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Abstract: In the Houston Problem Book W. T. Ingram posed a problem
conﬁecting the confluence of two special partial mappings to the confluence
of the original one. We solve this problem and answer one closely related

question.

Introduction

All spaces considered in the paper are assumed to be metric and
all mappings are continuous. A continuum means a compact connected
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space. Given a space X and its subset S, we denote by cl.S the closure
of Sin X.

A mapping f : X — Y is said to be confluent provided that for
each subcontinuum @ of Y each component of the inverse image f~*(Q)
is mapped under f onto Q).

We pose the following general problem.

Problem 1. Let continua X and Y be given such that Y = Y; UYs,
where Y1 and Ys are closed subspaces of Y, and let a mapping f : X —
— Y be such that the two partial mappings f|f (Y1) and f|f~1(Ys)
are confluent. Under what conditions concerning the structure of Yq,
Yy and Y1 NY, the mapping f is confluent?

One can also pose a similarly formulated problem, where a de-

composition of the domain is considered in place of the decomposition
of the range space.
Problem 2. Let continua X and Y be given such that X = X; U X5,
where X1 and Xo are closed subspaces (or subcontinua) of X, and let
a mapping f : X =Y be such that the two partial mappings f|X; and
f1Xo are confluent. Under what conditions concerning the structure of
X1, Xo and X1 N Xy the mapping [ is confluent?

To see a (rather big) difference in approaching to the union re-
sults for confluent mappings between considering decompositions of the
domain and of the range, let us discuss the following simple example.
Example 3. In the plane put

31) a=(0,1), b=(0,-1), c=(0,0), d=(—1,0).

Thus the straight line segments X; = ab and X3 = ad have a as the
only common point. Define X = X; U X,. Let a mapping f : X —
— Y = X; be defined as the identity f|X; on X; and as a natural
projection f|X, : X3 — ac (that assigns to any point (z,y) € X, the
point (0,y) € X; having the same second coordinate). Then the partial
mappings f|X; and f|X, are both homeomorphisms (thus confluent),
while f is not confluent. Observe however, that if we define ¥; = f(X;)
for 1 € {1,2}, then every X; is a proper subset of f~1(Y;), and the
réstriction of f, being confluent on X, is not confluent on f~1(Y7).

This example indicates that, when considering assumptions on
confluence of partial mappings, we should accept rather approach as in
Problem 1 than that in Problem 2. :

The research related to these problems has various partial results
which are dispersed in the literature. A large information on confluent
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and related mappings is contained in T. Mackowiak’s paper [9]. We
recall here an interesting result obtained by A. Lelek in [7, p. 58-59].
Theorem 4 (A. Lelek). Suppose X andY are compact metric spaces,
f: X =Y is a continuous mapping of X onto Y, and

Y=YyUuYUYU---

18 a decomposition of Y into closed subsets Y; such that the following

three conditions are satisfied:

(4.1) fIf~YY;) is a confluent mapping of f~*(Y;) onto Y; for i €
€{0,1,2,...};

(42)Y;NY; CYy fori#j andi,j€{0,1,2,...};

(4.3) for each subcontinuum K of Y the intersection K NYy has only
finite number of components.
Then f is confluent.

Ingram’s problem

W. T. Ingram posed in [5, Problem 35, p. 373] the following prob-
lem.

(5) Suppose f is a continuous mapping of a continuum X onto a
continuum Y, Y = HUK 1is a decomposition of Y into subcontinua

H and K, f|f~Y(H) and f|f~1(K) are confluent, and HNK is a

continuum which does not cut Y and is an end continuum of both

H and K. Is f confluent? (W. T. Ingram, 10/11/72)

Thus the continuum Y considered in (5) is represented as the
union Y = H U K of two continua H and K such that
(5.1) the intersection H N K is a continuum;

(5.2) HN K is an end continuum of H;
(5.3) HN K is an end continuum of K;
(5.4) HN K does not cut Y.

Recall that a subset A of a space X cuts the space if the com-
plement X \ A contains two points z,y with the property that every
subcontinuum of X containing x and y meets A.

Let us try to analyze the above set of the four conditions the
continuum Y has to satisfy. The understanding of the Ingram problem
(and thus its possible solution) depends heavily on the meaning of the
term “end continuum”. Unfortunately, neither W. T. Ingram himself,
nor the editors of the Houston Problem Book explain which definition
of the end point is used in (5).
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One of the commonly used meanings of the concept is the following
one, quoted here after D. E. Bennett and J. B. Fugate, [2, Def. 1.9, p. 8].
Definition A. A proper subcontinuum K of a continuum X is said to
be an end continuum of X provided X is not the union of two proper
subcontinua each intersecting K.

For a deeper discussion of the subject we recall some auxiliary

concepts. Let X be a continuum and A C X. Then X is said to be
irreducible about A provided no proper subcontinuum of X contains A.
A continuum X is said to be irreducible provided that X is irreducible
about {p, ¢} for some p,q € X (then X is said to be irreducible between
p and q). The following characterization of end continua is due to
R. H. Rosen ([10, p. 118]; see also D. E. Bennett and J. B. Fugate [2,
Th. 1.16, p. 10)).
Theorem 6 (D. E. Bennet, J. B. Fugate, R. H. Rosen). A subcontin-
vum K is an end continuum of a continuum X if and only if there is
a point p € X \ K such that X is irreducible between p and any point
of K.

Observe first that, according to Def. A, if a continuum F is an
end continuum of a continuum C, then F is a proper subcontinuum of
C. Consequently, conditions (5.2) and (5.3) above imply that
(7) HNK is a proper subcontinuum of H and of K.

Second, condition (5.4) implies that
(8) either HC K or K C H.

Indeed, suppose on the contrary that both two sets H \ K and
K \ H are nonempty. Observe that these two sets H \ K and K \ H
are mutually separated in Y \ (H N K). Hence H N K separates Y.
Evidently, every set which separates a space Y cuts the space (see [6,
6.5.12, p. 317]). This contradicts the condition that H N K does not
cut Y. Therefore (8) is proved.

Without loss of generality we can assume that H C K. Then
H N K = H, which contradicts statement (7). This shows that condi-
tions (5.2), (5.3) and (5.4) cannot be satisfied simultaneously, or — in
other words — that the continuum Y which satisfies all the conditions
required in the formulation of problem (5) does not exist.

It follows that, if Def. A is accepted, the problem (5) is not cor-
rectly formulated. Therefore either we use another definition of the
concept of an and continuum, or we modify (5) by changing condi-
tions (5.1)—(5.4).
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Looking for a more suitable meaning of the term “end continuum”
recall that R. H. Bing in (3, condition (B), p. 660], considered a condi-
tion which concerns a point p of a continuum X and is one of the three
equivalent forms of the definition of the concept of an end point in an
arc-like continuum (see [3, Th. 13, p. 661]).

(9) If each of two subcontinua of X contains p, one of the subcontinua
contains the other.

This definition of an end point p in an arc-like continuum X can
easily be extended to the one of an end continuum P in an arbitrary
continuum X as follows.

Definition B. A subcontinuum P of a continuum X is said to be an
end continuum in X provided that for every two subcontinua K and L
of X the condition P C K N L implies that either K C L or L C K.

This formulation of the concept of an end continuum can be found
e.g. in [4, p. 385]. The difference between the two definitions is evident.
Namely with notation as in (3.1) put M = abUcd and note that ab is an
end continuum in M in the sense of Def. B, while it is not in the sense of
Def. A (because the continuum M is not irreducible). In particular, Def.
B does not imply that an end continuum P is a proper subcontinuum
of M. Accepting Def. B we get the following easy solution of (5).
Proposition 10. If the concept of an end continuum is understood in
the sense of Def. B, then the answer to problem (5) is affirmative.
Proof. Let Y = H U K be a decomposition of a continuum Y into
subcontinua H and K as in (5). In the light of (8) we may assume that
Y = H. Hence X = f~1(H), and f is confluent. ¢

Thus let us come back to Def. A and try to change problem (5) to
eliminate the previously indicated controversy. The simplest way is to
omit condition (5.4). Then the modified problem has a negative answer
in Ex. 12, i.e., conditions (5.1)-(5.3) do not guarantee the confluence
of f. The following example is a modification of [8, Ex. 5.6, p. 110].
To describe it, we recall the Def.s of some concepts used in the proof.
If C is a dense subspace of a compact space Z, then Z is called a
compactification of C, and Z \ C is called the remainder of C in Z (see
e.g. [1, p. 34]). It is known that if C is a locally compact, noncompact,
separable metric space, then each continuum is a remainder of C in
some compactification of C, [1, Theorem, p. 35]. A ray means a one-
to-oné image of the closed half-line [0, +00), and the image of 0 is called
the end point of the ray.
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Taking as C a ray we conclude the following statement, which will
be used in Ex. 12. ;
Statement 11. FEach nondegenerate continuum B is a remainder of
a ray C in some compactification of C, and then Y = BUC is a
continuum having C as an arc-component with B =clC \ C.
Example 12. There are continua X and Y, a mapping f : X — Y and
a decomposition of Y into subcontinua H and K satisfying conditions
(5.1)—(5.3) (where the term “end continuum” is used in the sense of
Def. A), such that f|f~1(H) and f|f~!(K) are confluent, and f is not
confluent.

Proof. If p and g are points of the plane, we denote by pg the straight
line segment with end points p and ¢. Let po = (1,0), go = (0,1) and
pn = (1 4+1/n,0) for n € N. Define

M = pogo U U{PnQO :n € N}

Thus M is a continuum. Now let M; and M, be the continua
]\/IleUU{pZn_lpzn :n € N} and M2=MUU{p2np2n+1 :n € N}.

Let ¢ be the symmetry of the plane defined by ¢((z,y)) = (—
—z,y). Let C; and Cy be two mutually disjoint rays each of which
is disjoint from Mj; U My U (M7 U M) such that for ¢ € {1,2} the
nondegenerate continuum M; U ¢(M;) is a remainder of a ray Cj in
some compactification of C;. Put X; = M; Up(M;)UC;. Then X, is a
continuum having C; as an arc-component with M; Up(M;) = c1C;\ C;
as the remainder (see Statement 11). For ¢ € {1,2} denote by c; the
end point of the ray C;. Put X = X; U X,. Clearly X is a continuum
and X1 N Xy =M U p(M).

Now, let R be the equivalence relation in X defined by the formula

R = {(p,0(p)) : p € Pogo} U {(¢(p),p) : p € pogo} U {(p,p) : p € X}.

Define f as the natural projection from X onto the quotient space
Y = X/R. Clearly, Y is a continuum again. The mapping f identifies
the opposite points p and ¢(p) on pogo and @(poeqo)-
Observe the following properties.
(12.1) Y; = f(X;) is a nondegenerate proper subcontinuum of Y, for
i€ {1,2};
(122) L =Y1NYs = f(M U ¢(M)) is a nondegenerate subcontinuum
of Y;
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(12.3) L is an end continuum of ¥; for i € {1,2};
(12.4) f|f~Y(Y:) is confluent for i € {1,2};
(12.5) f is not confluent.

Properties (12.1)-(12.2) are easy observations. To prove (12.3)-
(12.4) fix 1 € {1,2}. Each Y; is irreducible between the end point ¢;
of the ray C; and any point y € L. Hence, Theorem 6 applies and
property (12.3) holds. '

To prove (12 4) we consider four cases, in which  means a sub-
continuum of f~1(Y;), for any fixed i € {1, 2}

(@) Q C f(Cy);

(B) @ meets both f(C;) and f(M; U o(M;));

(7v) Q does not meet f(C;) and Q contains f(go);
(6) @ does not meet f(C;) and Q does not contain f(go).

In any case it follows from the construction that each component
of the set (f|f~1(¥;))"1(Q) is mapped onto Q. Thus f|f~1(Y;) is con-
fluent as needed. To see (12.5) put Q@ = f(pop1) U f(¢(pop1)). Clearly,
Q is a subcontinuum of Y. Then f71(Q) has just two components in
X, namely pop; and ¢(pop1). These components are not mapped onto
Q. Finally, put H =Y; and K =Y5. {
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