A CHARACTERIZATION OF DERIVATIONS BY FUNCTIONAL EQUATIONS

Franz Halter-Koch

Institut für Mathematik, Karl-Franzens-Universität Graz, Heinrichstraße 36, 8010 Graz, Austria

Herrn Professor Ludwig Reich zum 60. Geburtstag gewidmet

Received: April 2000

MSC 2000: 39B52; 15A04, 15A99

Keywords: Derivations, Möbius transforms.

Abstract: Let K be a field containing \mathbb{Q} , and let $f, h : K \to K$ be additive functions satisfying a functional equation

$$h\left(\frac{ax^n+b}{cx^n+d}\right) = \frac{x^{n-1}f(x)}{(cx^n+d)^2} \quad \text{for} \quad n \in \mathbb{Z} \setminus \{0\} \quad \text{and} \quad {a \choose c} \in GL_2(K).$$

Under mild additional assumptions, it is proved that the function F(x) = f(x) - f(1)x is a derivation.

In a series of papers, most of them together with Ludwig Reich, we characterized field homomorphisms and derivations among additive functions by functional equations, see [1], [2], [3], [4]. In this note, I use the methods derived in [4] to give a characterization of derivations by functional equations which arise from the differentiation of Möbius transformations.

Theorem. Let K be a field containing \mathbb{Q} , $n \in \mathbb{Z} \setminus \{0\}$ and

E-mail address: franz.halterkoch@kfunigraz.ac.at

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K)$$

such that one of the following conditions is satisfied:

- 1. $c = 0, n \neq 1$.
- 2. $d = 0, n \neq -1.$
- 3. $cd \neq 0$ and $(c^{-1}d)^2 = e^n$ for some $e \in K$.

Let $f, h : K \to K$ be additive functions, and suppose that the functional equation

(1)
$$h\left(\frac{ax^n+b}{cx^n+d}\right) = \frac{x^{n-1}f(x)}{(cx^n+d)^2}$$

holds for all $x \in K^{\times}$ satisfying $cx^n + d \neq 0$. Then the function $F : K \to K$, defined by

(2)
$$F(x) = f(x) - f(1)x$$
,

is a derivation. Moreover, we have

(3)
$$f(1) = \begin{cases} h(c^{-1}b), & \text{if } d = 0, \\ h(d^{-1}a), & \text{if } c = 0, \\ -e^{-1}f(e), & \text{if } cd \neq 0. \end{cases}$$

Before we give the complete proof of the Th., we treat the special cases arising under the conditions 1. and 2.

Lemma. Let K be a field containing \mathbb{Q} , $n \in \mathbb{Z} \setminus \{0,1\}$, $a \in K^{\times}$, $b \in K$, and let $f, g : K \to K$ be additive functions satisfying the functional equation

$$(4) h(ax^n + b) = x^{n-1}f(x)$$

for all $x \in K^{\times}$. Then the function $F: K \to K$, defined by F(x) = f(x) - f(1)x, is a derivation. Moreover, we have h(b) = 0 and f(1) = h(a).

Proof. For $x \in K^{\times}$ and any $t \in \mathbb{Q}^{\times}$, we have

$$h(a(tx)^n + b) = t^n h(ax^n) + h(b) = (tx)^{n-1} f(tx) = t^n x^{n-1} f(x)$$
, and consequently

$$t^n [h(ax^n) - x^{n-1}f(x)] = -h(b) .$$

Since this equation holds for all $t \in \mathbb{Q}^{\times}$, we obtain h(b) = 0 and $h(ax^n) = x^{n-1}f(x)$. Now we define $g: K \to K$ by g(x) = h(ax) and apply [1], Th. 2 to the pair (f,g). \diamond

Proof of the Theorem. If c=0 or d=0, the assertions follow by the Lemma. Thus we suppose that $cd \neq 0$, and we may assume that c=1. Then the decomposition

$$\frac{ax^n+b}{x^n+d}=a-\frac{D}{x^n+d}, \text{ where } D=ad-b\neq 0,$$

yields the functional equation

(5)
$$h\left(\frac{D}{x^n+d}\right) = h(a) - \frac{x^{n-1}f(x)}{(x^n+d)^2},$$

valid for all $x \in K^{\times}$ such that $cx^n + d \neq 0$. If $x \in K^{\times}$ and $x^n + d \neq 0$, then $(ex^{-1})^n + d = dx^{-n}(x^n + d) \neq 0$ and

$$\frac{D}{x^n + d} = \frac{D}{d} - \frac{D}{(ex^{-1})^n + d} \ .$$

Applying (5) to this identity, we obtain

$$h(a) - \frac{n^{n-1}f(x)}{x^n + d)^2} = h\left(\frac{D}{d}\right) - h(a) + \frac{(ex^{-1})^{n-1}f(ex^{-1})}{((ex^{-1})^n + d)^2},$$

and consequently

(6)
$$\frac{x^{n-1}}{(x^n+d)^2} \left[x^2 e^{-1} f(ex^{-1}) + f(x) \right] = h \left(2a + \frac{D}{d} \right)$$

for all $x \in K^{\times}$ satisfying $x^n + d \neq 0$. If $x \in K^{\times}$ and $x^n + d \neq 0$, then there are infinitely many $t \in \mathbb{Q}^{\times}$ such that $(tx)^n + d \neq 0$, and for these values of t we may replace x by tx in (6) and obtain

$$\frac{t^n x^{n-1}}{(t^n x^n + d)^2} \left[x^2 e^{-1} f(ex^{-1}) + f(x) \right] = h \left(2a + \frac{D}{d} \right) .$$

This is only possible, if $h(2a + \frac{D}{d}) = 0$ and $x^2e^{-1}f(ex^{-1}) + f(x) = 0$. Hence we get the functional equation

(7)
$$-e^{-1}f(ex^{-1}) = x^{-2}f(x) ,$$

valid for all $x \in K^{\times}$ satisfying $x^n + d \neq 0$. If $x \in K^{\times}$ is arbitrary, there exists some $t \in \mathbb{Q}^{\times}$ such that $(tx)^n + d \neq 0$. We replace x by tx in (7), divide by t and see that (7) is valid for all $x \in K^{\times}$. Now we define $g: K \to K$ by $g(x) = -e^{-1}f(ex)$ and obtain the functional equation

$$g(x^{-1}) = x^{-2}f(x)$$
 for all $x \in K^{\times}$.

By [1], Th. 2, the assertion follows. \Diamond

Corollary. Let K be a field containing $\mathbb{Q}, n \in \mathbb{Z} \setminus \{0\}$ and

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Q})$$

such that one of the following conditions is satisfied:

- 1. $c = 0, n \neq 1.$
- 2. $d = 0, n \neq -1$.
- 3. $cd \neq 0$ and $(c^{-1}d)^2 = e^n$ for some $e \in \mathbb{Q}$.

Let $f: K \to K$ be an additive function. Then f is a derivation if and only if

(8)
$$f\left(\frac{ax^n+b}{cx^n+d}\right) = \frac{(ad-bc)nx^{n-1}f(x)}{(cx^n+d)^2}$$

holds for all $x \in K^{\times}$ such that $cx^n + d \neq 0$.

Proof. If f is a derivation, then $f \mid \mathbb{Q} = 0$ and (8) follows from the elementary properties of a derivation.

Suppose that (8) holds. By the Th., we must prove that f(1) = 0. If $x \in \mathbb{Q}^{\times}$ and $cx^n + d \neq 0$, then (8) implies

(9)
$$\frac{ax^n + b}{cx^n + d}f(1) = \frac{(ad - bc)nx^n}{(cx^n + d)^2}f(1),$$

since f is \mathbb{Q} -linear. Now (9) holds for infinitely many $x \in \mathbb{Q}$, and therefore f(1) = 0 follows. \Diamond

References

- [1] HALTER-KOCH, F.: Characterization of field homomorphisms and derivations by functional equations, *Aequationes Math.*, to appear.
- [2] HALTER-KOCH, F. and REICH, L.: Additive functions commuting with Möbius transformations and field homomorphisms, *Aequationes Math.* 58 (1999), 176–182.
- [3] HALTER-KOCH, F. and REICH, L.: Characterization of field homomorphisms by functional equations, *Publ. Math Debrecen*, to appear.
- [4] HALTER-KOCH, F. and REICH, L.: Characterization of field homomorphisms by functional equations, II, Aequationes Math., to appear.