ON THE IMPOSSIBILITY OF APPROXIMATING CONVEX FUNCTIONS WITH C² ONES

Zoltán Finta

Babeş - Bolyai University, Faculty of Mathematics and Computer Science, str. M. Kogălniceanu 1, 3400 Cluj, Romania

Dedicated to Professor Ludwig Reich on his 60th birthday

Received: July 1999

MSC 2000: 26 A 51, 26 A 48

Keywords: Convex functions, uniform convergence.

Abstract: We consider the problem of approximating continuous convex functions $f \in C[a,b]$ in the sup-norm by a sequence of twice continuously differentiable functions $\{f_n\}$ such that $\{\|f_n''\|\}$ is bounded. The same problem is studied for convex functions over normed spaces.

In many papers are studied the uniform approximation of a convex and continuous function by convex polynomials using the moduli of smoothness. On the other hand, it is known the equivalence between the moduli of smoothness and a certain Peetre K-functional (see [2]). For example, the Ditzian-Totik modulus of smoothness $\omega_{\phi}^2(f,t)$ is equivalent to the following K-functional : $K_{\phi}^2(f,t) = \inf_{g \in C^2[0,1]} \{ \|f-g\| + t^2 \|\phi^2 g''\| \}$, where $f \in C[0,1]$, $\varphi(x) = \sqrt{x(1-x)}$ and $\|\cdot\| = \|\cdot\|_{C[0,1]}$ is the sup-norm on [0,1].

Taking into consideration the above results we propose to study the following problem: is it possible to find for a continuous convex function $f \in C[a,b]$ a sequence of twice continuously differentiable convex

206 Z. Finta

functions $\{f_n\}$ such that $f_n(x) \to f(x)$ uniformly over [a,b] and $\{\|f_n''\|\}$ is bounded from above?

The answer is negative to this question. More exactly we have the following theorems established not necessary for a sequence of convex functions $\{f_n\}$.

Theorem 1. Let $f \in C[a,b]$ be convex. If there exists $x_0 \in (a,b)$ at which f is nondifferentiable and attains at least the one sided strict local minimum over [a,b], then there is no sequence $\{f_n\}$, $f_n \in C^2[a,b]$ with the following properties:

- (i) $||f f_n|| \to 0$,
- (ii) $\{||f_n''||\}$ is bounded.

Proof. We distinguish two cases depending on whether x_0 is a strict local minimum point or not.

a) Let x_0 be a strict local minimum point. Furthermore, let us suppose that there exists a sequence $\{f_n\}$, $f_n \in C^2[a, b]$ with the properties (i) and (ii). Then there exists $\alpha > 0$ such that

$$||f_n''|| \le \alpha$$

for all n. The convexity of f implies the existence of the right hand derivative $f'_r(x_0)$ and the hypothesis assures that $f'_r(x_0) > 0$. Then there exists $\delta > 0$ such that $a < x_0 - \delta < x_0 + \delta < b$ and

(2)
$$\alpha < \frac{f_r'(x_0)}{2\delta}.$$

Furthermore, let $\beta > 0$ such that

(3)
$$\beta < \frac{1}{2} \cdot \min \left\{ f(x_0 - \delta) - f(x_0), \ f(x_0 + \delta) - f(x_0), \ f'_r(x_0) \delta - \frac{1}{2} \alpha \delta^2 \right\}.$$

By virtue of (i) there exists $n_{\beta} \geq 1$ such that $||f - f_n|| \leq \beta$ for every $n > n_{\beta}$. Then

$$f(x) - \beta \le f_n(x) \le f(x) + \beta$$

for $x \in [x_0 - \delta, x_0 + \delta]$. Hence, by (3)

and

(4)
$$f_n(x_0 - \delta) \ge f(x_0 - \delta) - \beta > f(x_0) + \beta \ge f_n(x_0)$$

(5) $f_n(x_0 + \delta) \ge f(x_0 + \delta) - \beta > f(x_0) + \beta \ge f_n(x_0).$

Then (4) and (5) imply the existence of $x_1^{(n)} \in [x_0 - \delta, x_0]$ and $x_2^{(n)} \in [x_0, x_0 + \delta]$ such that $f_n(x_1^{(n)}) = f_n(x_2^{(n)})$. Therefore there exists $\bar{x}^{(n)} \in (x_1^{(n)}, x_2^{(n)})$ such that

(6)
$$f_n'(\bar{x}^{(n)}) = 0.$$

Moreover, there exists $n_0 > n_\beta$ such that

(7)
$$\bar{x}^{(n_0)} \in [x_0, x_0 + \delta].$$

Indeed, in the opposite case $\bar{x}^{(n)} \in (x_1^{(n)}, x_0)$ for every $n > n_\beta$. So either $f'_n(x) > 0$ or $f'_n(x) < 0$ for all $x \in [x_0, x_0 + \delta]$ and $n > n_\beta$. If there is no $n, n > n_\beta$ such that $f'_n(x) > 0$ for all $x \in [x_0, x_0 + \delta]$ then $f'_n(x) < 0$ for all $x \in [x_0, x_0 + \delta]$ and for all $n > n_\beta$. By Lagrange's mean value theorem for every $x \in (x_0, x_0 + \delta]$ there exists $c^{(n)} = c^{(n)}(x_0, x) \in (x_0, x)$ such that $f_n(x) - f_n(x_0) = f'_n(c^n) \cdot (x - x_0)$. Then $f(x) - f_n(x) = f(x) - f_n(x_0) - f'_n(c^{(n)}) \cdot (x - x_0) > f(x) - f_n(x_0)$ or $\lim_{n \to \infty} (f(x) - f_n(x)) \ge \lim_{n \to \infty} (f(x) - f_n(x_0))$. By (i) we obtain (8)

But x_0 is a strict local minimum point, therefore $f(x_0) < f(x)$ for every $x \in (x_0, x_0 + \delta]$, contradiction with (8).

Thus there exists n_1 , $n_1 > n_\beta$ such that $f'_{n_1}(x) > 0$ for all $x \in \{x_0, x_0 + \delta\}$. In the same way we obtain the existence of the sequence $\{n_k\}$ such that $n_1 < n_2 < n_3 < \ldots$ and

$$(9) f'_{n_k}(x) > 0$$

for every $x \in [x_0, x_0 + \delta]$ and for every $k \ge 1$. Again, by Lagrange's mean value theorem and (1) we obtain

$$|f'_{n_k}(x) - f'_{n_k}(\bar{x}^{(n_k)})| \le \alpha |x - \bar{x}^{(n_k)}|$$

for all $x \in [x_0, x_0 + \delta]$. In view of (6) and (9) we have $f'_{n_k}(x) \le$ $\le \alpha |x - \bar{x}^{(n_k)}|$ for all $x \in [x_0, x_0 + \delta]$. But $\bar{x}^{(n_k)} \in (x_1^{(n_k)}, x_0)$ thus $|x - \bar{x}^{(n_k)}| \le 2\delta$. Therefore we get $f'_{n_k}(x) \le 2\alpha\delta$ for all $x \in [x_0, x_0 + \delta]$. Hence

$$\int_{x_0}^x f_{n_k}'(t)dt \le \int_{x_0}^x 2\,\alpha\,\delta dt$$

or $f_{n_k}(x) - f_{n_k}(x_0) \leq 2 \alpha \delta(x - x_0)$. Since $\lim_{n \to \infty} (f(x) - f_n(x)) = 0$ for all $x \in [a, b]$ we get $f(x) - f(x_0) \leq 2 \alpha \delta(x - x_0)$ for all $x \in [x_0, x_0 + \delta]$. In particular $f(x_0 + \delta) - f(x_0) \leq 2 \alpha \delta^2$ or $[f(x_0 + \delta) - f(x_0)]/\delta \leq 2 \alpha \delta$. By (2) we obtain

(10)
$$\frac{f(x_0 + \delta) - f(x_0)}{\delta} < f'_r(x_0).$$

On the other hand, by convexity of f we get

$$\frac{f(x_0+\delta)-f(x_0)}{\delta} \geq f_r'(x_0),$$

cotradiction with (10).

In conclusion there exists $n_0, n_0 > n_\beta$ such that

$$||f - f_{n_0}|| \le n_{\beta},$$

 $\bar{x}^{(n_0)} \in [x_0, x_0 + \delta]$ and $f'_{n_0}(\bar{x}^{(n_0)}) = 0$. By Taylor's formula, if $x \in [x_0, x_0 + \delta]$ then

$$f_{n_0}(x) = f_{n_0}(\bar{x}^{(n_0)}) + \frac{1}{1!} f'_{n_0}(\bar{x}^{(n_0)})(x - \bar{x}^{(n_0)}) + \frac{1}{2!} f''_{n_0}(\xi)(x - \bar{x}^{(n_0)})^2 =$$

$$= f_{n_0}(\bar{x}^{(n_0)}) + \frac{1}{2} f''_{n_0}(\xi)(x - \bar{x}^{(n_0)})^2,$$

where $\xi = \xi(x, \bar{x}^{(n_0)})$. Then by (1) and (11) we get

$$|f(x) - f_{n_0}(x)| = |f(x) - f_{n_0}(\bar{x}^{(n_0)}) - \frac{1}{2}f_{n_0}''(\xi)(x - \bar{x}^{(n_0)})^2| \ge$$

$$\ge |f(x) - f_{n_0}(\bar{x}^{(n_0)})| - \frac{1}{2}|f_{n_0}''(\xi)| \cdot (x - \bar{x}^{(n_0)})^2 \ge$$

$$\ge |f(x) - f_{n_0}(\bar{x}^{(n_0)})| - \frac{1}{2}|\alpha(x - \bar{x}^{(n_0)})^2 \ge$$

$$\ge |f(x) - f(\bar{x}^{(n_0)})| - |f(\bar{x}^{(n_0)}) - f_{n_0}(\bar{x}^{(n_0)})| -$$

$$- \frac{1}{2}|\alpha(x - \bar{x}^{(n_0)})|^2 \ge$$

$$\ge |f(x) - f(\bar{x}^{(n_0)})| - \beta - \frac{1}{2}|\alpha(x - \bar{x}^{(n_0)})^2.$$

Hence by (11) we have

(12)
$$2\beta \ge |f(x) - f(\bar{x}^{(n_0)})| - \frac{1}{2}\alpha (x - \bar{x}^{(n_0)})^2.$$

By convexity of f and the condition $\bar{x}^{(n_0)} \in [x_0, x_0 + \delta]$, if $x \in [x_0, \bar{x}^{(n_0)}]$ then

$$\frac{f(\bar{x}^{(n_0)}) - f(x)}{\bar{x}^{(n_0)} - x} \ge f'_r(x) \ge f'_r(x_0).$$

So

(13)
$$|f(x) - f(\bar{x}^{(n_0)})| = f(\bar{x}^{(n_0)}) - f(x) \ge f'_r(x_0) \cdot (\bar{x}^{(n_0)} - x) = f'_r(x_0) \cdot |x - \bar{x}^{(n_0)}|.$$

If $x \in [\bar{x}^{(n_0)}, x_0 + \delta]$ then

(14)
$$|f(x) - f(\bar{x}^{(n_0)})| = f(x) - f(\bar{x}^{(n_0)}) \ge f'_r(\bar{x}^{(n_0)}) \cdot (x - \bar{x}^{(n_0)}) \ge f'_r(x_0) \cdot (x - \bar{x}^{(n_0)}) = f'_r(x_0)|x - \bar{x}^{(n_0)}|.$$

Plugging (13) and (14) in (12) we have

(15)
$$2\beta \ge f_r'(x_0) \cdot |x - \bar{x}^{(n_0)}| - \frac{1}{2} \alpha |x - \bar{x}^{(n_0)}|^2$$

for every $x \in [x_0, x_0 + \delta]$. But $\bar{x}^{(n_0)} \in [x_0, x_0 + \delta]$ so $|x - \bar{x}^{(n_0)}| \leq \delta$. Therefore we can define a function g mapping $[0, \delta]$ into R as follows: $g(t) = f'_r(x_0)t - \alpha t^2/2$. Then, by (2) we obtain $g'(t) = f'_r(x_0) - \alpha t \geq f'_r(x_0) - \alpha \delta > f'_r(x_0) - f'_r(x_0)/2 = f'_r(x_0)/2 > 0$. Thus $\max\{g(t): 0 \leq t \leq \delta\} = g(\delta) = f'_r(x_0)\delta - \alpha \delta^2/2$ and in view of (15) we have

(16)
$$f'_r(x_0)\delta - \frac{1}{2}\alpha\delta^2 \le 2 \beta.$$

But the choise of β assures $2\beta < f'_r(x_0)\delta - \alpha \delta^2/2$ (see (3)), contradiction with (16). This contradiction completes the proof of the first part.

b) Now, we consider the case when x_0 is a one sided strict local minimum point. Then, without loss of generality, we can suppose that $f'_r(x_0) > 0$. So there exists $\delta > 0$ such that $a < x_0 - \delta < x_0 + \delta < b$ and (17) $f(x) = f(x_0)$

for every $x \in [x_0 - \delta, x_0]$ and $f(x) > f(x_0)$ for every $x \in (x_0, x_0 + \delta]$. Again, let us suppose the existence of a sequence $\{f_n\}$, $f_n \in C^2[a, b]$ with the properties (i) and (ii). By (ii) there exists $\alpha > 0$ such that

$$(18) ||f_n''|| \le \alpha$$

for every $n \geq 1$. Using Taylor's formula we obtain

$$f_n(x) = f_n(x_0) + \frac{1}{1!} f'_n(x_0)(x - x_0) + \frac{1}{2!} f''_n(\xi)(x - x_0)^2,$$

where $x \in [a, b]$ and $\xi = \xi(x_0, x; n) \in (a, b)$. By (18) we have

$$-\frac{\alpha}{2}(x-x_0)^2 \le f_n(x) - f_n(x_0) - f_n'(x_0)(x-x_0) \le \frac{\alpha}{2}(x-x_0)^2.$$

Hence

(19)
$$\frac{f_n(x) - f_n(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0) \le f'_n(x_0) \le \frac{f_n(x) - f_n(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0)$$

for $x > x_0$ and

(20)
$$\frac{f_n(x) - f_n(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0) \le f'_n(x_0) \le \frac{f_n(x) - f_n(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0)$$

for $x < x_0$, respectively. By (i), (19) and (20) we obtain

$$\frac{f(x) - f(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0) \leq \underline{\lim}_{n \to \infty} f'_n(x_0) \leq \\
\leq \underline{\lim}_{n \to \infty} f'_n(x_0) \leq \\
\leq \frac{f(x) - f(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0)$$

for $x > x_0$ and the other hand

(22)
$$\frac{f(x) - f(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0) \leq \underline{\lim}_{n \to \infty} f'_n(x_0) \leq \\
\leq \underline{\overline{\lim}}_{n \to \infty} f'_n(x_0) \leq \\
\leq \frac{f(x) - f(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0)$$

for $x < x_0$. In view of (21), and (17), (22) we have

$$f'_r(x_0) \le \underline{\lim}_{n \to \infty} f'_n(x_0) \le \overline{\lim}_{n \to \infty} f'_n(x_0) \le f'_r(x_0)$$

and

$$0 \le \underline{\lim}_{n \to \infty} f'_n(x_0) \le \overline{\lim}_{n \to \infty} f'_n(x_0) \le 0.$$

Therefore there exists $\lim_{n\to\infty} f'_n(x_0) = f'_r(x_0) > 0$ and there exists $\lim_{n\to\infty} f'_n(x_0) = 0$, respectively. This contradiction finishes the proof. \Diamond

In the next theorem we prove the same result without use the hypothesis that f attains a one sided strict local minimum over [a, b] in x_0 :

Theorem 2. Let $f \in C[a,b]$ be convex. If there exists $x_0 \in (a,b)$ at which f is nondifferentiable, then there is no sequence $\{f_n\}$, $f_n \in C^2[a,b]$ with the following properties:

- (i) $||f_n f|| \to 0$,
- (ii) $\{||f_n''||\}$ is bounded.

Proof. Let us suppose that there exists a sequence $\{f_n\}$, $f_n \in C^2[a, b]$ with the properties (i) and (ii). Then there exists $\alpha > 0$ such that

$$||f_n''|| \le \alpha$$

for all $n \geq 1$. By Taylor's formula, if $x \in [a, b]$ then

$$f_n(x) = f_n(x_0) + \frac{1}{1!} f'_n(x_0)(x - x_0) + \frac{1}{2!} f''_n(\xi)(x - x_0)^2,$$

where $\xi = \xi(x_0, x; n) \in (a, b)$. Hence, by (23) we get

$$(24) -\frac{\alpha}{2}(x-x_0)^2 \le f_n(x) - f_n(x_0) - f_n'(x_0)(x-x_0) \le \frac{\alpha}{2}(x-x_0)^2$$

for $x \in [a, b]$. If $x > x_0$ then we obtain

$$\frac{f_n(x) - f_n(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0) \le f'_n(x_0) \le \frac{f_n(x) - f_n(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0).$$

Using the condition (i) we have

$$\frac{f(x) - f(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0) \leq \lim_{n \to \infty} f'_n(x_0) \leq \\
\leq \overline{\lim}_{n \to \infty} f'_n(x_0) \leq \\
\leq \frac{f(x) - f(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0)$$

for $x > x_0$. But f is a convex function and it is nondifferentiable in $x_0 \in (a, b)$, therefore we have

(26)
$$f'_l(x_0) < f'_r(x_0).$$

By (25) we obtain the existence of the limit

(27)
$$\lim_{n \to \infty} f'_n(x_0) = f'_r(x_0).$$

Again, by (24) and the condition (i) we obtain for $x < x_0$ the following

$$\frac{f(x) - f(x_0)}{x - x_0} + \frac{\alpha}{2}(x - x_0) \le \underline{\lim}_{n \to \infty} f'_n(x_0) \le$$

$$\le \underline{\lim}_{n \to \infty} f'_n(x_0) \le$$

$$\le \frac{f(x) - f(x_0)}{x - x_0} - \frac{\alpha}{2}(x - x_0).$$

Hence

(28)
$$\lim_{n \to \infty} f'_n(x_0) = f'_l(x_0).$$

In view of (27) and (28) we have $f'_r(x_0) = f'_l(x_0)$, cotradiction with (26). \Diamond

Remark 1. Let $f \in C[a, b]$ be convex. If f is differentiable on [a, b], then f' is an increasing function on (a, b). Then there exists f''(x) a.e. on [a, b]. Let

212 Z. Finta

 $\alpha_0 = \sup\{|f''(x)| : x \in [a, b] \text{ such that there exists } f''(x)\}.$

If $0 < \alpha < \alpha_0$ then there is no sequence $\{f_n\}$, $f_n \in C^2[a,b]$ with the properties:

(i) $||f_n - f|| \to 0$,

(ii)
$$||f_n''|| \leq \alpha$$
 for all n .

Indeed, in the opposite case let $x_0 \in (a, b)$ such that there exists $f''(x_0)$. By Taylor's formula, for $x \in [a, b]$ there exists $\xi = \xi(x_0, x; n) \in [a, b]$ such that

$$f_n(x) = f_n(x_0) + \frac{1}{1!}f'_n(x_0)(x - x_0) + \frac{1}{2!}f''_n(\xi)(x - x_0)^2.$$

By reason of the proof of Th. 2 we can state

$$\lim_{n \to \infty} f'_n(x) = f'(x)$$

for all $x \in [a, b]$. Hence, by (i) we obtain

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^2 \cdot \lim_{n \to \infty} f''_n(\xi)$$

So

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n''(\xi) = \lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{\frac{1}{2}(x - x_0)^2} =$$

$$= \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = f''(x_0).$$

Then, by (ii) we obtain $|f''(x_0)| \leq \alpha$. Therefore $\alpha_0 \leq \alpha$, contradiction with the choice of α .

The next theorem formulates the assertion of Remark 1 for a twice continuously differentiable function.

Theorem 3. Let $f \in C^2[a,b]$ be a convex function and $0 < \alpha < \|f''\|$. Then there is no sequence $\{f_n\}$, $f_n \in C^2[a,b]$ with the following properties:

(i) $||f_n - f|| \to 0$,

(ii)
$$||f_n''|| \leq \alpha$$
 for all n .

Proof. We suppose that there exists a sequence $\{f_n\}$, $f_n \in C^2[a,b]$ with the properties (i) and (ii).

Repeating the proof of Th. 2 we can establish that

(29)
$$\lim_{n \to \infty} f'_n(x) = f(x)$$

for all $x \in [a, b]$.

Let $x_0, x \in [a, b]$ be arbitrary such that $x_0 < x$. In view of Taylor's formula we have

$$f(x) = f(x_0) + \frac{1}{1!}f'(x_0)(x - x_0) + \frac{1}{2!}f''(c)(x - x_0)$$

where $c = c(x_0, x) \in (x_0, x)$ and

$$f_n(x) = f_n(x_0) + \frac{1}{1!}f'(x_0)(x - x_0) + \frac{1}{2!}f''_n(c^{(n)})(x - x_0)^2$$

where $c^{(n)} = c^{(n)}(x_0, x) \in (x_0, x)$, respectively. Then

$$f(x) - f_n(x) = f(x_0) - f_n(x_0) +$$

$$+ \frac{1}{1!} [f'(x_0) - f'_n(x_0)](x - x_0) + \frac{1}{2!} [f''(c) - f''_n(c^{(n)})](x - x_0)^2.$$

Hence, by (i) and (29) we obtain $\lim_{n\to\infty} f_n''(c^{(n)}) = f''(c)$. Thus for every subinterval $[c,d] \subseteq [a,b]$ there exist $u \in (c,d)$ and a sequence $\{u_n\}, u_n \in (c,d)$ for all n such that

$$\lim_{n \to \infty} f_n''(u_n) = f''(u).$$

This means that the set

 $S = \{u \in [a, b] : \text{ there exists a sequence } \{u_n\} \text{ such that }$

$$u_n \in [a, b]$$
 for all $n \ge 1$ and $\lim_{n \to \infty} f_n''(u_n) = f''(u)$

is dense in [a, b].

On the other hand, by (ii) we have $|f_n''(u_n)| \leq \alpha$ for every $n \geq 1$. So, in view of (30) we have

$$(31) |f''(u)| \le \alpha$$

for every $u \in S$. If $u \in [a,b] \setminus S$ then the denseness of S assures the existence of a sequence $\{s_n\}$ in S such that $\lim_{n\to\infty} s_n = u$. By (31) we have $|f''(s_n)| \leq \alpha$. But $f \in C^2[a,b]$ therefore $\lim_{n\to\infty} f''(s_n) = f''(u)$. So

$$(32) |f''(u)| \le \alpha$$

for every $u \in [a, b] \setminus S$. In view of (31) and (32) we have $|f''(u)| \le \alpha$ for every $u \in [a, b]$. Thus $||f''|| \le \alpha$. But we have the condition $\alpha < ||f''||$, contradiction. This completes the proof. \Diamond

Remark 2. If we consider the condition

(i')
$$f_n(x) \to f(x)$$
 for all $x \in [a, b]$

instead of (i), then the conclusions of Ths. 2 and 3 will remain valid.

The next theorems generalize the above results:

Theorem 4. Let $(E, \|\cdot\|)$ be a real normed spaces, $U \subset E$ be a nonempty, convex set and $f \in C(U, R)$ be convex. If there exists an interior point x_0 of U at which f is nondifferentiable, then there is no sequence $\{f_n\}$, $f_n \in C^2(U, R)$ with the following properties:

- (i') $f_n(x) \to f(x)$ for all $x \in U$,
- (ii) $\{\|f_n''(x)\|\}$ is bounded for all n and for all $x \in U$.

Proof. Let us suppose the existence of a sequence $\{f_n\}$, $f_n \in C^2(U, R)$ with the properties (i') and (ii). Then there exists $\alpha > 0$ with

$$||f_n''(x)|| \le \alpha$$

for every n and for every $x \in U$. Using Taylor's formula we obtain

$$f_n(x) = f_n(x_0) + \frac{1}{1!}f'_n(x_0)(x - x_0) + \frac{1}{2!}f''_n(x_0 + \theta(x - x_0))(x - x_0)^2,$$

where $x \in U$ and $\theta \in (0,1)$. Then, by (33) we get

$$|f_n(x) - f_n(x_0) - f'_n(x_0)(x - x_0)| = \frac{1}{2} |f''_n(x_0 + \theta(x - x_0))(x - x_0)^2| \le \frac{\alpha}{2} ||x - x_0||^2.$$

Hence

(34)
$$f_n(x) - f_n(x_0) - \frac{\alpha}{2} \|x - x_0\|^2 \le f'_n(x_0)(x - x_0) \le \le f_n(x) - f_n(x_0) + \frac{\alpha}{2} \|x - x_0\|^2$$

with $x \in U$.

Let $h \in E$. Then there exists $t_0 > 0$ such that $x_0 + th \in U$ for every $t \in [0, t_0]$. In view of (34) we have

$$f_n(x_0 + th) - f_n(x_0) - \frac{\alpha}{2}t^2 ||h||^2 \le tf'_n(x_0)(h) \le$$

$$\le f_n(x_0 + th) - f_n(x_0) + \frac{\alpha}{2}t^2 ||h||^2$$

for every $t \in [0, t_0]$. Hence (35)

$$\frac{f_n(x_0 + th) - f_n(x_0)}{t} - \frac{\alpha}{2}t||h||^2 \le f'_n(x_0)(h) \le$$

$$\le \frac{f_n(x_0 + th) - f_n(x_0)}{t} + \frac{\alpha}{2}t||h||^2$$

for t > 0. Then, by (i') we obtain

$$\frac{f(x_0 + th) - f(x_0)}{t} - \frac{\alpha}{2}t||h||^2 \le \underline{\lim}_{n \to \infty} f'_n(x_0)(h) \le \\
\le \underline{\lim}_{n \to \infty} f'_n(x_0)(h) \le \\
\le \frac{f(x_0 + th) - f(x_0)}{t} + \frac{\alpha}{2}t||h||^2$$

for t > 0.

On the other hand, because f is a convex function, there exists its directional derivative $\delta f(x_0)(h) = \lim_{t \searrow 0} [f(x_0 + th) - f(x_0)]/t, h \in E$. Then (36) implies the existence of the limit

(37)
$$\lim_{n \to \infty} f'_n(x_0)(h) = \delta f(x_0)(h).$$

Because $f'_n(x_0)$ are linear functions, we obtain the linearity of $\delta f(x_0)$.

Now, for every $h \in E$ such that $x_0 + h$ is an interior point of U, we obtain the following estimations:

$$|f(x_{0} + h) - f(x_{0}) - \delta f(x_{0})(h)| \leq$$

$$\leq |f(x_{0} + h) - f_{n}(x_{0} + h)| + |f_{n}(x_{0}) - f(x_{0})| +$$

$$+ |f_{n}(x_{0} + h) - f_{n}(x_{0}) - \delta f(x_{0})(h)| \leq$$

$$\leq |f(x_{0} + h) - f_{n}(x_{0} + h)| + |f_{n}(x_{0}) - f(x_{0})| +$$

$$+ |f_{n}(x_{0} + h) - f_{n}(x_{0}) - f'_{n}(x_{0})(h)| + |f'_{n}(x_{0})(h) - \delta f(x_{0})(h)|.$$

Hence, by Taylor's formula and (33) we have

$$|f(x_{0} + h) - f(x_{0}) - \delta f(x_{0})(h)| \leq$$

$$\leq |f(x_{0} + h) - f_{n}(x_{0} + h)| + |f_{n}(x_{0}) - f(x_{0})| +$$

$$+ \frac{1}{2}|f_{n}''(x_{0} + \theta h)(h)^{2}| + |f_{n}'(x_{0})(h) - \delta f(x_{0})(h)| \leq$$

$$\leq |f(x_{0} + h) - f_{n}(x_{0} + h)| + |f_{n}(x_{0}) - f(x_{0})| +$$

$$+ \frac{\alpha}{2}||h||^{2} + |f_{n}'(x_{0})(h) - \delta f(x_{0})(h)|.$$

Using (i') and (37) we obtain

$$\frac{1}{\|h\|} \cdot |f(x_0 + h) - f(x_0) - \delta f(x_0)(h)| \le \frac{\alpha}{2} \|h\|.$$

Therefore

$$\lim_{h\to 0} \frac{1}{\|h\|} \cdot |f(x_0+h) - f(x_0) - \delta f(x_0)(h)| = 0,$$

i.e. f is differentiable in x_0 , contradiction with the hypothesis. \Diamond

Theorem 5. Let $(E, \|\cdot\|)$ be a real normed spaces, $U \subset E$ be a nonempty, open, convex set and $f \in C^2(U, R)$ be a convex function. If $0 < \alpha < \sup\{\|f''(x)\| : x \in U\}$ then there is no sequence $\{f_n\}$, $f_n \in C^2(U, R)$ with the following properties:

- (i') $f_n(x) \to f(x)$ for all $x \in U$,
- (ii) $||f_n''(x)|| \le \alpha$ for all n and for all $x \in U$.

Proof. The proof doesn't contain new ideas in comparison with Ths. 3 and 4, so we omit that. \Diamond

References

- [1] BROWDER, A.: Mathematical Analysis, An Introduction, Undergraduate Texts in Mathematics, Springer, New York Berlin Heidelberg, 1996.
- [2] DITZIAN, Z. and TOTIK, V.: Moduli of smoothness, Springer-Verlag, New York Berlin Heidelberg, 1987.