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Abstract: In this paper we continue the exploration of various locus prob-
lems whose solutions involve the Neuberg cubic of the scalene triangle in the
plane. We use analytical geometry and the complex numbers to show that the
Neuberg equation describes the essential part of the locus in many geometric
constructions. In this way we discover new characteristics of the Neuberg cubic
that has been extensively studied recently.

1. Introduction

Let ABC be a scalene triangle in the plane. The author has consid-
ered in [5] numerous locus problems whose solutions involve the circular
cubic N which Neuberg [18] calls the 21-point cubic and which is known
today as the Neuberg cubic of the triangle ABC'. It is evident from the ex-
tensive list of references on this curve given below that the Neuberg cubic
has attracted a lot of attention lately. The present paper is yet another
such contribution. It adds more than two dozens of new instances when
the Neuberg cubic appears in various geometric constructions. Most re-
sults utilise the notion of the homology for triangles but there are also
those that use the concurrence of lines and the concept of the power of
a point with respect to a circle.
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Our proofs use the analytical geometry of complex numbers. This
choice leads to the simplest expressions and appears to be the most natu-
ral for our search for the Neuberg cubic. It is suitable for implementation
on computers. In fact, our results are all discovered with the help of a
computer (PC Pentium 200 MHz, 64 MB RAM) and the software Maple
V (version 4). We leave out many details because Maple V (or any other
package with symbolic algebra computation capability) performs all fac-
torisations and simplifications easily.

The paper is organised as follows. After the introduction we de-
scribe our notation and give basics on the use of complex numbers in
geometry. In the remaining sections we present and prove some new
results of our search for the Neuberg cubic that all give new character-
isations of this remarkable curve by various geometric constructions or
locus problems. The section titles are chosen to suggest the method of
recognition.

Of course, since our results are characterisations of the same curve,
in some cases one can show easily that one method follows from the
other(s). Observations of this kind and other comments on possible ex-
tensions and special cases are included in remarks.

2. Complex numbers in geometry

In this paper we shall use complex numbers in proofs because they
provide simple expressions and arguments. There are several books, for
example [16], [9], [23], [12], [26], and [20], that give introductions into
the method which we utilise.

A point P in the Gauss plane is represented by a complex number.
This number is called the affiz of P. It is customary to denote the affix
of a point P with the corresponding small Latin letter p and to identify
a point and its affix. The complex conjugate of p is denoted p. This
rule has an important exception in that the vertices A, B, and C of the
reference triangle are represented by numbers u, v, and w on the unit
circle. The letters a, b, and ¢ are reserved for the lengths of sides of
ABC. Hence, the circumcentre O of ABC is the origin. The affix of O
is number 0 (zero) and complex conjugates of u, v, and w are u™*, v,
and w1t

Let ¢ and 7 denote the first and the second cyclic permutation
on triples of letters. For example, p(a) =b, ¥(a) =¢, p(uz) =1y,
and ¥(uz) =wz. Finally, if f is an expression, Sf and Pf replace
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F+o(f)+9(f) and fo(f)¥(f). The expressions ©(f) and ¥(f) are

called relatives of f.

Most interesting points, curves,... associated with the triangle ABC
are expressions that involve symmetric functions of u, v, and w that
we denote as follows: y=wvw, c=u+v+w, 7= VW +wu+uv,
00 = —~U+V+w, 0y = p(0a), 0c = Y(0a), tha = VW, thp = WU, fle = U,
To= VW WUF UV, T =9(T), To=9(T), e =v—w, & = (6,),
e = %(8a), Ca = v +w, § = ©(G), (= %((,). For each k > 2, oy, 0k,
Okp, and oy, are derived from o, o,, 05, and o, with the substitution
u=1u* v=2v% w=uwF In a similar fashion we can define analogous
expressions using letters 7, u, 4, and (.

Let us close this section on preliminaries with a few words on an-
alytic geometry that we shall use and on triangle notation. Any of the
books mentioned above contains more than enough information on basic
constructions (line through two points, perpendicular and parallel to a
line through a point, condition for concurrence of three lines, condition
for collinearity of three points) that are needed to follow our arguments.
As a convenience for the reader we repeat them here.

In geometry lines are important so that we have the special notation
[m, n] for the set of all points P that satisfy the equation mp—mp+n =
= 0, where n is purely imaginary.

Let X, Y, and Z be three points with affixes z, y, and z and let
¢ be a line [f, A] in the plane. Then the line XY is [z —y, 27 — y 7],
the parallel to £ through X is [f, fZ — fz] and the perpendicular to ¢
through X is [-f, —fz + fx].

The conditions for points X, Y, and Z to be collinear and for
lines [m, n], [p, q], and [s, t] to be concurrent are SZ(y — z) = 0 and
Sm(pt—35¢) =0. If X, Y, and Z are not collinear, they determine the
unique circle (X, Y, Z) which goes through them.

The centroid, the circumcentre, and the centre of the nine-point
circle of the triangle XY Z are (Sz)/3, (Szz(y — 2))/(SZ(y — 2)), and
(Sz(y*—2%))/(25z(y - 2)).

Let P and @) be points and let £ be a line. Then pa(P, £), pe(P, ¢),
pr(P, £), re(P, £), and re(P, Q) denote the parallel to £ through P, the
perpendicular to ¢ through P, the projection of P onto ¢, the reflection
of P in ¢, and the reflection of P at @, respectively. ‘

For a point P not on the circumcircle of a triangle XY Z, let
ig(P, XY Z) be the isogonal conjugate of P with respect to XY Z. This
point is the intersection of lines which make equal angles with internal
angle bisectors as do the lines XP, Y P, and ZP.
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Let G, O, H, F, K, I,, and I, be the centroid, the circumcentre,
the orthocentre, the centre of the nine-point circle, the symmedian or
Grebe-Lemoine point, the first isogonic point, and the second isogonic
point of the base triangle ABC.

We shall need triangles A;B,C,, where the index z is either e, r,
t, u, and v. In order to describe A;B,C; it suffices to give description of
the vertex A, because B, and Cj are its relatives. The point A, is the
excentre on AI, the reflection re(A, BC), the intersection of tangents
to the circumcircle at B and C, and the apexes of equilateral triangles
constructed inwards and outwards on BC, respectively. A.B.C, is the
excentral, A,B;C; the tangential, and A,B,C, the three images triangle
of ABC.

Triangles XY, Z; and X,Y3Z5 are homologous if lines X; Xo, Y1Y5,
and Z;Z, are concurrent.

3. Homology of triangles — circumcentres

Among the oldest known methods of recognising the Neuberg cubic
are the following two theorems which use the condition that two families
of triangles are families of homologous triangles. In this and the next
five sections we consider some other uses of this method for recognition
of the Neuberg cubic N. Division into sections reflects different ways of
defining families of variable triangles.

Let Wy be the complement of the union of sidelines of the base
triangle ABC in the plane. For a point P in the plane, let O, Op, and
O., denote the circumcentres of the triangles BCP, CAP, and ABP.
Neuberg [18] has first proved the following result. As a convenience to
the reader we shall give easy proofs of this and the next theorem using
complex numbers. '

Theorem 3.1. The locus of all points P in Wy such that ABC is ho-
. mologous to 0,00, is the intersection with Wy of the union of the
circumcircle and the Neuberg cubic of ABC.

Proof. The O, is u, M/n,, while Og and O, are its relatives, where n,
and M are equations p + p. P — (, and pp — 1 of the sideline BC' and
of the circumcircle. The line AO, has the form [ f/n,, g/(un,)], where
f=up+up—upp—T1,andg=M (u? — ), while lines BOg and CO,
are its relatives. The triangles ABC and 0,00, are homologous if and
only if M NP, n;' =0, where N = 7p?p — pop?p + p1p*> —op* +
+09p — T2 D is the equation of the Neuberg cubic [16]. ¢
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The following result is proved on page 199 of [16]. It was well known
to readers of Mathesis (see [13]) and was mentioned again recently in [21].
Theorem 3.2. The Neuberg cubic of ABC is the locus of all points P
such that ABC is homologous to the triangle on the reflections of P in
the sidelines of ABC.

Proof. The reflection R, of the point P in the side BC is {, — u, # and
the line AR, is [ o D — 0, U™ oD — pg  up + p (o (u? — po) |. Hence,
triangles ABC' and R, RgR, are homologous if and only if u;* NP6, = 0.

Our first theorem is similar to the Th. 3.1. We just replace a point
P with its isogonal conjugate @ with respect to ABC. Let W, denote
the complement of the circumcircle of ABC in the plane.

Theorem 3.3. The locus of all points P in W, such that ABC is ho-
mologous to the triangle on the circumcentres of BCQ, CAQ, and ABQ
15 the intersection with Wy of the Neuberg cubic of ABC.

Proof. The affix of the isogonal conjugate Q is (p+7p — pp® —o)/M
and the circumcentre S, of BCQ is n,/M. The circumcentres S, and
Se of CAQ and ABQ have analogous affixes. The triangles ABC and
SaSyS. are homologous if and only if M2 NP4, /u? = 0. ¢

In the next theorems, we shall replace circumcentres of triangles
BCQ, CAQ, and ABQ with the circumcentres of B,.C,Q, C,A,Q, and
A,B,Q, where A,, B,, and C, are vertices of the three images triangle of
ABC.

The locus of all points P whose isogonal conjugates lie on the side-
line B,C, of A,B,C, is a conic A,. Let W3 denote the complement in
the plane of the union of the circumcircle of ABC, of the conic A,, and
of two other related conics A, and A..

Theorem 3.4. The locus of all points P in Wy such that ABC is ho-
mologous to the triangle on the circumcentres of the triangles B,C,Q,
CrA,Q, and A, B,Q is the intersection with W3 of the union of the side-
lines and the Neuberg cubic of ABC and a quartic which goes through
the vertices of ABC.

Proof. From the proof of previous theorem we know the affix of Q)
and since the affixes of B,, and C, are /v and 7./w, we can find the
affix of the circumcentre S, of B,C,Q. The circumcentres S, and S,
of C,A,Q and A, B,Q have analogous affixes. The triangles ABC and
S45p:S, are homologous if and only if K M2 NP§, n./(u L) = 0, where
K and L, denote expressions 2 (rap®p + poepp®) + (472 — 0?72 +
+4po®—15p0T+122) P* PP+ (dp—o 1) (P’ + 12 P°) + (8pT+2p0° -
—3om)p*p+pBpo+272—3027)pp* + (0?7 — 72 — 2p0)(2p® -
—op)+(om*—po?—2ur)2up?—75)+3 (0?1 —2uc® 273+ Tpor—
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~12p2)pp+2(pod —6poT+8u?) and 7, p? + (Cog u? — (4 (Coa — fha) U+
+ e C2a) Pﬁ—U(Cza-l—U Ca) P+l e Og 1_72 —Ha (Ma Catu CQa) ﬁ+(vz+ﬂb‘) (’LU2+
+u.). Notice that K = 0 is the equation of a quartic which goes through
the vertices of ABC while L, = 0 is the equation of the conic A,. ¢
Instead of the homology with ABC, the following result looks at
the homology of 0,030, with the triangle on circumcentres of B,C, P,
C.A,.P, and A,.B.P. Let W,y denote the complement of the union of
sidelines of triangles ABC and A, B,.C, in the plane.
Theorem 3.5. The locus of all points P in W,y such that the triangle
0,030, on circumcentres of BCP, CAP, and ABP is homologous to
the triangle on the circumcentres of the triangles B,C.P, C.A,P, and
A, B, P is the intersection with W, of the union of the circumcircle of
A, B,.C,, the circumcircle of ABC, and the Neuberg cubic of ABC.
Proof. Since the affixes of A,, B,, and C, are 7,/u, 7/v, and 7./w, the
circumcentre O7 of the triangle B,C,P is (pu7a 0P + 2 g (e — u?)p —
—04 Ty Te) B,Cr(P) ™1, where B,C,(P) denotes the value at P of the equa-
tion of the line B,C,. Now we can determine the line 0,07, find the lines
0p0; and 0,0 using the usual substitutions, and discover that these
lines are concurrent if and only if

k(A,, B, C.)(PYM NPu 62 B,C,(P)"* BC(P)™ =0,
where k(A,, By, C.)(P) is the value at P of the equation of the circum-
circle of A, B,.C,. ¢
Remark 1. We can get analogous results to the above two theorems by
replacing A, B,C, with either A,B,C, or A,B,C,.

4. Homology of triangles — antipedal triangles

The common feature of results in this section is that the homology
of the antipedal triangle of a variable point P with triangles on circum-
centres is used to recognise the Neuberg cubic.

Theorem 4.1. The locus of all points P in Wy such that the antipedal
triangle P*PPPY of P with respect to ABC is homologous to the triangle
on the circumcentres of BCH,, CAHg, and ABH.,,, where H,, Hg, and
H, are orthocentres of BCP, CAP, and ABP, is the intersection with
W of the union of the circumcircle and the Neuberg cubic of ABC.
Proof. The point H, has affix (p? — pe D + e (oD — C2a)/Ma SO that
the affix of the circumcentre S, of BCH, is ((ap+ pha Ca P — tha PP — (o0 —
—1ta)/na. The lines PPS, and P7S, are relatives of P*S,. These three
lines are concurrent if and only if 2 M NPé,/(un,) =0. O
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Remark 2. Let R, denote the reflection of a point P at the sideline BC.
The triangles BCH, and BCR, have the same circumcentre so that in
the above theorem the orthocentres H,, Hg, and H, could be replaces

with the reflections R,, Rg, and R, of P at the sidelines of ABC.

Let W, be the complement in the plane of the union of the three
sidelines of ABC and the three circles with sides of ABC' as diameters.
Theorem 4.2. The locus of all points P in Wy such that the antipedal
triangle P*PPPY of P with respect to ABC is homologous to the triangle
on the circumcentres of BCO,, CAOg, and ABO,, where O,, Op, and
O, are circumcentres of BCP, CAP, and ABP, is the intersection with
Wy of the union of the circumcircle and the Neuberg cubic of ABC.
Proof. The point O, has affix u, M/n, so that the affix of the circum-
centre S, of BCO, is g (pta (P* 9% — a9 — 1) — p* + (ou — 2U) /(n, U),
where U =2 g pD — (o P — o (o D + (oo 18 the equation of the circle with
BC as diameter. The lines P?S, and PSS, are relatives of P2S,. These
three lines concur if and only if 2M NP6, (p — u)(up —1)/(Un,) = 0.0

5. Homology of triangles — orthocentres

Here we obtain the Neuberg cubic in homologies with triangles on
the orthocentres of variable triangles. The last result also uses the centres
of the nine-point circles.

Theorem 5.1. The locus of all points P in Wy such that ABC is homol-
ogous to the triangle on the orthocentres of the triangles OO0, O0,0,,
and 00,0pg 15 the intersection with Wy of the union of the circumcircle
and the Neuberg cubic of ABC'.

Proof. The orthocentre H, of OO0, has affix u(, M (p — u)/(nsne).
Of course, the other two orthocentres H, and H, have analogous affixes.
Hence, the triangles ABC and H,H,H_ are homologous if and only if
M NP6, /(un,) =0. ¢

Remark 3. We get an analogous result to the above theorem by replac-
ing ABC with the triangle GGG, on centroids of BCP, CAP, and

ABP.
Theorem 5.2. The locus of all points P in Wy such that ABC is homol-

ogous to the triangle on the orthocentres of the triangles GGG, GGLGy,
and GGGy is the intersection with Wy of the union of the circumcircle
and the Neuberg cubic of ABC.

Proof. The orthocentre H, of GGG, has affix (2 pepp+up+pup—7—
—ta)/(37n,). The other two orthocentres H, and H, are relatives of H,.
It follows that the triangles ABC and H,H,H, are homologous if and
only if £ M NP6,/(un,) =0. ¢
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Remark 4. We get a similar result to the above theorem by replacing
ABC with the triangle 0,030., on circumcentres of BCP, CAP, and
ABP.
Theorem 5.3. The Neuberg cubic of the triangle ABC 1is the locus of
all points P such that ABC is homologous to the triangle on either the
centres of the nine-point circles or the orthocentres of RgR,P, R R, P,
and RoRgP, where R,, Rg, and R, are reflections of P at the sidelines
BC, CA, and AB.
Proof. The orthocentre H, of RgR,P is p+ (7 — pg) P+ (- The or-
thocentres H, and H, of R,R,P, and R,RgP are relatives of H,. The
triangles ABC and H,H,H, are homologous if and only if u;* NP4, = 0.
For the second part observe that the centre of nine-point circle of
RgR., P is collinear with the points A and H,. ¢

6. Homology of triangles — symmedian and isogonic
points

The second theorem in this section is analogous to the following
theorem which is an exercise on page 200 of [16]. It was restated as the
Superior Locus Problem by J. Tabov in [24] and it was resolved by the
author in [3] (see also [4]).

Theorem 6.1. The locus of all points P in Wy such that the Euler lines
of the triangles ABP, CAP, and BCP are concurrent (at the point on
the Euler line of ABC) is the intersection with Wy of the union of the
circumcircle and the Neuberg cubic of ABC.

Proof. We know the circumcentre O, of the triangle BC'P and since
its centroid G4 is (p + (,)/3 it follows that the Euler line G,0, of this
triangle is

[n;1 (p2 —2pe PP+ poCaD + pha — CZa,)y ﬂgl M (p - ,U/aﬁ)]'
Hence, the Euler lines G,0,, G3Op, and G,0O, concur if and only if
MNu P& n;t =0.

Notice that these lines intersect on the Euler line GO of ABC. ¢

Recall that the Brocard diameter or the Brocard azis are the names
for the central line joining the circumcentre with the symmedian point
(or the Grebe-Lemoine point) of a triangle.
Theorem 6.2. The locus of all points P in Wy such that the Brocard
diameters of the triangles ABP, CAP, and BCP are concurrent (at the
point on the Brocard azis of ABC) is the intersection with Wy of the
union of the circumcircle and the Neuberg cubic of ABC.
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Proof. The affix of Ky is (1o GupP + 2 (o — C20) P — 2 e P + Ll Ca)/Us,
where the complex number U, is ((2p — () (2 oD — () — 362)/2 and
thus is never zero. The affix of O, is p, M/n,, so that the triangles
K.KgK, and 0,030, are homologous if and only if
MNP, (p—u)(up—1)/(n,U,) =0.

Notice that the lines O,K,, OgKjp, and O, K, intersect on the Brocard
axis KO of ABC. ¢

The second theorem in this section is similar to the Th. 3.1. In
it we replace the circumcentres with isogonic points. Let Ws be the
complement in the plane of the apexes 4,, B,, and C, of equilateral
triangles built towards inside on the sides of ABC.
Theorem 6.3. The locus of all points P in Wy such that ABC is ho-
mologous to the triangle I,oI,g1,, on the second isogonic points of BCP,
CAP, and ABP is the intersection with Wy of the union of the equilat-
eral hyperbola through A,, B,, and C, with the centre at the first isogonic
point I, of ABC and the Neuberg cubic of ABC.
Proof. The point I, is (Un +V)/(X n+Y), where ) denotes —% + 1 ‘/75
(the cube root of unity), the letter U is an abbreviation for p, (,pp +
+2 (ta — C2a) P — 2 2 P + g (o, the letter V for

U:uapp - 5ap2 =+ (/Jfa - CQa)p — Ha (,U'a - C2a)ﬁ+ W fho + 53a,
and the letters X and Y for 2p,pp—Cup—2a (u D+ 4 e — (oq and
pepP— (0a +v) P — 1o (6o +v)D+v2+2wd,. The other two second
isogonic points I,z and I, are relatives of I,,. It follows that the trian-
gles ABC and II,sl,, are homologous if and only if

H,NP§,/(u*(Xn+Y))=0,

where H, = 0 is the equation (in p) of the hyperbola from the statement
of the theorem. In order to see that Xn+Y =0 only when p=m,
where m is the affix of A,, it suffices to note that the value of Xn+Y
at m+nisequal (1+2n)navw. O
Remark 5. Of course, there is a dual result to the above theorem with
first isogonic points of BCP, CAP, and ABP. The hyperbola of the
locus has its centre at the second isogonic point of ABC.

7. Homology of triangles — reflections

In this section we use homology with triangles whose vertices are
reflections in appropriate lines. Let W, be the complement in the plane
of the vertices A, B, and C of the triangle ABC.
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Theorem 7.1. The locus of all points P in W, such that ABC is ho-
mologous to the triangle on reflections in sidelines of ABC' of inversions
of A, B, and C with respect to the circles k(B, C, P), k(C, A, P), and
k(A, B, P) is the intersection with Wy of the union of the sidelines, the
circumcircle, and the Neuberg cubic of ABC.

Proof. The inversion of A with respect to the circle k(B, C, P) is
(Ta M —ung)/(uM — ng) and its reflection T, in BC is

(WM — 1am6)/(ta M — umny,).

The other two reflections T and T, are relatives of T,. The triangles
ABC and T,T,T. are homologous if and only if

MNP n,/(w® (uM —n,) (e M —ung)) = 0.
From this our theorem follows immediately provided one observes that
up to a constant u, M —un, is a complex conjugate of u M — n, and
both are zero only at the affixes of B and C. ¢
Theorem 7.2. The locus of all points P in Wy such that ABC is homol-
ogous to the triangle on reflections in sidelines of the extriangle A.B.C.
of wnversions of A, B, and C with respect to the circles k(B, C, P),
k(C, A, P), and k(A, B, P) is the intersection with Wy of the union of
the circumcircle and the Neuberg cubic of ABC.
Proof. In this proof, in order to avoid the appearance of square roots,
we shall assume that the vertices A, B, and C have affixes u?, v?, and
w? for some unimodular numbers u, v, and w. The reflection T, in B.C,
of the inversion of A with respect to the circle k(B, C, P) is

(UM —u* c2(na))/ca(tta M — uny),

where U = p, (u* + (e — Coq) u® + 2,) and ¢, performs the substitution
u — u?, v — v%, w — w? The other two reflections T} and 7. are rela-
tives of T,. The triangles ABC and T,T;T, are homologous if and only
if M*ca(N)Pea(0a)?/ (W2 ca(u M —ng) eyt M — ung)) = 0.0

Theorem 7.3. If ABC has no right angle, then the locus of all points
P in Wy such that the tangential triangle A;B;C; is homologous to the
triangle on reflections in BC, CA, and AB of the second intersections of
lines AP, BP, and CP with the circumcircle of ABC is the intersection

with Wy of the union of the sidelines and the Neuberg cubic of ABC.
Proof. Since the affix of A; is 2 pu, /¢, the affix of the second intersection
S, of AP with the circumcircle of ABC is (u — p)/(u® — 1), and the affix
of the reflection T, of S, in BC'is ((,p+ up — 7)/(p — u), the triangles
A¢B;Cy and T,T,T, are homologous if and only if

INPbana/(ula(p~u)(up—1))=0.0
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Theorem 7.4. The locus of all points P in Wy such that the pedal tri-
angle P,PgP, of P with respect to ABC is homologous to the triangle
on reﬂectzons in PgP,, P,P,, and P,Pg of P is the intersection with W,
of the union of the sidelmes, the circumcircle, and the Neuberg cubic of
ABC.

Proof. Since the affix of P, is (p — pa D+ (.)/2 and the affix of the
reflection T, of P in P3P, is '

(p2 —U(ePP+(ap— .u"u'pZ T U (T + P’a)p — G (c)/(z (p - u));
the triangles P, PsP, and T,T;T, are homologous if and only if

11—6M2NIP’6ana/(u2 (p—u)(up—1))=0.0

Remark 6. Since the triangle R,RzR, on reflections of a point P in
sides of ABC' is homothetic to the pedal triangle P,PsP, from P, the
above theorem holds also for R,RgR, in place of P PsPF,.

Theorem 7.5. The locus of all points P in Wy such that the antipedal
triangle P*PPPY of P with respect to ABC is homologous to the triangle
on reflections in PPPY, PYP%, and P*PP of P is the intersection with
Wy of the union of the circumcircle and the Neuberg cubic of ABC.
Proof. The affix of P*is (uapd — p*> + (o p — 2 pta) /7 and the affix of
the reflection T, of P in PPP7 is 2u — p, so that the triangles P*P#PY
and T,T,T, are homologous if and only if 16 M NP4, /(un,) = 0.0

8. Homology of triangles — isogonal conjugacy

Here we encounter the Neuberg cubic in homologies with triangles
whose vertices are isogonal conjugates of various points with respect to
appropriate variable triangles.

Theorem 8.1. The union of the circumcircle and the Neuberg cubic of
the triangle ABC is the locus of all points P such that the pedal triangle
P,PgP, of the point P with respect to ABC' is homologous to the triangle
on zsogonal conjugates of Py, Pg, and P, with respect to triangles PP P,,
PP,P,, and PP,Pg.

Proof. The vertex P, has affix (p — pio D + (,)/2 while the isogonal con-
jugate T, of P, with respect to the triangle P P3P, has affix (2p — u M) /2.
Hence, the triangles P,PgP, and T,T3T. are homologous if and only if
%_M2 NP6, /u?=0.0

Remark 7. The above theorem holds also for the triangle on reflections
of a point P in sides of ABC instead of the pedal triangle P,P3P,.
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Theorem 8.2. The locus of all points P in Wy such that the triangle
0,050, on the circumcentres of triangles BCP, CAP and ABP is ho-
mologous to the triangle on the isogonal conjugates of O,, Og, and O,
with respect to triangles POgO,, PO,0, and PO,Og is the intersection
with Wy of the union of the circumcircle and the Neuberg cubic of ABC.
Proof. The vertex O, has affix u, M/n, while the isogonal conjugate
T, of O, with respect to the triangle POgO.,, has affix u M/(up —1).
It follows that the triangles 0,030, and T,T;T. are homologous if and
only if M* NP8,/(n, (p —u)(up—1)) =0.0

Theorem 8.3. The locus of all points P in Wy such that the triangle
SaSpSy on the second intersections of lines AP, BP, and CP with the
circumcircle of ABC' is homologous to the triangle on the isogonal con-
jugates of S, Sg, and S, with respect to triangles PSgS,, PS,S,, and
PS,Sg is the intersection with Wy of the union of the sidelines, the cir-
cumcircle, and the Neuberg cubic of ABC.

Proof. The complex number (u — p)/(up — 1) is the affix of the vertex
Sa. On the other hand, ({, P2 p+upp* —p*> — (T+ 1) pP+up+p.)/((u—
—p)(vp—1)(wP—1)) is the affix of the isogonal conjugate T, of S, with
respect to the triangle PS3S,. Hence, the triangles 5,535, and T,T,T,
are homologous if and only if M®* NP6, n./((p — u)® (up — 1)3) = 0.0
Theorem 8.4. The locus of all points P in W1 such that the triangle
H,HgH, on the orthocentres of triangles BCP, CAP, and ABP is ho-
mologous to the triangle on isogonal conjugates of A, B, and C with
respect to those triangles is the intersection with Wy of the union of the
sidelines and the Neuberg cubic of ABC.

Proof. Since ig (4, BCP) is (p* + u(,pp—0p — P+ pa)/(u M) and
the vertex H, has the affix (p?2 — papD + ta CaD — Coa)/N0 it is easy to
check that the triangles H,HgH,, and

ig (A, BCP) ig (B, CAP) ig (C, ABP)
are homologous iff M3 NP§, ngu™2 = 0.0

9. Concurrent parallels

Results in this section use the condition that three lines are con-
current. However, these lines are not lines joining corresponding vertices
of two triangles as in previous sections but are parallels to lines.
Theorem 9.1. The Neuberg cubic of the triangle ABC is the locus of all
points P such that the parallels through A, B, and C to the Euler lines
of triangles PPgP,, PP, P,, and PP,Pg formed by P and the vertices of

its pedal triangle are concurrent.
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Proof. The parallel pa(4, G,0,) with the Euler line G,0, of PP,P,
through the vertex A is the line [(u (o p—p—04)/2, (Lo D—T P+, (u? —
—a))/ (2 p)]. The other two parallels pa(B, G4O;) and pa(C, G.O,) are
relatives of pa(A, G,0,). The condition for these lines to concur is
%NlP’cSa v 2=0.0

Remark 8. The above theorem is true also when parallels to the Euler
lines of PPsF,, PP,P,, and PP,Py are drawn through vertices of either
the pedal triangle of P with respect to ABC or the triangle on reflections
of P in sidelines of ABC.

Theorem 9.2. The locus of all points P in Wy such that the parallels
through the vertices P®, PP, and P" of its antipedal triangle to the Euler
lines of triangles PPPPY, PPYP®, and PP*P* are concurrent is the
intersection with Wy of the union of the circumcircle and the Neuberg
cubic of ABC.

Proof. Asin the proof of the previous theorem, we first find the parallel
pa (P®, G,0,) with the Euler line G,0, of PP?P? through the vertex
P, This line has a rather complicated polynomial of order five in p and
P as the second term. Of course, the other two parallels pa (B, G;Oy)
and pa (C, G.O,) are relatives of pa (A, G,0,). These lines concur if
and only if 48 M?> NP6, (p — u)(up —1)/n, = 0.0

Remark 9. The above theorem remains true when parallels to the Euler
lines of PPPPY, PPYP®, and PP*P# are drawn through vertices of the
triangle on the second intersections of lines AP, BP, and CP with the
circumcircle of ABC.

10. Characterisations with power

Neuberg [18] noticed the following theorem which requires the no-
tion of the power of a point with respect to a circle that we recall now.

Let P be a point and & be a circle in the plane with the centre S
and the radius 7. Then the power w(P, k) of the point P with respect
to the circle k is the number |PS|?> — 72, For points X and Y in the
plane, let k(X, Y) denote the circle with the centre at X which passes
through Y.
Theorem 10.1. The Neuberg cubic of ABC is the locus of all points P
in the plane such that the product of powers of the point P with respect
to the circles k(A, B), k(B, C), and k(C, A) is equal to the product of
powers of the point P with respect to the circles k(A, C), k(B, A), and
k(C, B).
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Proof. Let W =pp—u~'p—up. Since W + p;* (¢ — pe) and W +
+y H(Cap — pp) are the powers w(P, k(A, B)) and w(P, k(4, C)), the
difference Pw(P, k(4, B)) — Pw(P, k(4, C)) is equal to u3' NP§,.0

The above result uses circles determined by two points (the centre
and a point on it). Much more interesting is to consider powers with
respect to circles which are given by three points.

For a point P and triangles UVW and XY Z, let
Pw(U, k(P, Z, X)) - Pw(U, k(P, X, Y))

be v(P, UVW, XY 7).
Theorem 10.2. The locus of all points P in Wy such that

v(P, ABC, 0,050,) =0
is the intersection with Wy of the union of the circumcircle and the Neu-
berg cubic of ABC, where O, Og, and O, are circumcentres of triangles
BCP, CAP, and ABP.
Proof. Since the quotient ((7 — 1) PP — pa (e — CeP + o + v*)(p —
—u)(up — 1)/(ungn.) is the power w(A4, k(P, O,, Op)) and the power
w(A, k(P, Oq, Op)) is the analogous quotient ((7 — pc)pD — pa (P —
—Cop + pe + w?)(p — u)(up — 1)/(ungnp) and all the remaining four
powers which appear in v(P, ABC, 0,050,) are their relatives,

v(P, ABC, 0,050,) =0
is true if and only if M NP§, (p —uw)(up—1)/(un2) = 0.0
Remark 10. The above theorem remains true when

v(P, ABC, 0,040,) =0
is replaced by the equation v(O, ABC, 0,050.,) = 0, where O is the
circumcentre of ABC.
Theorem 10.3. The Neuberg cubic of ABC is the locus of all points P
in the plane such that v(P, ABC, RyRgR,) =0, where Ry, Rg, and R,
are reflections of P in the sidelines BC, C A, and AB, respectively.
Proof. Since
(up+v e P~ PP+ the = Ge) /e (WP +wps D — PP+ s — Cab)/ 1
are powers w(A, k(P, Ry, R,)) and w(A4, k(P, Ry, Rp)) and the other
four powers which appear in v(P, ABC, R RgR,) are their relatives,
v(P, ABC, R,RgR,) = 0 is true if and only if NPdu"? = 0.0

Let Ws be the complement of the union of the circumcircles of

triangles BCO, CAO, and ABO in the plane. If P is a point different
from the circumcentre O of ABC, let R denote the inversion of P with
respect to the circumcircle of ABC.
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Theorem 10.4. The intersection of the Neuberg cubic of ABC with Wy
is the locus of all points P in Wy such that v(R, ABC RyRgR,) = 0.
Proof. Since (up+vpap— iy — v*)(p —u)(up — 1)/ (ue (G M = mp)) is
w(4, k(R, R, R,)) and w(A, k(R, R,, Rg)) is

(wp+wpa P — pio — w?)(p —w)(up — 1)/ (uy (¢ M — 1))

and all the other four powers which appear in v(R, ABC, R,RgR,) are
their relatives, it follows that v(R, ABC, R,RsR,) = 01is true if and only
if NPdg (p—u)(up—1)/(v? (¢, M —n,)) =0. From this our theorem
follows immediately if we observe that (, M — n, = 0 is the equation of
the circle k(B, C, O) (or the sideline BC when the angle A is right).¢

When the angle A is right, let k, denote the sideline BC' of ABC.
Otherwise, we use k, for a circle which passes through the points B and
C and which has the lines joining these points with the circumcentre of
ABC as tangents. The (lines) circles k, and k., are defined analogously.
Let Wy be the complement in W; of the union of k,, ks, and k,. For
a point P outside the circumcircle of ABC, let @ denote its isogonal

conjugate with respect to ABC.
Theorem 10.5. The intersection of the union of the sidelines and the

Neuberg cubic of ABC with Wy is the locus of all points P in W, such
that v(Q, ABC, R,RsR.,) = 0.

Proof. Since ((7‘ — Ue) PP~ Cap — iy Ca D+ pic +w?)(p — u)(up — 1) ny/
/(uM (G M —2n,)) is the power w(A, k(R, R,, R,)) and the power
w(A, k(R, Ra, Rg)) is also the quotient ((7 — 1t3) P — Cap — pteCa P +
+pp +v?)(p — u)(up — 1) na/(u M (.M — 2n.)) and the other powers
which appear in v(Q, ABC, RyRgR,) are their relatives,

v(Q, ABC, R,RsR,) =0
ifand only if M NP ng (p — u)(up — 1)/(uv® ((a M — 21n,)) = 0. From
this our theorem follows provided one observes that (, M —2n, =0 is

the equation of the circle (line) k,.Q
Remark 11. Let

v(P, UVW, XYZ) =Pw(P, k(V, W, Y)) - Pw(P, k(V, W, Z))
for a point P and triangles UVW and XY Z. It is interesting that in all
results in this section replacing the function v with the above function
vy the Neuberg cubic of ABC will again appear. However, the exception
sets are more complicated and the locus might include curves of higher
order.
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