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Abstract: An analogue of Ulam’s question on the stability of the Cauchy
functional equation is treated for functions mapping into ordered fields.

1. Introduction

Let througout the paper R denote the set of the real numbers and
(S,+) denote an arbitrary groupoid. If (G, +) is another groupoid, we
shall call any homomorphism ¢ : S — G an additive mapping. The
proof of the following theorem is due to Hyers [2].

Theorem 1. If S is an abelian semigroup, f: S - R, 0<d € R, and
the inequality

(1) [f(z+y) - flz) - F)I <6

is satisfied for every z,y € S, then there exists an additive mapping
g:S — R such that '
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(2) [f(z) —g(z)| <6
holds for every x € S.

Let us note that Hyers formulated this statement for functions
defined on a Banach space and mapping into another Banach space.
However, as it is pointed out by Forti [1], Hyers’ proof works for func-
tions defined on an arbitrary abelian semigroup. It is convenient for
our purposes to restrict ourselves to the case when the range is the set
of the real numbers.

In fact, Hyers’ result is a (partial) affirmative answer to Ulam’s
question [1]. As in Ulam’s original question mappings from one metric
semigroup into another were involved, several authors have investigated
generalizations of Th. 1 into this direction. A somewhat different ap-
proach is represented, for instance, by [4], where most of the results are
devoted to functions mapping into topological Q-vector spaces.

It might be interesting to investigate the case when the range is
equipped with an order relation instead of a topology. In this short note
we consider functions mapping into ordered fields. Though one can try
to reduce this situation to the previous one by generating an appropriate
topology, the direct approach seems to be more powerful. In this case it
is natural to consider inequality (1) with the (not real valued) modulus
of the (so called) Cauchy difference, majorized by a positive element § of
the ordered field under consideration. Our terminology reflects the fact
that additive mappings are the solutions of Caucy’s functional equation
f(z+y) = f(z)+f(y). In this sense Hyers’ theorem asserts the stability
of the Cauchy equation in Banach spaces. (

In what follows (R,+,:) will denote an ordered field. Several
concepts of stability are usually associated with Hyers’ theorem. We
shall say that the Cauchy equation is weakly stable in (S, R), if for every
function f : § — R that has a bounded Cauchy difference

(@y) = flz+y) - fl@) - fly)  ((z,y) € SxS)
there exists an additive function g : S — R such that f — ¢ is bounded
(in R). We say that the Cauchy equation in (S, R) is stable in Ulam’s
sense, if for every 0 < € € R there exists 0 < § € R such that the
following implication holds true: (U) if f : § — R satisfies

(3) |f(x+y)— flz)— f(y)| <6 forevery z,ye€ S
(where, as usual, |a| = max{a, —a}), then there exists an additive func-
tion g : S — R such that
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(4) |f(z) —g(z)]| <e forevery z€S.

We say that the Cauchy equation is uniformly stable in (S, R), if there
exists 0 < k € R such that for every 0 < § € R the implication
(U) holds with ¢ = k6. Finally, we say that the Cauchy equation is
finitely stable in (S, R), if it is uniformly stable with some s € Q (as it is
familiar, the smallest subfield of R is Q, the set of the rational numbers).
Obviously, if the Cauchy equation is finitely stable in (S, R), then it is
uniformly stable as well. It is also trivial that if the Cauchy equation
is uniformly stable in (S, R), then it is also stable in Ulam’s sense and
weakly stable in (S, R). Th. 1 states, under natural assumptions on S,
that the Cauchy equation is finitely stable in (S,R) with k = 1. We
shall prove, without any assumption on S, that the Cauchy equation
is uniformly stable in (S, R) for every non-archimedean field R with
every non-finite element 0 < ¥ € R. For ordered fields R that can
be considered, in a certain sense, as extensions of R, assuming that S
satisfies the hypotheses of Th. 1, we prove that the Cauchy equation
is finitely stable in (S, R). It is also presented that, for instance, the
Cauchy equation is not weakly stable in (Q, Q).

2. Algebraic foundations

The following general and simple stability result concerning the
Cauchy equation for vector-valued mappings is implicitly used in [4].
Lemma 1. LetY be a linear space over an arbitrary field K and Yy
be a linear subspace of Y. If f : S — Y satisfies

(5) flz+y)—flz) - fly) €Yo for every z,y€S,
then there exists an additive function g : S — Y such that
(6) fz)—g(x) €Yy forevery ze€S.

Proof. Let Hy be a Hamel base of Yy and H be a Hamel base of Y
such that Hy C H. Let Y7 denote the K-linear hull of H \ Hy. Then
Yy and Y; are algebraically complementary subspaces of Y, that is

(7 YoNnY; ={0} and Yp+Y;=Y.
Thus every u € Y has a unique representation
u=1ug+u;, where ug €Yy, ui €Yy.
Hence there exist well defined functions fy: S =+ Ypand f1: 5 =2 V3
such that f = fo + f1. Due to the definitions of f; and Y; we have
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8) fi(z+y)— fi(z) - fi(y) €Y; forevery zyeS (j=0,1)
On the other hand, (5), case j = 0 of (8), and f1 = f — fo imply

) filz+y) — fi(z) = f1ly) € Yy forevery z,y€S.
From (8), (9), and (7) we obtain that f; is additive. Thus g = f;
satisfies our statement. ¢

Now we introduce a few important concepts and structures in
ordered fields and encounter a few properties of them. We begin with
notions and notations concerning u,w € R. Let

[u,wl={te Rlu<t<w},

as usual. We say that w is u-infinitesimal if n|w| < |u| for every n €
€ N (where N denote the set of the positive integers). We say that w
is u-finite if there exists n € N such that |w| < nlu|. We say that w
is infinitesimal if it is 1-infinitesimal. We say that w is finite if it is
1-finite. Put

I[u] = {w € R | w is u-infinitesimal },

Flu] ={w € R | wis u-finite },
Tgr = I[1], and Fgr = F[1].

We call an ordered field R archimedean if Fr = R. It is easily
seen that R is archimedean if and only if Zp = {0}.

It is well known (and easy to show) that Fg is a ring and Zg
is a maximal ideal in Fgr. Hence the standard part of R, defined by
st(R) = Fr/ZIr, is a field. Moreover, st(R) is an ordered field with the
order inherited from R. It is also well known (cf., e.g., [3], Ch. 1, § 3)
that st(R) is archimedean, hence it is isomorphic to a subfield of R.

We call an ordered field R quasi-real if st(R) is isomorphic to R.
Since any field which is isomorphic to R provides a model of the axioms

of R, we can assume that in any quasi-real ordered field R we have
st(R) = R.

3. Stability results

Let us observe that any ordered field R is a linear space over Q.
Moreover, Z[u] and F|u] are Q-linear subspaces of R for every u € R.
Therefore, applying Lemma 1, one immediately obtains the following
result.

Corollary 1. Let R be an arbitrary ordered field, u € R, I = Z[u] or
I=2Flul,and f:S— R.If
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(10) fle+y)—fl@)—fly) el forevery z,ye€S,
then there ezxists an additive mapping g : S — R such that
(11) [(x)—g(z)el forevery z€S.

Roughly speaking, if the Cauchy differences of f are infinitesimal
(finite), then f is infinitesimally (finitely) close to an additive function.

Let us note that the notions, statements, and proofs of Cor. 1 can
be extended to ordered linear spaces.

Now let us assume that R is non-archimedean. Then there exists
0 <k € R\Fr. If0< 6 € R, then obviously ¢ is ké-infinitesimal.
Thus for a function f : § — R with Cauchy differences in [—4, 6] we
can apply Cor. 1 with I = Z[ké]. So we can establish another formal
stability result.
Proposition 1. If R is a non-archimedean ordered field, then the
Cauchy equation is uniformly stable in (S, R).

The following example shows that the archimedean case is differ-
ent. Namely, the Cauchy equation is not weakly stable in (Q, Q).
Example. Let £ € R\ Q such that 0 < £ < 1 and define

fle)=z-[(1-8z] (z€Q),
where [z]| denotes the integer part of the real number z. Then f: Q — Q
and
tx < f(z)<&x+1 forevery z€Q,
hence

[fz+y)—Flz) - fly)| <2 forevery z,y€Q
On the other hand, the only additive mapping g : Q@ — R for which
f — g is bounded is given by g(z) =&z (z € Q). Thus g(1) =£ € Q.
The following theorem yields that for every abelian semigroup S
and quasi-real ordered field R the Cauchy equation is finitely stable in
(S, R) with any rational number x > 1.

Theorem 2. Suppose that S is an abelian semigroup, R is a quasi-real
ordered field, 6 € R, § > 0, and f : S — R such that (3) holds. Then
there exists an additive function g : S — R such that

(12) f(z) — g(z) € [-6,8] +I[8] forevery z€S
and thus

(13)  |f(z) —g(z)| < (1 + 7—]:;) § forevery z€S, neN
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Proof. Let us define f : § = R by f(z) = f(z)/6 (z € S). Then (3)
implies
(14) [fz+y)— fle) - fly)| <1 forevery z,y€ S,

where 1 denotes the multiplicative unit of R. In particular, (14) implies
that

(15) flx+y)— flz) - fly) € Fr for every z,y€S.
Thus, due to Cor. 1, there exists an additive function fs : S — R such
that

(16) f(@) — folz) € Fr for every z€S.
Let f1 = f — fo. Then (16) yields f; : S — Fr. Applying (14) and the
additivity of fo we obtain
(17) |lfilz+y)— fi(z) — fi(y)| <1 forevery =z,y€S.

Let us now define F' : S — Fg/Igr by F(z) = fi(z) + Zgr
(z € S). Then, applying (17) and using the inequality and the modulus
in Fr/Ig inherited from R, we get
(18) |F(z+y) — F(z) — F(y)| <1 forevery =z,y€S,
where 1 = 1 + Zg denotes the multiplicative unit of Fr/Zr = R. Due
to Th. 1, there exists an additive function G : S — Fg/Zg such that
(19) |F(z) — G(z)| <1 forevery z€S.
Consider a choice function g; : S — Fg such that g;(z) € G(z) (z € S).
Since Zg is the additive unit of Fr/Zg, we have
(20)  qi(z+y) —g91(z) —91(y) € Gz +y) — G(z) — G(y) =Ir
for all z,y € S. Now we can apply Cor. 1, which states that there exists
an additive function go : S — R such that g1(z) — go(z) € Zg for every

z€eS.
Define g: S — R by

§(z) = go(z) + f2(x)  (z€5).
Then g is additive and we have
f(@) = §(z) = (f1(2) + fa(®)) - (90(2) + fa(z)) = f1(z) — go(z) =
= (f1(z) — 91(2)) + (91(2) — 90(2)) € F(z) — G(z) + Ik .

Due to (19) there exists ¢ € R such that |t| <1 and F(z) — G(z) =t +
+ Zgr. Hence

F(z) - G(z)+Ir C [-1, 1]+ Ip + I = [-1,1] + IR,
therefore
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f(z) - §(2) € [-1,1] + Ix
for all z € S.
Finally, put g(z) = §j(z) (z € S).
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