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Abstract: For ternary cubic forms f, : u® + v® + w® + 3auvw a new ap-
proach is pursued to estimate their minimum in the sense of the Geometry
of numbers. The idea is to inscribe into the star body |fa| < 1 a suitably ro-
tated and dilated copy of the double paraboloid z2 + y? + |z| < 1 whose
critical determinant has been recently evaluated by the author [14]. For
—~2.31788 < a < —0.48403, a # -1, the result obtained is the best of its
kind known so far.

1. Introduction. Survey of classic results

Let f = f(u, v, w) denote a cubic form (i.e., a homogeneous poly-
nomial of degree 3) with real coefficients. We shall suppose throughout
that f is regular, i.e., that g&, g,g, a%% vanish simultaneously only at the
origin!. The following number theoretic question is natural: How small
can |f| be made by a suitable choice of integer values u,v,w (not all
zero) — with the idea that the desired answer should provide a certain

amount of uniformity in the coefficients of §.

E-mail address: nowak@mail.boku.ac.at
1We shall say more about this condition (and also about the forms not meet-
ing it) in the Appendix.
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It is known (cf. Weber [17], p. 401-408%) that — for f regular
— there always exists a non-singular real linear transformation which
reduces § to the canonical form

(1.1) fo: uw+vP+wd+3auvw (a#-1).
Of course Z3 is then transformed into a general three-dimensional lattice
A. Therefore, it was natural to define

(1.2) M, = sup inf [u3 + 02+ w? + 3auwvw)|

il (wu,w)EA
A d(A)=1 (, 040,00

with A ranging over all three-dimensional lattices with lattice constant?
d(A) = 1. This was simply called the minimum of the ternary cubic
form involved.

We briefly report about two special cases excluded in (1.1). (Here
(8t 81 21y = (0,0,0) has nontrivial solutions.) The case f : wuvw
is known as the problem of the product of three (real) linear forms:
This was successfully attacked by Davenport [1], [2], [3], [4], [5], who
ultimately proved that the minimum (in the same sense as (1.2)) of this
form is equal to % For a = —1, f_1 is a product of three linear forms
Ly, Ly, L3, with Ly real and L3 the complex conjugate of Lz. This was
also dealt with by Davenport [3], with the result that

27
1.3 M_1 =4/-—==1.08347....
(1.3) 1 53 083

For general a, only more or less precise bounds for M, are known.
The problem is connected with the notion of the critical determinant®
A(K,) of the star body K, : |fs] < 1. By a simple homogeneity
consideration,

(1.4) M, =

2The author is indebted to Professor Kurt Girstmair (Innsbruck) for this
important reference.

3For the basic concepts of the Geometry of Numbers the reader may consult,
e.g., the enlightening textbook by Gruber and Lekkerkerker [10]. There also a
survey of the literature on forms of other degrees or another number of variables
can be found.

4This is the infimum of the lattice constants of all lattices of which no non-
trivial point is contained in the interior of the star body.
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Special attention was paid to the case a = 0: Davenport [6] inscribed
into Ky the convex body

’lL+3+’U+3+’lU+3§1,
—u) 3+ (—0) 2+ (—w) 2 <1, with 2z :=max(z,0),
+ + +

and applied Minkowski’s Convex Body Theorem. He thus obtained

-1
(1.5) Mo < 8173 G) (2 + 27‘/§) =1.1897....

3 2T

Later [7], he used the more subtle non-convex body

0(u®) +0(v®) + 0(w®) < 1, 0(—u®) +0(—v*) +6(—w?) < 1,

8(z) == {

and applied Blichfeldt’s Theorem to conclude that

4
My < 8r—3 (§> .

(1.6) .
273 _ 1 1
(2+——< § 9 <3n+1+3n+2))) =1.1571....

For arbitrary a, an obvious possibility to estimate A(K,) and thus M,
is to inscribe into K, a convex body of the shape |u|3+ [v]® + |w|® <¢
and to apply Minkowski’s Convex Body Theorem. Thus one gets

for z > 0,
for z < 0,

©in W

1
M < =g (1 + al).

T (3)

Mordell [12] applied a deep method involving the concept of a polar re-
ciprocal lattice and the reduction of the problem to a two-dimensional
one, to establish better upper bounds for all a. It was noted by Golser
(a student of E. Hlawka) that these estimates could be improved sub-
stantially, by a refinement of Mordell’s own method. His final results
may be stated as follows: Writing k = 3a, let
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(max (& (k* + 108 k) + $k% + 2k + 3, 3K +2k% + 27)
for k > 0,
(k) max (& (—k* + 108 |k|) + $1k|® + 2k% + 3, F|k® + 2k% +27)
)= for — ¥/108 < k <0,
max (2= (k* — 108 |k|) + 3 |k|3 + 2k + 27, 11kl + 2k + 3)
\ for k < —/108.
Then for all a (Golser [8])
1/4
2u(3a
(1.7) M, < (_—“ég )> .

Golser [8], [9] also noted that, for certain ranges of a, better bounds
can be obtained by the simple procedure to inscribe a sphere into K.

Later on, the author [13] refined this idea by using a more general
ellipsoid of the shape

u? + v? + w? + 2t(wv + uw + vw) <73,
with a parameter t € ] — £,1[, ¢ # 0. This leads to the result

(1.8) M, <+v2(1—1t)v/1+ 2t max (\@gi;’t})m, ¢1(t), ¢2(t)> :

where, for j =1, 2,

—3/2

¢ (t) = (24 2t + 4c;j(t) t + ¢ (2)?) |2 + 3ac;(t) +¢;(t)°],

a—1-2t+(-1)7y/(a —1)2 + 4t + 4(a — 1)¢2
cj(t) = 57 :

¢ (t) == 01if ¢;(t) ¢ R. For any given a, the parameter ¢ can be chosen
to make the estimate optimal.

The novelty of the present paper is based on the author’s recent
result [14] that the critical determinant of the double paraboloid

P zl+2i+y* <1
is given by
1

Inscribing a suitably rotated and dilated copy of P into K,, we shall
infer an estimate for A(K,), resp., M,, which for a certain range of a
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(namely —2.31788 < a < —0.48403, a # —1) improves upon all bounds
known so far.

Before entering into the details of this new approach, it might be
worthwhile to provide a table® which compares the efficiency of the dif-
ferent methods mentioned above and to indicate which of them "holds
the record” for a certain value of the constant a.

Range for a Best bound for M,

a < —6.649 (1.7}, Golser [8]

—-6.649 < a < —2.318
—2.318 < a < —0.484

a#—1

(1.8), Nowak [13]

present paper

a=—1 (1.3), Davenport [3]

—0.484 < a < —0.02685

—0.02685 < a < 0.0407,
a#0

(1.7), Golser [8]

Davenport [6]

a=20

(1.6), Davenport [7]

0.0407 < a < 0.819

(1.7), Golser [8]

0.819 < a < 6.76

(1.8), Nowak [13]

a> 6.76

(1.7), Golser [8]

2. The paraboloid approach

Our idea is to estimate the critical determinant of the body K, :
|fa| < 1 by inscribing a double paraboloid and using the author’s

recent result (1.9) in the form that A(Pép )) = %vfor

(2.1) P((,p): plel+2? +y? <1,

p > 0 a parameter remaining at our disposition. Since f, is a symmet-
ric function of its variables u, v, w, it is convenient to use a paraboloid

5The numerical values are in fact available with much higher accuracy. We
have rounded them to a few decimal places to keep this table in a reasonable format.
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whose axis of rotation is the straight line through the origin with direc-

tion vector (i) In other words, we submit ’Pép ) to a rotation which
1 .

o (7 o
sends (0) to | 25 |. Its matrix is given by
1 1

V3
1 1 1
A Y
1 i 1
A=~ & 3
0 Y2 1
V3 V3

we get
1
$=7§(u—0),
_ 1 _V2,
y"'%(“’_’_v) \/'g )
1
z=—@u+v+w).

S

Under this unimodular transformation, ’Pép ) becomes
(2.2)

2
PP % |u+v+w|+§(u2+vz—!—w2—(uv+uw+vw)) <1.

We put for short
S=u+v+w, Q=v?+v?+w?, B=uv+uw+vw,
then (2.2) simply reads P®) : %lSI +2(Q-B)<1,and

fo = falu,v,w) = u® + 03 +w® 4 3auwvw = S% — 3SB + 3(1 + a)uwvw,

as a straightforward computation verifies.

Our task is to determine the (absolute) maximum of |fo(u, v, w)]
on the surface Z=[5|+ 2(Q — B) = 1 which obviously is found among
the relative extrema of f, on this set. By symmetry, we may restrict
our search to
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P s120Q-B)=1, §>0
V3~ 3 LT
Using this along with the identity S? = Q + 2B, we see after a quick
computation that f, simplifies to

(2.3)

3 3
TP\/§(1 -Q)+ 5 (1 —p?)S + 3buvw
with b = a + 1 for short. Since the case a = —1 has been settled by

(1.3), we shall assume throughout the sequel that & # 0. We shall

thus optimize cuvw — Q + oS, where ¢ := 22 o := 1-p* , under the
pV/3' T T pv3

constraint (2.3), by means of Lagrange’s rule.® Our Lagrange function
reads

L:L(u,v,w):cuvw—-Q—l-aS—l—t(LS+—§(Q~B)—~1) ,

V3
thus we get
oL 2
(2.4) %—cvw—2u+a+t<7 g u—v—w))—
oL p 2 _
(2.5) 5y = cuw 2v+a+t<ﬁ+§2v u )—
oL D 2 B
(2.6) —az—cuv—2w+a+t(7§+§(2w—u—v)>—0.

We claim that there exists no solution of (2.3) — (2.6) withu # v # w #
# u. Assuming the contrary, we subtract (2.5) from (2.4) and divide
by u — v to get

(2.7) —cw + 2(t — lj =0.

Similarly, from (2.4) and (2.6), after division by u — w
(2.8) —cv+2(t—-1)=0.

Subtracting these last two equations yields the contradiction v = w.
Thus there remain just two cases (apart from permutations of the
variables).

6We postpone for the moment the possibility of an extremum in the plane
S =0.
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Case 1. Solutions of (2.3)—(2.6) with u = v = w. From (2.3)
we immediately obtain

L faluovo,0) = =5
—_—, ug, Vg, Wo) = ———= -
pv3' Y s

Case 2. Solutions of (2.3)-(2.6) with v = v # w. The deduc-
tion of (2.8) remains valid, thus ¢t = fcu + 1. Inserting this into (2.4)
and solving for w, we get”

v = 6c + v/3epu + 2cu? + 2¢/3p — 8u
B 4(1 — cu) '

(29) Ug = Vg = Wg =

l—p2

. _ 2b — . . 8
Inserting ¢ = e and « V3 2gain, this becomes

2bu? 4+ v/3pu(b—4) + 3
2(v/3p — 2bu)

We use this (along with v = v) in (2.3) to obtain after substantial
simplifications

P(b,p;u) = —12b%u* +8+/3 (3 —b) bpu’+
+(-36p% + 8% (8 +p°) +6b (—2+ 3p%)) u’+
+v3p (12—b (8+p%)) u+3 (-1+p°) =0.

Defining, for given b, p, the finite set

(2.10) w = w(b,p;u) =

{ueR: P(b,p;u) =0, 2u+wlb,pju) >0} ifb# —%92—

_.+27
(2.11) S(b,p)= F
V3 (1—p? eqp _ 3p2
{y3, Ly ifb= s

we see that for this case the maximum of |f,| is given by

It is recommendable to carry out this and the subsequent calculations with
the support of a symbolic computation package such as Derive [16] and/or Mathe-
matica [18].

8To be quite rigorous, we have to discuss the possibility that in (2.10) both

3p2
p2+2 1

2
VB(P+2) ) ‘/5(14_p2). These values do not satisfy (2.3). For b =

6p ’ 2p
2 .2
= 1—13;—”;5, the polynomial P(b, p; u) possesses exactly 3 roots, namely —‘3{%’—, %,

and w (double). We shall take into account this matter when defining the
set S(b, p) below.

nominator and denominator vanish. This would imply that u = ——\/2—552 and b=

hence u = v =
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(2.12)  pi(b,p) := max _|2u’+w(b,p;u)? +3(b—1)u2w(b,p;u)| (b=a+1).

ueS(b,p)

It remains to determine the extrema of f, on the circle which is deter-
mined by the intersection of the double paraboloid 2= ]S |+2(Q-B) =1

with the plane § = 0. By this last identity, f, smlphﬁes to —3b(u?v +
+ uv?). The equation of the paraboloid becomes

(2.13) 2(u? +uv+0?) =1.
Thus we get a Lagrange function
L= -3b(v’v + w?) +t (2(v® + uv +v?) - 1) ,
and, therefore,
oL

(2.14) 5 = —3b(2uv + v?) + t(4u 4+ 20) =0,
U
(2.15) %% = —3b(u? + 2uv) + t(2u + 4v) = 0.

Subtracting these two equations, we obtain
(u —v)(3b(u+v)+2t) =0,

hence either u = v or t = —2b(u + v). For u = v, eq. (2.13) readily
gives the two solutions u = v = :l:\}f—j Inserting ¢t = —% b(u + v) into

(2.14) yields
—3b(u + 2v)(2u+v) =0,

hence (since b # 0) u = —2v or v = —2u. In view of (2.13), this gives
. b

the four solutions (& \}_,:F%) (i%,;\/-) Obviously |f,| = l7€|"3 for

all of these altogether six solutions (u,v). We can summarize the results

of our analysis as follows.

Lemma. Let b and p be any real numbers, b # 0, p > 0. Then the
mazimum of

| fo—1(u, v, w)| = |u® + v® + w? + 3(b — 1)uvw|
on the double paraboloid

5 .
A2 %]u+v+w|+§(uz—|—v2+w2~—(uv+uw+vw)) <1

s given by
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“(b,p) = L ol
43 (b,p)—-max (pB\/g7 ,U:l(b,p), \/6) )

where u1(b,p) is defined by (2.12).

In other words, for any p > 0, PP is contained in the star body

p*(b,p)*/?Ky_1. Recalling that the critical determinant of PP is 511—),

it follows that u*(b, p)A(Kp1)>> A(PP)= %, hence M, = A(}{a) <
<2pu*(a+1,p).

Theorem. The minimum M, of the ternary cubic form u® + v +
+ w3 + 3auvw satisfies

la + 1| la-l—l])
2.16 M, < 2p max | —=, a-+1,p), )

where p > 0 is an arbitrary real parameter and pi(a + 1,p) is defined
by (2.12).

It is clear by construction, that the right hand side of (2.16) can
be evaluated, for any given a and p, by a well-defined algorithm in-
volving the zeros of a biquadratic polynomial. This can be safely done
by a package like Mathematica [18]; using its built-in FindMinimum-
command, one can find for each a an optimal value of p which makes

the upper bound obtained small.
Comparing our result with the bounds exhibited in section 1, we

see that our “paraboloid approach” supersedes all previous estimates
in the range —2.31788--- < a < —0.48403..., except for the value
a = —1, where (1.3) is much stronger (and in fact best possible). We
illustrate this by a table indicating the new bounds for M, provided by
our Theorem, along with the corresponding optimal values for p, and
the weaker bounds obtained by the ”ellipsoid approach” [13], resp., the
Mordell-Golser method [8]. '

Concerning the last five lines of the following table, a bit of expla-
nation seems appropriate: For p = 1 (which the numerical calculation
recommends as the optimal value), it is clear that v = 0 is a zero of

P(b,1;u), independently of b. Accordingly, by (2.10), w = %_3—’, and
2fa(0,0,—‘42—§—) = %\/5 ~ 1.29904 which is equal to 2u*(a + 1,1) for
—09<a < -05.
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a My < [new] P M, < [18] | Ma<  [8]
—2.3 2.08141 0.849235 2.08243 2.33665
-2.2 2.00216 0.831914 2.00872 2.26327
~2.1 1.92381 0.812551 1.93567 2.19004
-2 1.84647 0.790795 1.86334 2.11704
-1.9 1.77026 0.766192 1.79185 2.04435
-~1.8 1.69532 0.738166 1.72130 1.97210
—-1.7 1.62183 0.705962 1.65186 1.90042
—-1.6 1.54999 0.668569 1.58370 1.82951
-1.5 1.48007 0.624567 1.51705 1.77074
~1.4 . 1.41242 0.571851 1.45223 1.71431
—1.3 1.34751 0.5607026 1.38964 1.65884
—-1.2 1.28602 0.423765 1.32989 1.60466
—-1.1 1.22914 0.306503 1.27403 1.55216
-0.9 1.29904 1 1.41421 1.45416
—0.8 1.29904 1 1.41421 1.40983
—0.7 1.29904 1 1.41421 1.36948
—0.6 1.29904 1 1.41421 1.33379
—0.5 1.29904 1 1.41421 1.30337

3. Appendix. Remarks on general ternary cubic
forms

The important condition that the form f(u,v,w) be regular has
frequently been omitted in the literature, as far as the Geometry of
Numbers is concerned. (To cite just one bad example we refer to the
author’s previous paper [13].) Therefore, we discuss the matter in some
detail.

In fact, the assumption that
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0
O (B ps) =000 wlyfor (wew) =000
is usually expressed as: “The discriminant of f is nonzero”. To un-
derstand what this discriminant is, we suppose that there exists some
nontrivial solution (u,v,w) (with w # 0, say) and rewrite (*) in the
shape

fl(t17t27 1) = f2(t17t27 1) = f3(t11t27 1) =0.

(Here we used homogeneity and put t; = &, t2 = 5, f1 = gg, etc.).
In principle it is possible to eliminate t1,tp from this 3 polynomial
equations and arrive at an equality

polynomial in the coefficients of f = 0

whose left-hand side essentially is the discriminant. To gain a bit
more insight into its explicit nature, one can appeal to a very old
article of Hesse [11]. According to his "Lehrsatz 4”°, one can pro-
ceed as follows: Let ¢ = det (fi;) = % denote the Hessian
of §, and @1, @2, @3 its partial derivatives of first order. Clearly,
f1, f2, f3, ©1, P2, w3 are homogeneous quadratic polynomials in u, v, w.
Let M denote the (6 x 6)-matrix which contains (row by row) the coef-
ficients of u?, v?, w?, uv, uw, vw in these 6 polynomials. Then, as shown
in Hesse [11], () has nontrivial solutions if and only if det M = 0.
Thus det M defines (up to a numerical factor, which is a matter of
convention anyway) the discriminant of the form f. It is not difficult
to implement the above program in the syntax of Mathematica [18].
For instance, for the special forms § : ayu® + agv® + azw? + 3auvw one
obtains

|det M| = 2°3*% a;a503(a1a2a3 + a®)3.

Thus such an f is regular iff 0 # ajagasz # —a® (cf. also the condition
a # —1in (1.1)).

Concerning the forms with vanishing discriminant, in fact several
cases have to be distinguished. These may be found in a classic article
of Poincaré [15]. Tt can be shown that there always exists a real non-
singular transformation which leads to one of the following canonical
forms (b some nonzero constant throughout):

9In its first line, "vom dritten Grade” obviously should read ”vom zweiten
Grade”.
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(3.1) ud + 0% + buvw,

(3.2) (u® 4+ v*)w + bu(u® — 3v?),
(3.3) w® + buv?,

(3.4) w® 4 buvw

(3.5) w? +b(u? + 0w,
(3.6) vw? + buv? .

To this list one has to add only those canonical forms which split into
three linear factors, i.e. wvw and (u? + v?)w (they have been dealt
with by Davenport, [2], [3]), and the degenerate forms which contain
less than 3 variables. For these latter forms an obvious application of
Minkowski’s Convex Body Theorem shows that their minimum equals 0.

However, for the forms (3.1)—(3.6) no results concerning their min-
ima (in the sense of the Geometry of Numbers) seem to exist in the
literature.
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