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Abstract: We consider the problem of approximating continuous convex
functions f € C[a,b] in the sup-norm by a sequence of twice continuously
differentiable functions {fn} such that {||f/||} is bounded. The same problem

is studied for convex functions over normed spaces.

In many papers are studied the uniform approximation of a con-
vex and continuous function by convex polynomials using the moduli
of smoothness. On the other hand, it is known the equivalence between
the moduli of smoothness and a certain Peetre K-functional (see [2]).
For example, the Ditzian-Totik modulus of smoothness wé( f,t) is equiv-

alent to the following K-functional : K;( fit) = infgecep u{llf —gll +
+82]|¢%g" |}, where £ € C[0,1), (x) = /(L —2) and |- = |- opo.g
is the sup-norm on [0, 1].

Taking into consideration the above results we propose to study
the following problem: is it possible to find for a continuous convex
function f € CJa,b] a sequence of twice continuously differentiable convex
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functions {f.} such that f,(z) — f(z) uniformly over [a,b] and {||f]||}
is bounded from above?

The answer is negative to this question. More exactly we have the

following theorems established not necessary for a sequence of convex
functions {f,}.
Theorem 1. Let f € Cla,b] be conver. If there exists zo € (a,b)
at which f is nondifferentiable and attains at least the one sided strict
local minimum over [a,b], then there is no sequence {fr}, fn € C?[a,b]
with the following properties:

(@) |If = fall =0,
(i) {||fX1} is bounded.

Proof. We distinguish two cases depending on whether z, is a strict
local minimum point or not.

a) Let zo be a strict local minimum point. Furthermore, let us
suppose that there exists a sequence {f,}, fn € C?[a,b] with the prop-
erties (i) and (ii). Then there exists a > 0 such that

(1) Ifall < o
for all n. The convexity of f implies the existence of the right hand
derivative f!(zo) and the hypothesis assures that f/(zo) > 0. Then
there exists § > O such that a < zg—d < zg+ 6 < b and
(2) o f/ (xO).

20
Furthermore, let G > 0 such that

®) < min {f<wo—5>—f<mo), F(aot6)=f(z0), fi(z0)o— a62}.

' By virtue of (i) there exists ng > 1 such that ||f — fn|| < B for every
n > ng. Then
f@) =B < falz) < fl2)+ 8
for z € [zo — J, ¢ + 6]. Hence, by (3)
(4) fa(mo—6) = f(zo—08) = B > f(zo) + B = fn(o)

and

(5) fa(zo +6) 2 flzo+6) — B > f(zo) + B = fulzo).

Then (4) and (5) imply the existence of z{™ € [zo — 6, o] and z{™ €
€ [zo,zo + 0] such that fn(zcgn)) = fn(a:gn)). Therefore there exists
(™ ¢ (z] (m), g’*)) such that
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(6) fa(@8™) = 0.
Moreover, there exists ng > n g such that
(7) z(™) ¢ [z, 2o + 4].

Indeed, in the opposite case Z(™ ¢ (:1:(1“),3:0) for every n > ng. So

either f/(z) > 0 or f}(z) < 0 for all z € [zg,z0 + 6] and n > ng.
If there is no n, n > ng such that f.(z) > 0 for all z € [zg,z0 +
+ 6] then f;(z) < 0 for all z € [zg,z0+ 6] and for all n > ng. By
Lagrange’s mean value theorem for every = € (zg, o + d] there exists
™ = ™ (g, ) € (0, ) such that f,,(z) — fnlzo) = f.(c?) - (z — zo).
Then f(z) — fn(2) = f(z) = fn(20) = fa(c™) - (z —20) > f(2) — fu(wo)
or im ny00(f(2) — fu(z)) > lim, 00 (f(z) — fn(zo)). By (i) we obtain
(8) f(@o) = f(z), = € (wo,0+ 7).
But z is a strict local minimum point, therefore f(zg) < f(z) for every
'z € (zo,xo + J], contradiction with (8).

Thus there exists ny, ny > ng such that f;, (z) > 0 for all z €
€ [zo, zo + 6] In the same way we obtain the existence of the sequence
{ng} such that ny < ny <nz < ... and

(9) fo (@) >0
for every = € [zg,z¢ + 0] and for every k > 1. Again, by Lagrange’s
mean value theorem and (1) we obtain

£ (@) = £ G < - 50
for all z € [zo,zo + 0]. In view of (6) and (9) we have f] (z) <
< alz — 2| for all z € [zg,zo + 6]. But 7(™) € (zgn"),aso) thus
|x—:E(”’°)| < 24. Therefore we get f;, (z) < 2ad for all z € [z, 20 +4].

Hence
€T i
/ fr, (£)dt g/ 2 addt
Zg ]

or fpn, () — fn, (o) < 20d(z—x0). Since lim,_,00 (f(2) — fr(z)) = 0 for
all z € [a,b] we get f(z) — f(zo) < 2ad(z — xo) for all z € [zg, zg + 4]
In particular f(zo+6) — f(zo) < 2 é? or [f(zo+6) — f(z0)]/6 < 2aé.
By (2) we obtain

flzo ‘2 —I®) (g,

On the other hand, by convexity of f we get

(10)
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f($0+5()5—f($0) > 1(

cotradiction with (10).
In conclusion there exists ng,ng > ng such that

(11) If = froll <7mg,s

z(m0) ¢ [zg,z0 + 0] and f,’lo(i("")) = 0. By Taylor’s formula, if z €
€ [zo,zo + 6] then

o () = g (B70)) g (E°)) (@ 300 4 2 o (€) (= 270)? =
= aa (@) + 5 i, (€)@ — T2,
where & = £(x, 2(™)). Then by (1) and (11) we get
1£(0) = Fon @) = (@) = Fup(5)) = 3 12, (€)(o ~ 30?2

2
> 1£(z) = Fao @) = 511 ()] - (2 = 52 >

> |7(@) ~ fro(@™)| - 5 a(z~2")? >
> |f(2) = FEP)] = [F(E)) = fao (2))|-

— % a(z — ™))% >

> |f(z) = F@E™)] - B - 5 a (e -z
Hence by (11) we have

(12) 28 > |f(z) - f(z")] - ;lga(w — zlmo))2,

By convexity of f and the condition (™) € [zg, zo+6], if z € [zg, Z(™0)]
then

f(&")) — f(x)

z(no) — g

> fo(z) > fr(zo)-
So
If () — F(@")| = f(&")) - f(z) 2 f1(m0) - (3™) — z) =
(13)
= fl(z0) - |z — 3]

If £ € [£(™), zg + §] then
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F(@) = f(@")] = f(o) = £(@™) > £z - (2 — 8")) >
> fr(x0) - (z — 2")) = f(zo) | — 50|,
Plugging (13) and (14) in (12) we have

1
(15) 28 > fi(z0)  |o —2™)| - S a o — 20’

(14)

for every = € [zo,z0 + 6]. But (") € [zq, 59 + §] s0 |z — (™| < 4.
Therefore we can define a function g mapping [0, 4] into R as follows:
g(t) = fr(zo)t — at®/2. Then, by (2) we obtain g'(t) = f/(zo) —
~at 2 fl(ze) — ad > fi(ze) — fi(50)/2 = fi(z0)/2 > 0. Thus
max{g(t) : 0 < ¢t < 8} = g(d) = f/ ()6 — @6?/2 and in view of (15)
we have

(16) filzo)s ~ 0 <2 B,

But the choise of § assures 28 < f/(zo)6 — ad2/2 (see (3)), contra-
diction with (16). This contradiction completes the proof of the first
part.

b) Now, we consider the case when zg is a one sided strict local
minimum point. Then, without loss of generality, we can suppose that
fr(zg) > 0. So there exists § > 0 such that a < o — 6 < g+8 < b and
(17) f(z) = f(=o)
for every z € [zg — §, 0] and f(z) > f(zo) for every z € (zo,zo + 4],
Again, let us suppose the existence of a sequence {f,}, f. € C?[a,b]
with the properties (i) and (ii). By (ii) there exists a > 0 such that

(18) Ifall £ @
for every n > 1. Using Taylor’s formula we obtain

£n(@) = Falwo) + 17 Fa(e0)(@ ~ 20) + 7 FU(E) @ — z0)?,
where z € [a,b] and & = (zo, z;n) € (a,b). By (18) we have

5 @ =20)? < fu(@) = fuloo) = 1 @0) (& = 30) < 5-(z = 20)?.

fn(2) = fn(2o)

T — Tp

~ 5 (@ —20) < fi(zo) <

fn(2) - f(®o) | %(:c — 20)
T — Xp

(19)

<

for x > z¢ and
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Fa(@) = fa(0)

+ (= m0) < fh(z0) <

— 2
(20) T
' fn(x) - fn(on) o
= T — Zp B —5-(33 ~ o)
for = < g, respectively. By (i), (19) and (20) we obtain
@ 2 120) - 2y ) < lim (o) <
(21) < n@ fa(zo) <
N
for £ > zo and the other hand
TOZT0) 20— a) < lim filoo) <
@ < Tm filoo) <
f(z) = f(@o) o
ST T 2T

for z < zo. In view of (21), and (17), (22) we have
fr(mo) < lim fr(zo) < lim fy (o) < fr(zo)
—00 —+00
and
0< lim f1(zo) < lim fy(zo) 0.
n—00 71— 00
Therefore there exists lim, o0 fh(z0) = fi(zo) > 0 and there ex-
ists limp_soo f1(To) = 0, respectively. This contradiction finishes the
proof. ¢
In the next theorem we prove the same result without use the
hypothesis that f attains a one sided strict local minimum over [a, b]
in Zg-
Theorem 2. Let f € Cla,b] be convez. If there exists zo € (a,b)
at which f is nondifferentiable, then there is no sequence {fn}, fn €
€ C?[a,b] with the following properties:
Q) 1f— 11 =0,
Gy {||f} s bounded.

Proof. Let us suppose that there exists a sequence {fn}, fn € C*[a,b]
with the properties (i) and (ii). Then there exists « > 0 such that
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(23) Ifall <
for all n > 1. By Taylor’s formula, if z € [a, ] then

£a(@) = Fa(z0) + T, faw0)(@ = 20) + 5 F4(€)(z ~ 20)’,
where € = £(zo, z;n) € (a,b). Hence, by (23) we get
(24) ~5 (& = 20)” < fale) — Ju(z0) = fi @) (@ = 20) < (¢ — 20)’

for z € [a,b]. If x > o then we obtain

PO @) 2y < o < ATl 2y
Using the condition (i) we have
(25) < n@o fa(zo) <

< B2 S aao

for £ > zo. But f is a convex function and it is nondifferentiable in
zgo € (a,b), therefore we have

(26) fl(zo) < fr(zo)-
By (25) we obtain the existence of the limit
(27) lim £ (z0) = £1(0).

Again, by (24) and the condition (i) we obtain for z < ¢ the following
flz) = f(zo) | o

+ —é—(w —x0) < lim f(zo) <

T — T n—+oo
< Iim fr(z0) <
Hence
(28) lim 1 (zo) = f{(zo).

In view of (27) and (28) we have f/(xo) = f/(z0), cotradiction
with (26). ¢
Remark 1. Let f € Cla,b] be convex. If f is differentiable on [a, b],
then f’ is an increasing function on (a,b). Then there exists f”(z) a.e.
on [a,b]. Let
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ao = sup{|f”(z)| : € [a,b] such that there exists f"(z)}.
If0 < a < ag then there is no sequence {fn}, fn € C?%a,b] with the
properties:
@) lfn = fll =0,
i) ||fill < a for all n.
Indeed, in the opposite case let zg € (a,b) such that there exists
f"(zo). By Taylor’s formula, for z € [a, b] there exists £ = &(zq,z;n) €
€ [a, b] such that

1 1
Fal@) = fa(o0) + 17 Fa @0} (& = 70) + 371 () (@ — 20)?
By reason of the proof of Th. 2 we can state
: !/ _ gl
Jm £, (z) = f(2)
for all = € [a, b]. Hence, by (i) we obtain

£(2) = £(z0) + I'(zo) (@ — 20) + 7 (¢ — m0)* - lim F2(6)

So

lim lim f/l(é') = lim f(il?) - f(zO) - f/("L'O)(iL' - SEo) _

T—Tg N—+00 T—Tg %(x — m0)2
/ )
= lim f (iL’) f (170) — f//(xO)-
g—To T — Tp

Then, by (ii) we obtain |f”(zo)| < a. Therefore ag < «, contradic-
tion with the choice of «.

The next theorem formulates the assertion of Remark 1 for a twice
continuously differentiable function.
Theorem 3. Let f € C%a,b] be a conver function and 0 < o <
< |If"|l. Then there is no sequence {f.}, fn € C?[a,b] with the follow-
ing properties:

Q) [lfn — £l =50,

(i) If7ll £ a for all n.

Proof. We suppose that there exists a sequence {fn}, fn € C?[a,b]
with the properties (i) and (ii).
Repeating the proof of Th. 2 we can establish that

(29) lim f(z) = £(2)
for all z € [a, b].
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Let zo, z € [a, b] be arbitrary such that o < z. In view of Taylor’s
formula we have

£() = £(@o) + 1" (@)@ — o) + 7" (e)(& - 20)
where ¢ = ¢(z9,z) € (z9,z) and
£n() = Fale) + =/ (@0) (@ ~ 20) + o F1(E™) & — 20)?

where c(™ = (™) (zg, z) € (20, z), respectively. Then

f(@) = falz) = f(z0) = frlwo)+
1

+ 1 (@0) = falan)l(e = 20) + 1 17(6) ~ F(e™)](a - w0

Hence, by (i) and (29) we obtain lim,_,e f7(c™) = f"(c). Thus for
every subinterval [c,d] C [a,b] there exist u € (c,d) and a sequence
{un}, un € (c,d) for all n such that

(30) im f(un) = f"(u).

00

This means that the set
S ={u € [a,b]: there exists a sequence {u,} such that

Up, € [a,d] for all n > land lim Iy (un) = £ (u)}

is dense in [a, b].
On the other hand, by (ii) we have |f/(u,)| < « for every n > 1.
So, in view of (30) we have

(31) [f(w)] < o

for every u € S. If u € [a,b] \ S then the denseness of S assures the

existence of a sequence {s,} in S such that lim, o s, = u. By (31) we

have |f"(s,)| < a. But f € C?{a, b] therefore lim, oo f(sn) = f"(u).

So

(32) [f"(w)] < o

for every u € [a,b] \ S. In view of (31) and (32) we have |f"(u)| <

< a for every u € {a,b]. Thus ||f”|| < «. But we have the condition

a < ||f"|l, contradiction. This completes the proof. ¢

Remark 2. If we consider the condition

(i) fn(z) = f(z) for all z € [a, b]

instead of (i), then the conclusions of Ths. 2 and 3 will remain valid.
The next theorems generalize the above results:
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Theorem 4. Let (E,||-|) be a real normed spaces, U C E be a
nonempty, convez set and f € C(U, R) be convez. If there erists an
interior point To of U at which f is nondifferentiable, then there is no
sequence {fn}, fn € C2(U, R) with the following properties:

(i") fu(z) = f(z) for allz € U,
(i) {|IfZ(z)||} is bounded for all n and for allz € U.

Proof. Let us suppose the existence of a sequence {f,.}, fn € C*(U, R)
with the properties (i’) and (ii). Then there exists o > 0 with

(33) Ifn @) < o

for every n and for every z € U. Using Taylor’s formula we obtain

Fal@) = falmo) + 1 Fo(m0) (@ — 50) + 5 Fi (w0 + (o — 50)) (o = 20)?,
where 2 € U and 6 € (0,1). Then, by (33) we get
Fn(a) — (o) = Fol@o)(w = 20)] = 51450 + Bz = z0)) (@ — z0)?] <
< lle — ol
Hence .
gy ) ) - iz = woll” < fi(@o) (& — o) <
< fal@) = fal@o) + 5 1z — ol

with z € U.
Let h € E. Then there exists tg > 0 such that xo + th € U for
every t € [0,%0]. In view of (34) we have

Fa(@o +th) = fu(mo) = GBI < th(@o) (h) <
< fal@o +th) = fa(zo) + 5 2[[1IP
for every t € [0,10]. Hence
(35)

fn (.’130 + th) — fn (:Co)
t

a

~ S4IRE < Fla)(B) <
< fn(-’EO +th) - fn(fBO)
- t

for t > 0. Then, by (i') we obtain

(8%
—t||h|?
+2H I
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f(zo +th) — f(zo)
t

(36) < B fi(wo)(h) <

< f(zo +ﬂ;) — f(z0)

A

— .g‘_tuhnz < lim f7(z0)(R)

n—>00

(874
—t||h||?
+ S4lIn]

for t > 0.

On the other hand, because f is a convex function, there exists its
directional derivative 0 f(zo)(h) = limyo[f (20 + th) ~ f(x0)]/t, h € E.
Then (36) implies the existence of the limit

(37) i f(z0)(h) = 51 (w0) (h).

Because f, (o) are linear functions, we obtain the linearity of §f(zq).
Now, for every h € E such that zo + h is an interior point of U,
we obtain the following estimations:

|f (@0 + k) — f(z0) — 6.f(z0)(h)] <
< |f(zo + h) = falzo + h)| + | fa(zo) — Fz0)|+
+ | fn(mo + R) — falzo) — 0f(20)(R)] <
< |f(@o + h) = falzo + h)| + | falzo) — f(zo)|+
+ | fn(2o + 1) = ful@o) — fr(zo) ()] + | £ (o) (B) = 6£ (o) (h)].
Hence, by Taylor’s formula and (33) we have
|[f (@0 + R) — f(z0) — 6f(wo)(R)] <
< |f(zo + k) ~ falzo + h)| + | fr(zo) — f(zo)|+

+ 51020+ 6R) )|+ 3 ao)(B) - 8 (@) (4)] <
< |f (o +h) = Fal@o + h)| + |fa(z0) — f(0)|+
+ IR + [£a (@0} (B) = 8F (z0) ().

Using (i) and (37) we obtain
T M@0+ 1) = F(a0) = 85 @o)(0)] < S,

Therefore
Tim ﬁ £ (o + h) = f(zo) — 6F (o) (h)] =0,

Le. f is differentiable in z, contradiction with the hypothesis. ¢
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Theorem 5. Let (E,| -||) be a real normed spaces, U C E be a
nonempty, open, convex set and f € C*(U,R) be a conver function.
If0 < a < sup{||f"(z)|| : = € U} then there is no sequence {fn},
fn € C?(U, R) with the following properties:

(") fu(z) = f(z) forallz € U,

(i) [|fA(@)| < a foralln and for allz € U.

Proof. The proof doesn’t contain new ideas in comparison with Ths. 3
and 4, so we omit that. ¢
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