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Abstract: M. E. Kuczma in [1] considered analytic solutions of the functional

equation
z+g(y+ f(z)) =y +g9(z + f())

on the real line. In [2] solutions in the class of twice differentiable functions
were presented. In the present paper we deal with additive solutions and
with solutions that have the form of a weighted quasi-arithmetic mean with
an exponential generator.

In this article we present some remarks on solutions of a functional
equation arising from considerations concerning a problem of compat-
ibility of means. The background for this problem is to be found in
Marcin E. Kuczma’s paper [1], where the functional equation

(1) z+g(y+f(z)=y+glz+f(v), zyeR

was studied. There equation (1) is solved in the class of analytic func-
tions. Regardless of the problem of compatibility of means it seems
that equation (1) itself deserves further investigations. In [2] all twice
differentiable solutions of (1) have been described.
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Following the earlier papers we will assume that f(0) = g(0) =0
since we have
Remark 1. If a pair of functions f,g : R — R is a solution of (1), then
the functions f1,91 : R — R given by

fi(z) == f(z) = £(0), g1(z) = g(z + £(0)) — 9(£(0)),

yield also a solution of (1) and f;(0) = ¢1(0) = 0.

Conversely, if two functions fi,¢1 : R — R give a solution of (1)
and f1(0) = g1(0) = 0 then the pair of functions given by

f(.’B) = fl('r)_’_ba g(SE) = gl(x—b)+ca

is a solution of (1), for all b,c € R, as well.

The main result of [2] reads as follows
Theorem A. The general solution of equation (1) in the class of twice
differentiable functions f,g : R — R wvanishing at zero is given by the
following formulas:

1

1—-a

f(z)=az, g(z)=
where a € R\ {1} is arbitrarily fized;

f@) =2, 9a)= 35 +5(@)

where p : R — R is an arbitrary even, twice differentiable function such
that p(0) = 0;

1
f(a;) = ———’];hl(ae’ym'*'(l_a’))? g(m) = _%ln(l‘i‘ae"yz—k 1—7_&) ’

where v € R\ {0} and a € [0,1] are arbitrarily fized.

Conversely, each of the three pairs of functions listed above yields
a solution of (1) in the class of twice differentiable functions.

In particular, looking at the form of the third family of solutions,
but also at the first one, one can detect the form of a weighted quasi-
arithmetic mean there. We will check that all functions of that form
with an arbitrary exponential or additive generator are solutions of (1).

We start with some notations. Let My(z,y) := m™1(am(z) +
+ (1 —a)m(y)), o € [0, 1], be a weighted quasi-arithmetic mean with a
bijective generator m which will be described below. It is obvious that
My(z,y) = My_o(y,z) for all o € [0,1]. Using this notation we state
the first result.

Proposition 1. Let m : R — (0,00) be an ezponential bijection (or
m : R — R be an additive bijection). For any a € [0,1] the pair of
functions

Z,
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(2) f(z) = Ma(-2,0), g(z)=M__(z,0)

2
satisfies equation (1).

Proof. We check that a pair of functions (f, g) defined for an exponen-
tial generator m : R — (0, 0c0) by

f(®) = Ma(==,0) = m™* (am(~z) + (1 - @),

o(e) 1= My (o,0) = (

+ao

m(z) + —
1+ 1+a)’
is a solution of (1).

Equation (1) may equivalently be rewritten in the form

3)  m@)mg(y + () = my)m(g(z + f())), =z, yeR,
which after suitable substitutions (for the given form of f and g) yields
the desired assertion. ¢

Similar computations show that we have our claim with an addi-
tive generator m : R — R and f(z) := My(—z,0) = m~}(am(-z1)),
g(z):=M__(z,0) = m~1 (—lﬁm(z)), zeR

The next result shows that in the case of an exponential bijection,
in general, it is enough to assume that only one of the functions f and
g is of the form (2). Namely, we have the following
Theorem 1. Let a pair (f,g) be a solution of (1). If the function
g:R =R s of the form
(4) g(z) = Mg(z,0)
with an exponential generator m and some B € [3,1], then necessarily

flz) = M%(——x,O), z €R

Likewsise, if the function f: R — R is of the form
(5) f(z) = Ma(~1,0)

for some continuous ezponential bijection m, a € [0,1) and if g is
continuous at zero, then necessarily

g9(z) = Mﬁ(m,O), zeR
Proof. Let g(z) = m~Y(Bm(z) + (1—p)), z € R. Substituting this and

y := 0 into (3) we get
pm(z)m(f(z)) = (1 - B) + (28 — 1)m(x),

whence
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sy =m=t () + 2.

so that f is of the desired form.

Now, assume that f(z) = m™*(am(—z) + (1 — a)) for all z € R,
with some o € [0,1) and with a continuous exponential bijection m :
: R — (0,00). By induction we prove that for every z € R and n € N
the n-th iterate of f is given by

i = (o S E ey L)

14+« 14«
(6) —m™! (a il Gl _1(102”—1 m(—z) + 1= (=) —1 S__z)n> =

_ ! (a (1- (=) m(=z) +1~ (—a)”“>

- a(l- (o) )m(—z)+1-(-)" /)
Equation (1) with y := 0 gives
(7) z+9(f(z) =9(z), z €R,
which leads easily to
8) z+ f(z)+ 2 (@) +- -+ (2) +g(f""(z)) =g(z), z€R, nEN
Applying (6) we rewrite (8) as
1—(-a)" 1— (—a)"*!
e MOt —m”) *

1 (ol = (o)™ m(=z) +1— (o)™ 2\ _
ro ( o1 = (o)) m(=2) + 1~ (~o)"*! IRE

for all z € R and n € N. Using the assumption that m is continuous

and g is continuous at the origin, a € [0, 1] and letting n tend to infinity
we obtain ‘

-1 o 1
—z4 Y m(z)+ R
glz) =z +m ( am( T) 7 a), z € R,

a:—i—m_l (a

whence

1+

o) = m=(m(a)) +m™ ( —

m(—) + —1—> -

" o 1 ’_ .
=m (1+a+1+am(a:)>—Mm(x,O),

for all z € R, which was to be proved. ¢
Remark 2. The restriction of § to the interval [%, 1] in the first part

of the theorem guarantees that lE,—’B.belongs to the interval [0,1]. The
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restriction of « to the interval [0,1) in the second part of the theorem
is needed in order to get the existence of the limit lim,_,. f*(z) in
(6). On the other hand for a = 1 it is shown in the Th. A that we
do not have the uniqueness of g for a function f defined as f(z) :=
= My(—2z,0), z e R

We get similar results in the case where m : R — R is an additive
bijection, but as a matter of fact we need not restrict o and 5 to
special intervals. It is easy to see that only for « = —1 and f =0
the corresponding functions f(z) = z, g(z) = 0, z € R, fail to satisfy
equation (1). Moreover, since functions f and g defined by (5) and
(4), respectively, are additive, further on we will deal with arbitrary
(invertible) additive functions.
Proposition 2. For any invertible additive function a : R — R the
pair (id — a™1, a) yields a solution to (1). Moreover, if a pair (f,g) of
functions from R to R is a solution of (1) and g is an invertible additive
function then f =id — g~ L.
Proof. The first part follows from the direct substitution into (1). The
second part is obtained from (7). ¢

Now, suppose that f is an arbitrary additive function, not neces-
sarily invertible. Then we have the following
Theorem 2. Let f,g be real functions on R and let f be an additive
function. Suppose that at least one of the functions f and g is continu-
ous. If the pair (f,g) is a solution of (1) then there exists an a € R\ {1}
such that

x

© f@)=as, g@) =1,

or there exists an even function p : R — R with p(0) = 0, continuous
whenever g is continuous, such that
1

(10) fe) =, g(z) = 37 +p(a).

Conwversely, each pair (f,g) of functions of the form (9) or (10)
yields a solution of (1).
Proof. Suppose first that f is continuous, so that f(z) = az, z € R,
for some real a # 1. Equation (1) assumes the form

(11) z +g(y +az) =y +g(z + ay),
for all £,y € R. Substituting here y := —z we obtain
(12) 9((1 = a)z) — g((a — 1)z) = 2z,

for all z € R, respectively. Let g,, g. stand for the odd and even part
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of the function g. From (12) we get
9o((1 —a)z) — go((a — 1)z) =2z, go((1—a)z) =1z, go(z)=

for all z € R, whence, by substituting this into (11), we obtain

ge(y + az) = ge(z + ay), z €R.

Therefore, g, is constant, so that g. = 0, or a = —1 and then g, can be
an arbitrary even function. This gives the first part of the assertion of
the theorem.

Assume now that g is continuous. Since the function f is additive,
we have f(w) = cw for all rational w with ¢ := f(1). Equation (1)
admits the form
(13) wtgly+ew)=y+glw+fy), weQ yer

Since g is continuous, we obtain from (13) that the equalities

z+g(ytez)=y+g@+fy)=z+9y+ f(z),
hold for every z,y € R, so that

9(y +cz) = g(y + f(z))-
* The last equality is true for all y € R, so also for y := —cz. Using this
substitution we obtain

9(f(z) —cz)=0, z€R
When f is continuous then the earlier considerations lead us to the
assertion. If f were discontinuous then, since the set {f(z) —cz : z €
€ R} is dense in R, g would vanish identically, which is impossible.
This finishes the proof of the theorem. ¢
Acknowledgement. I would like to express my gratitude to Professor
Roman Ger for his valuable suggestions and comments.

z
1—a’

References

[1] KUCZMA, M. E.: On the mutual noncompatibility of homogeneous analytic
non-power means, Aequationes Math. 45 (1993), 300-321.

[2] SIKORSKA, J.: Differentiable solutions of a functional equation related to the
non-power means, Aequationes Math. 55 (1998), 146-152.





