (Y, V) be a bicompletion of a fitting quasi-uniform space (X, U). Then (Y, V) is a fitting quasi-uniform space.

Corollary 1. The bicompletion of any fitting T_0 quasi-uniform space is a fitting T_0 quasi-uniform space.

3. Fitting totally bounded quasi-uniformities

In this section we shall extend Fletcher and Lindgren's theorem cited in Section 1 to fitting quasi-uniform spaces.

Let us recall that a quasi-uniform space (X, \mathcal{U}) is totally bounded provided that the uniform space (X, \mathcal{U}^s) is totally bounded (see for instance [13]).

Theorem 2. Let (X, \mathcal{U}) be a fitting totally bounded quasi-uniform space. Then (X, \mathcal{U}) is a uniform space.

Proof. We first show that $\mathcal{U}^{-1} \subseteq \mathcal{U}$. Assume the contrary. Then, there exists $U \in \mathcal{U}$ such that $V \setminus U^{-1} \neq \emptyset$ for all $V \in \mathcal{U}$. Let $(x_V, y_V) \in \mathcal{U}$ $\in V \setminus U^{-1}$ whenever $V \in \mathcal{U}$. Since (X, \mathcal{U}) is totally bounded we can construct, without loss of generality, two subnets $(a_{\alpha})_{\alpha \in \Lambda}$ and $(b_{\alpha})_{\alpha \in \Lambda}$ of the nets $(x_V)_{V\in\mathcal{U}}$ and $(y_V)_{V\in\mathcal{U}}$ respectively, such that both $(a_\alpha)_{\alpha\in\Lambda}$ and $(b_{\alpha})_{\alpha \in \Lambda}$ are Cauchy nets in the uniform space (X, \mathcal{U}^s) . Moreover, for each $\alpha \in \Lambda$ we may put $a_{\alpha} = x_{V_{\alpha}}$ and $b_{\alpha} = y_{V_{\alpha}}$, where the corresponding map from Λ to \mathcal{U} witness that $(a_{\alpha})_{\alpha \in \Lambda}$ is a subnet of $(x_V)_{V \in \mathcal{U}}$ and $(b_{\alpha})_{\alpha \in \Lambda}$ is a subnet of $(y_V)_{V \in \mathcal{U}}$. Since (X, \mathcal{U}) is totally bounded there is a bicompletion (Y, \mathcal{V}) of (X, \mathcal{U}) such that (Y, \mathcal{V}^s) is a compact uniform space ([24] p. 80). Thus $(a_{\alpha})_{\alpha \in \Lambda}$ converges to a point $a \in$ $\in Y$ with respect to $\mathcal{T}(V^s)$ and $(b_{\alpha})_{\alpha \in \Lambda}$ converges to a point $b \in Y$ with respect to $\mathcal{T}(V^s)$. (Recall that both $(a_{\alpha})_{\alpha \in \Lambda}$ and $(b_{\alpha})_{\alpha \in \Lambda}$ are Cauchy nets in (X, \mathcal{U}^s) and hence in (Y, \mathcal{V}^s) .) It immediately follows that $(a,b) \in \cap \{W : W \in \mathcal{V}\}$. On the other hand (Y,\mathcal{V}) is fitting by Th. 1, so $\mathcal{T}(V)$ is an R_0 topology, and, thus, $(b,a) \in \cap \{W : W \in \mathcal{V}\}$ ([13] Prop. 1.9). Therefore the net $((y_{V_{\alpha}}, x_{V_{\alpha}}))_{\alpha \in \Lambda}$ is eventually in U, which contradicts our assumption that $(x_V, y_V) \notin U^{-1}$ for all $V \in \mathcal{U}$. We conclude that $\mathcal{U}^{-1} \subseteq \mathcal{U}$. Similarly, we prove that $\mathcal{U} \subseteq \mathcal{U}^{-1}$. Hence \mathcal{U} is a uniformity on X and the proof is complete. \Diamond

Corollary 2 ([11], [15]). Every quiet totally bounded quasi-uniformity is a uniformity.

Since a topological space is T_1 if and only if it is T_0 and R_0 , and each fitting quasi-uniform space is R_0 , it seems interesting to characterize those T_1 quasi-uniform spaces (X, \mathcal{U}) whose bicompletion $(\widetilde{X}, \widetilde{\mathcal{U}})$ is T_1 . Our next result provides such a characterization. In order to help the reader we recall the construction of the bicompletion of a T_0 quasi-uniform space (X, \mathcal{U}) , as is given in [13] Th. 3.33.

Let \widetilde{X} be the set of all minimal \mathcal{U}^s -Cauchy filters on X. (Recall that a \mathcal{U}^s -Cauchy filter is minimal provided that it contains no \mathcal{U}^s -

Cauchy filters other than itself.) For each $U \in \mathcal{U}$ let

 $\widetilde{U} = \{(\mathcal{F}, \mathcal{G}) \in \widetilde{X} \times \widetilde{X} : \text{ there exist } F \in \mathcal{F} \text{ and } G \in \mathcal{G} \text{ with } F \times G \subseteq U\}.$

Then $\{\widetilde{U}:U\in\mathcal{U}\}$ is a base for a quasi-uniformity $\widetilde{\mathcal{U}}$ on \widetilde{X} such that $(\widetilde{X},\widetilde{\mathcal{U}})$ is a bicomplete T_0 quasi-uniform space and (X,\mathcal{U}) is quasi-uniformly embedded as a $\mathcal{T}(\widetilde{\mathcal{U}})$ -dense subspace of $(\widetilde{X},\widetilde{\mathcal{U}})$ by the map $i:X\to\widetilde{X}$ such that for each $x\in X$, i(x) is the $\mathcal{T}(U^s)$ -neighborhood filter of x. Furthermore, any T_0 bicompletion of (X,\mathcal{U}) is quasi-unimorphic to $(\widetilde{X},\widetilde{\mathcal{U}})$ (see [13] Th. 3.34) and we may identify X with i(X).

Proposition 2. A T_1 quasi-uniform space (X, \mathcal{U}) has a T_1 quasi-uniform bicompletion if and only if whenever \mathcal{F} and \mathcal{G} are \mathcal{U}^s -Cauchy filters such that $(\mathcal{F}, \mathcal{G}) \to 0$, then $(\mathcal{G}, \mathcal{F}) \to 0$.

Proof. We first suppose that the bicompletion $(\widetilde{X},\widetilde{\mathcal{U}})$ of the T_1 quasiuniform space (X,\mathcal{U}) is T_1 . Let \mathcal{F} and \mathcal{G} be \mathcal{U}^s -Cauchy filters on X such that $(\mathcal{F},\mathcal{G}) \to 0$. Then $i(\mathcal{F})$ and $i(\mathcal{G})$ are $\widetilde{\mathcal{U}}^s$ -Cauchy filter bases on \widetilde{X} , so there exist a and b in \widetilde{X} such that $i(\mathcal{F})$ and $i(\mathcal{G})$ are $\mathcal{T}(\widetilde{\mathcal{U}}^s)$ -convergent to a and b, respectively. Since $(i(\mathcal{F}),i(\mathcal{G}))\to 0$ and $(\widetilde{X},\mathcal{T}(\widetilde{\mathcal{U}}))$ is T_1 , it follows that a=b. Hence $(i(\mathcal{G}),i(\mathcal{F}))\to 0$, and, thus, $(\mathcal{G},\mathcal{F})\to 0$.

Conversely, suppose that \mathcal{F} and \mathcal{G} are minimal \mathcal{U}^s -Cauchy filters on X such that $(\mathcal{F},\mathcal{G}) \in \widetilde{\mathcal{U}}$ for all $U \in \mathcal{U}$. Then, for each $U \in \mathcal{U}$ there exist $F \in \mathcal{F}$ and $G \in \mathcal{G}$ such that $F \times G \subseteq U$. Thus $(\mathcal{F},\mathcal{G}) \to 0$ and, by assumption, $(\mathcal{G},\mathcal{F}) \to 0$. This implies that $(\mathcal{G},\mathcal{F}) \in \widetilde{\mathcal{U}}$ for all $U \in \mathcal{U}$. Since $(\widetilde{X},\mathcal{T}(\widetilde{\mathcal{U}}))$ is T_0 , we obtain $\mathcal{F} = G$. Consequently $(\widetilde{X},\mathcal{T}(\widetilde{\mathcal{U}}))$ is a T_1 topological space. \Diamond

4. Other completeness properties on fitting quasiuniform spaces

Some authors have investigated several kinds of completeness on quiet quasi-uniform spaces ([5], [12], [6], [19], [7], [22], etc.). In this direction, many interesting results were obtained in the more general context of uniformly regular quasi-uniform spaces, which were introduced by Császár in [4]. (Let us recall that a quasi-uniform space (X, \mathcal{U}) is uniformly regular provided that for each $U \in \mathcal{U}$ there is $V \in \mathcal{U}$ such that $\operatorname{cl}_{\mathcal{T}(U)}V(x) \subseteq U(x)$ for all $x \in X$.)

In this section we study several kinds of completeness for fitting

and uniformly R_0 quasi-uniform spaces.

A quasi-uniform space (X, \mathcal{U}) is uniformly R_0 (uniformly weakly regular in [1]) provided that for each $U \in \mathcal{U}$ there is $V \in \mathcal{U}$ such that $\operatorname{cl}_{\mathcal{T}(U)}V^s(x) \subseteq U(x)$ for all $x \in X$.

Obviously, every uniformly R_0 quasi-uniform space is R_0 and every uniformly regular quasi-uniform space is uniformly R_0 .

Proposition 3. Let (X, \mathcal{U}) be a fitting quasi-uniform space. Then both (X, \mathcal{U}) and (X, \mathcal{U}^{-1}) are uniformly R_0 .

Proof. Let $U \in \mathcal{U}$. By assumption, there is $V \in \mathcal{U}$ which is fitting for U. Fix $x \in X$. We shall show that $\operatorname{cl}_{\mathcal{T}(U)}V^s(x) \subseteq U(x)$. Indeed, given $z \in \operatorname{cl}_{\mathcal{T}(U)}V^s(x)$, denote by \mathcal{F} the filter on X for which $\{V^s(x) \cap W(z) : W \in \mathcal{U}\}$ is a base and denote by \mathcal{G} the filter on X generated by $\{z\}$. Clearly $(\mathcal{G}, \mathcal{F}) \to 0$. Since $V^s(z) \in \mathcal{G}$ and $V^s(x) \in \mathcal{F}$, it follows that $(x, z) \in \mathcal{U}$. We conclude that (X, \mathcal{U}) is uniformly R_0 . By symmetry we show that (X, \mathcal{U}^{-1}) is uniformly R_0 . \Diamond

Next we recall some pertinent concepts.

Let (X, \mathcal{U}) be a quasi-uniform space and let \mathcal{F} be a filter on X. Then \mathcal{F} is said to be left K-Cauchy ([22]) if for each $U \in \mathcal{U}$ there is $F \in \mathcal{F}$ such that $U(x) \in \mathcal{F}$ for all $x \in F$. \mathcal{F} is called right K-Cauchy ([22]) if it is left K-Cauchy on (X, \mathcal{U}^{-1}) .

A quasi-uniform space (X, \mathcal{U}) is said to be left (right) K-complete ([22]) if each left (right) K-Cauchy filter on (X, \mathcal{U}) is $\mathcal{T}(U)$ -convergent. (X, \mathcal{U}) is Smyth completable if and only if each left K-Cauchy filter on (X, \mathcal{U}) is a \mathcal{U}^s -Cauchy filter ([16]), and it is Smyth complete if and only if each left K-Cauchy filter on (X, \mathcal{U}) is $\mathcal{T}(U^s)$ -convergent ([16]). According to [5], (X, \mathcal{U}) is said to be half-complete if each \mathcal{U}^s -Cauchy filter is $\mathcal{T}(U)$ -convergent.

A Smyth complete quasi-uniform space is both bicomplete and left K-complete, and a bicomplete or left K-complete quasi-uniform space is half-complete. However, it is well known that the converse implications do not hold in general. Furthermore, right K-completeness implies half-completeness, while left K-completeness and right K-completeness are independent concepts ([22]).

It is interesting to recall that Smyth completeness and left K -completeness constitute useful tools to explain properties of some interesting examples of quasi-uniform and quasi-metric spaces which arise in several fields of Theoretical Computer Science (see [26], [27], [23], [25], etc.), while bicompleteness, right K-completeness and half-completeness are appropriate notions of completeness in the study of function

and multifunction spaces from a quasi-uniform point of view (see [20], [21], [2], etc.).

Lemma 1. Let (X, \mathcal{U}) be a uniformly R_0 quasi-uniform space. If a \mathcal{U}^s -Cauchy filter is $\mathcal{T}(U)$ -convergent to a point $x_0 \in X$, then it is $\mathcal{T}(U^s)$ -convergent to x_0 .

Proof. Let \mathcal{F} be a \mathcal{U}^s -Cauchy filter on X such that \mathcal{F} is $\mathcal{T}(U)$ -convergent to $x_0 \in X$. By assumption, given $U \in \mathcal{U}$ there is $V \in \mathcal{U}$ such that $\operatorname{cl}_{\mathcal{T}(U)}V^s(x) \subseteq U(x)$ for all $x \in X$. Furthermore, there is $F \in \mathcal{F}$ such that $V^s(x) \in \mathcal{F}$ for all $x \in F$. So $W(x_0) \cap V^s(x) \neq \emptyset$ for all $W \in \mathcal{U}$ and all $x \in F$. Hence $x_0 \in \operatorname{cl}_{\mathcal{T}(U)}V^s(x) \subseteq U(x)$ for all $x \in F$. Therefore $F \subseteq U^{-1}(x_0)$ and, thus, $U^{-1}(x_0) \in \mathcal{F}$ for all $U \in \mathcal{U}$. Consequently \mathcal{F} is $\mathcal{T}(U^{-1})$ -convergent to x_0 . We conclude that \mathcal{F} is $\mathcal{T}(U^s)$ -convergent to x_0 . \Diamond

Proposition 4 ([1]). Every uniformly R_0 half-complete quasi-uniform space is bicomplete.

Proof. Let \mathcal{F} be a \mathcal{U}^s -Cauchy filter on a uniformly R_0 half-complete quasi-uniform space (X,\mathcal{U}) . Since (X,\mathcal{U}) is half-complete \mathcal{F} is $\mathcal{T}(U)$ -convergent to a point $x_0 \in X$. By Lemma 1, \mathcal{F} is $\mathcal{T}(U^s)$ -convergent to x_0 . We conclude that (X,\mathcal{U}) is bicomplete. \Diamond

Proposition 5. For a uniformly R_0 Smyth completable quasi-uniform space (X, \mathcal{U}) the following are equivalent:

- (1) (X, \mathcal{U}) is Smyth complete;
- (2) (X, \mathcal{U}) is bicomplete;
- (3) (X, \mathcal{U}) is half-complete;
- (4) (X, \mathcal{U}) is left K-complete.

Proof. (1) \Rightarrow (2), (1) \Rightarrow (4), (2) \Rightarrow (3) and (4) \Rightarrow (3) are obvious. We show that (3) \Rightarrow (1): By Prop. 4, (X,\mathcal{U}) is bicomplete. Since by assumption (X,\mathcal{U}) is Smyth completable, every left K-Cauchy filter on (X,\mathcal{U}) is a \mathcal{U}^s -Cauchy filter. Hence, every left K-Cauchy filter on (X,\mathcal{U}) is $\mathcal{T}(\mathcal{U}^s)$ -convergent. So (X,\mathcal{U}) is Smyth complete. \Diamond

Corollary 3. Let (X, \mathcal{U}) be a uniformly R_0 Smyth completable left K-complete quasi-uniform space. Then (X, \mathcal{U}^{-1}) is right K-complete.

Proof. By Prop. 5, (X, \mathcal{U}) is Smyth complete. Let \mathcal{F} be a right K-Cauchy filter on (X, \mathcal{U}^{-1}) . Then \mathcal{F} is left K-Cauchy on (X, \mathcal{U}) . So, it is $\mathcal{T}(U^s)$ -convergent and, in particular, $\mathcal{T}(U^{-1})$ -convergent. We conclude that (X, \mathcal{U}^{-1}) is right K-complete. \Diamond

A quasi-uniform space (X, \mathcal{U}) is said to be D-complete ([9], [12]) if every D-Cauchy filter on (X, \mathcal{U}) is $\mathcal{T}(U)$ -convergent and it is said

to be strongly D-complete ([14]) if whenever \mathcal{G} and \mathcal{F} are filters on X such that $(\mathcal{G}, \mathcal{F}) \to 0$, then \mathcal{G} has a $\mathcal{T}(U)$ -cluster point. It is known that each strongly D-complete quasi-uniform space is D-complete but the converse implication does not hold in general ([14]).

It was proved in [8] that each co-stable quiet half-complete quasiuniform space is strongly D-complete. The space of Ex. 2 shows that this result does not hold when "quiet" is replaced by "fitting". (Let us recall ([8]) that a quasi-uniform space (X, \mathcal{U}) is co-stable provided that for each pair \mathcal{G}, \mathcal{F} of filters on X such that $(\mathcal{G}, \mathcal{F}) \to 0$, then \mathcal{G} is stable, where \mathcal{G} is said to be stable ([4]) if for each $U \in \mathcal{U}, \cap_{G \in \mathcal{G}} U(G) \in \mathcal{G}$.)

In fact, it is easy to see that the quasi-uniform space $(\mathbb{N}, \mathcal{U}_d)$ of Ex. 2 is co-stable and half-complete. Clearly, it is not *D*-complete. Note also that both \mathcal{U}_d and $(\mathcal{U}_d)^{-1}$ are uniformly regular because $\mathcal{T}(d)$ and $\mathcal{T}(d^{-1})$ are the discrete topology on \mathbb{N} .

The interesting question of obtaining conditions under which a uniformly regular quasi-uniform space is quiet has been investigated by several authors ([6], [12], [19], etc.). In particular, it was shown in [12] that every uniformly regular strongly D-complete quasi-uniform space is quiet. Here we show that strong D-completeness is also an appropriate property for a uniformly R_0 quasi-uniform space to be fitting.

Proposition 6. Every uniformly R_0 strongly D-complete quasi-uniform space is fitting.

Proof. Let (X,\mathcal{U}) be a uniformly R_0 strongly D-complete quasi-uniform space. Let $U \in \mathcal{U}$ and $W \in \mathcal{U}$ such that $W^2 \subseteq U$. There is $V \in \mathcal{U}$ such that $V^2 \subseteq W$ and $\operatorname{cl}_{\mathcal{T}(U)}V^s(x) \subseteq W(x)$ for all $x \in X$. We shall prove that V is fitting for U. Indeed, suppose $(\mathcal{G}, \mathcal{F}) \to 0$ and let $x, y \in X$ such that $V^s(x) \in \mathcal{F}$ and $V^s(y) \in \mathcal{G}$. Since (X,\mathcal{U}) is strongly D-complete, the filter \mathcal{G} has a $\mathcal{T}(U)$ -cluster point $x_0 \in X$. Thus \mathcal{F} is $\mathcal{T}(U)$ -convergent to x_0 . Hence $x_0 \in (\operatorname{cl}_{\mathcal{T}(U)}V^s(y)) \cap (\operatorname{cl}_{\mathcal{T}(U)}V^s(x))$. Consequently $y \in V^2(x_0)$ and $x_0 \in W(x)$. Therefore $y \in W^2(x) \subseteq \subseteq U(x)$. We conclude that V is fitting for U and, thus, (X,\mathcal{U}) is a fitting quasi-uniform space. \Diamond

References

[1] ALEMANY, E. and ROMAGUERA, S.: On half-completion and bicompletion of quasi-metric spaces, *Comment. Math. Univ. Carolinae* 37 (1996), 749–756.

- [2] CAO, J., REILLY, I. L. and ROMAGUERA, S.: Some properties of quasiuniform multifunction spaces, J. Austral. Math. Soc. (Series A) 64 (1998), 169-177.
- [3] CSÁSZÁR, Á.: Foundations of General Topology, Pergamon Press, The Macmillan Co, New York, 1963.
- [4] CSÁSZÁR, Á.: Extensions of quasi-uniformities, Acta Math. Acad. Sci. Hung. 37 (1981), 121–145.
- [5] DEÁK, J.: On the coincidence of some notions of quasi-uniform completeness defined by filter pairs, *Studia Sci. Math. Hung.* **26** (1991), 411–413.
- [6] DEÁK, J.: Extending and completing quiet quasi-uniformities, Studia Sci. Math. Hung. 29 (1994), 349-362.
- [7] DEÁK, J.: A bitopological view of quasi-uniform completeness I, II, III, Studia Sci. Math. Hung. 30 (1995), 389–409, 30 (1995), 411–431 and 31 (1996), 385–404.
- [8] DEÁK, J. and ROMAGUERA, S.: Co-stable quasi-uniform spaces, Ann. Univ. Sci. Budapest 38 (1995), 55-70.
- [9 DOTICHINOV, D.: On completeness of quasi-uniform spaces, C.R. Acad. Bulg. Sci. 41 (1988), 5–8.
- [10] DOITCHINOV, D.: A concept of completeness of quasi-uniform spaces, *Topology Appl.* **38** (1991), 205–217.
- [11] FLETCHER, P. and HUNSAKER, W.: A note on totally bounded quasi-uniformities, Serdica Math. J. 24 (1998), 95–98.
- [12] FLETCHER, P. and HUNSAKER, W.: Completeness using pairs of filters, Topology Appl. 44 (1992), 149-155.
- [13] FLETCHER, P. and LINDGREN, W. F.: Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
- [14] KOPPERMAN, R. D.: Total boundedness and compactness for filter pairs, Ann. Univ. Sci. Budapest 33 (1990), 25-30.
- [15] KÜNZI, H. P. A.: Totally bounded quiet quasi-uniformities, *Topology Proc.* **15** (1990), 113–115.
- [16] KÜNZI, H. P. A.: Nonsymmetric topology, Bolyai Soc. Math. Stud. 4 Topology, Szekszárd, 1993, Hungary, (Budapest 1995), 303–338.
- [17 KÜNZI, H. P. A.: Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, preprint.
- [18] KÜNZI, H. P. A. and LÜTHY, A.: Dense subspaces of quasi-uniform spaces, Studia Sci. Math. Hung. 30 (1995), 289–301.
- [19] KÜNZI, H. P. A., MRŠEVIĆ, M., REILLY, I. L. and VAMANAMURTHY, M. K.: Convergence, precompactness and symmetry in quasi-uniform spaces, Math. Japonica 38 (1993), 239-253.
- [20] KÜNZI, H. P. A. and ROMAGUERA, S.: Completeness of the quasi-uniformity of quasi-uniform convergence, in: Papers on General Topology and Applications, Annals New York Acad. Sci. 806 (1996), 231–237.

- [21] KÜNZI, H. P. A. and ROMAGUERA, S.: Spaces of continuous functions and quasi-uniform convergence, *Acta Math. Hung.* **75** (1997), 287–298.
- [22] ROMAGUERA, S.: On hereditary precompactness and completeness of quasiuniform spaces, *Acta Math. Hung.* **73** (1996), 159–178.
- [23] ROMAGUERA, S. and SCHELLEKENS, M: Quasi-metric properties of complexity spaces, *Topology Appl.* **98** (1999), 311–322.
- [24] SALBANY, S.: Bitopological Spaces, Compactifications and Completions, Math. Monographs Univ. Cape Town 1, 1974.
- [25] SCHELLEKENS, M.: The Smyth completion: a common foundation for denotational semantics and complexity analysis, in: Proc MFPS 11, Electronic Notes in Theoretical Computer Science 1 (1995), 211–232.
- [26] SMYTH, M. B.: Quasi-uniformities: Reconciling domains with metric spaces, in: Mathematical Foundations of Programming Language Semantics, 3rd Workshop, Tulane 1987, LNCS 298, eds. M. Main et al., Springer Berlin (1988), 236-253.
- [27] SMYTH, M. B.: Completeness of quasi-uniform and syntopological spaces, J. London Math. Soc. 49 (1994), 385-400.