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Abstract: The aim of this paper is to derive new properties of quadratic
matrices, i.e. matrices satisfying a quadratic equation (A — pI)(4 — qI) =0
where p,q € C and I denotes the identity matrix. We focus our attention to
numerical range, singular values of quadratic matrices and the closest normal
matrix to a quadratic matrix.

1. Introduction and notations

The purpose of this paper is to give a general characterization of
quadratic matrices. The set of all n-by -n matrices over C is denoted by
My,. We say that A € M,, is a quadratic matrix, if there exist p,q € C
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such that (A —pI)(A—gI) = 0 where I = I, denotes the n X n identity
maftrix.

Such matrices find many applications in applied linear algebra.
The set of quadratic matrices includes the set of projections (A? = A),
involutions (A2 = I), nilpotents (A? = 0) and elementary matrices
(A = I — uw*), eg. Householder reflections and elimination matrices
(see [9]).

For A € M,, let A(A) and o(A) denote, respectively, the spec-
trum and the set of singular values of A. The singular values of A
are the positive square roots of the eigenvalues of the Hermitian posi-
tive semi-definite matrix A*A (see eg. [4], [11], [18]). Here A* € M,
stands for the matrix formed by conjugating each element and taking
the transpose. The singular values of A can be found from the singular
value decomposition SVD (see [4], [11]).
Theorem 1.1 (SVD). Every matriz A € My, of rankr can be written
as A=UXV*, where U,V € M,, are unitary and ¥ = diag(oy,...,0r,
0,...,0) is a diagonal matriz with nonnegative main diagonal entries
o;, called the singular values of A.

Let At denote the pseudoinverse of A € M,, defined as

AT = V diag (i ,i,o,... ,o) U*.

o1 ar

Then X = At is uniquely determined by the Moore-Penrose conditions:
AXA = A, XAX = X, AX = (AX)* and XA = (XA)*. For more
details we refer the reader to [11].

We will consider the 2-norm (spectral norm) and Frobenius norm-
of A,ie. ||All,=01and | A||p=+Vo12+...+ 0,2

We investigate properties of quadratic matrices using known prop-
erties of projections. We summarize some basic properties of projec-
tions that are relevant to our discussion in the later sections.

A projection (idempotent) Z € M,, is a matrix such that Z? =
= Z,s0 I — Z and Z* are also projections. It is diagonalizable and
rank(Z) = tr(Z). The minimal equation of a projection Z is A2 = A,
hence Z has as only +1 and 0 as eigenvalues.

In Section 2 we prove some inequalities for singular values of qua-
dratic matrices using the Schur theorem (any complex matrix is uni-
tarily similar to a triangular matrix). If Z € M, is a projection then
there exists a unitary matrix U € M, such that
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(1) zzU(Ig g) U,

where 7 = rank(A) (see eg. [7]).
There is a deep overlap between projections and quadratic matri-
ces. Notice that A € M,, satisfies

(2) (A-pD)(A=ql)=0, p#0#gq
iff there exists a projection Z € M,, such that
(3) A=ql+(p—q)Z.
It is obvious that
1
4 Z=——-~ (A-ql).
(4) - q( )

In case p = g we have (A —pI)2 = 0, so A — pI is a nilpotent.
From (1) and (3) we obtain the following theorem.
Theorem 1.2 (Schur form). For every p,q € C a quadratic matriz
A e M,, such that (A —pI)(A—qI) =0 can be written as

_ * _(pI, B
(5) A =URU*, R—-( 0 qIn—r)’
where U € M,, is unitary.

Th. 1.2 find many applications. Notice that if p # ¢ then there
exists an involution X € M,, containing the eigenvectors of R. Then

X2?2=1T1 and
I, LB
= r—q
X ( "7 I) |
We see that RX = X D where D is a diagonal matrix:

_( pl: 0
D“(O qIn..r>'

Section 2 is devoted to the inverse eigenproblem of quadratic ma-
trices. In Section 3 we show how to find a quadratic matrix with pre-
scribed singular values. In Section 4 the Moore—Penrose inverse of a
quadratic matrix is determined. Section 5 deals with the closest nor-
mal matrix X to a quadratic matrix A in the 2-norm and the Frobenius
norm. Section 6 discusses the case of elementary matrices. In the last
section a characterization of the numerical range of quadratic matrices
is given.

A part of this work was presented as a poster of Alicja Smok-
tunowicz and Marek Aleksiejczyk displayed in the STAM Applied Linear
'Algebra Conference in Snowbird, Utah, 1997.
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2. Eigenvalues of a product of two quadratic matri-
ces

A quadratic matrix A € M, such that (A — pI)(A — ¢I) = 0 has
the minimal equation (A — p)(A — ¢) = 0, hence has only p and g as
eigenvalues. We are interested in eigenvalues of a product two quadratic
matrices satisfying the same quadratic equation.

First we consider projections. In 1956 Afriat (see [1], [18]) proved
the following theorem.

Theorem 2.1. Let A = A* = A? and B = B* = B%2. If X is an
eigenvalue of AB , then X € [0,1].

However, the Afriat theorem need not hold for arbitrary projec-
tions A and B. Necessary and sufficient conditions for n numbers in
the interval [0, 1] to form the spectrum of a product of two orthogonal
projections were determined by Nelson and Neumann (see [17]).

Moreover, the following theorem holds.

Theorem 2.2. For arbitrary nonzero Ay, ..., A\, € C there exist qua-
dratic matrices A, B € Mo, satisfying the same quadratic equation

(A-p)(A-ql)=0, (B—p)(B—ql)=0
such that Aq,...,An € A(AB).
Proof. Let A and B be the direct sum of matrices Ay and By:
A=A10A,®..9A,, B=B1®B:®...0 B,

_(p =z _(p O
A’“_(O Q>’ B’“_<1 4)'
We would like to determine zy € C such that Ay € A(AxBg).
An easy calculation gives

2
+z z
ArBy = (p 7 k qkzq) ;

hence A, € M(ArBg) iff (p? + 2z — M) (@® — Ax) — Txg® = 0. From this
we get

where

_ (0% — M) (d® = Ax)
Ak '

It is obvious that also %ﬁ € M(AgBg), so

Lk
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n 2.2 2.2
b q b q
sz (AxBy) = {/\1,...,/\”, SVIREE /\n}.

This completes the proof. ¢

3. Singular values of quadratic matrices

We obtain a generalization of the following estimation of singular
values of projections (see eg. [12]): if ¢ > 0 is a singular value of a
projection Z € M, then o > 1.

Assume that a quadratic matrix A has the Schur form (5).

If B = U;SU;* is an SVD and Q = < ) then @ is unitary
and C = Q*RQ = (5 /% ).

It is evident that there exists a permutation matrix P € M,, such
that PTCP is a block diagonal matrix with blocks of size at most two.
We may summarize these observations as
Theorem 3.1. Suppose that A € M, satisfies a quadratic equation
(A—pI)(A—qI) =0 where p,q € C. Then A is unitarily similar to a
block diagonal matriz with blocks of size at most two.

Another proof of this fact was given by A. Zalewska—Mitura and
J. Zemének (see [22]).

Notice that if X € My has a form X = ( o ; ) where | A; |>]
| A2 |, then o1 >| A1 | and o9 <| A2 |. Here o1 > 0y are the singular
values of X.

From this and Th. 3.1 we get the following theorem.

Theorem 3.2. Suppose that A € M, satisfies (A — pI)(A —qI) =0
where p,q € C. If o is a singular value of A then

(e=1p]) (e—1ql) 20.

It is possible to construct a quadratic matrix with prescribed sin-
gular values.
Theorem 3.3. There exists a matriz A € Ma, satisfying a quadratic
equation (A — pI)(A — qI) = 0 with given singular values o7 > ... >
> op > 0 such that (ox— |p|) (ok—|q|) >0 fork=1,..
Proof. Let A be the direct sum of matrices Ag:
A=A1€9A2@...@An,

where
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_ [P S5k
ae=(5 %),
We would like to determine si € R such that oy € 0(Ag). We have
A Ayt = <|P * + si2 Sk'dz) .
qsk lq]
From this we get

1P - 1a )

Sk — .
Ok

It is clear that also Ig_zl € o(Ag), hence

o(4) = Ua(Ak):{ghm,% Ipql,._‘,lpql}‘
k=1

This completes the proof. ¢

4. The Moore—Penrose inverse

Assume that A € M,, is a quadratic matrix satisfying a quadratic
equation (A — pI)(A — ¢I) = 0, p,q € R. Then A is nonsingular iff
p#0#q. From A~1(A? — (p+ q)A + pql) = 0 we find that

(6) AT=A‘1=]%Q((p+Q)I—A), p#0#q.

From Th. 1.2 we have AT = (URU*)Jr = UR'U*, where R has a
form

(7) R= (pgr qlf_r> .

It is easy to check that
1 =1

T B
(8) RT:R_1=<” 7 ) p#0#q.
0 EI”—’"
If p = ¢ = 0 then R is a nilpotent and

f

0 B 0 0\ -
T — —
R‘(o o)“(BT o>'

Now we consider the case ¢ = 0 and p # 0. Then using the formula
for the Moore—Penrose inverse for partitioned matrices from [15] we get
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t 1 1 _Bp*)-1
(9) R'= pl. B\ _ P(I” e BEB*) 0 p#0.
0 0 E}TgB*(IT + #BB*)‘“L 0/’

5. Nearest normal matrix

We seek normal approximants in the 2-norm and Frobenius norm
to a quadratic matrix A € M,, such that (A — pI)(A — qI) = 0 where
p,q € Cand p # q. We find a formula for nearest normal matrix in
terms of A, p and q.

We remind that a normal matrix A € M, is any matrix satisfying
AA* = A*A. Normal matrices include Hermitian (4* = A), skew-
Hermitian (A* = —A), unitary (A*A = I) and real symmetric, skew—
symmetric and orthogonal matrices.

Let A € My, and denote by va(A) (vr(A)) its distance from the
set of normal matrices in the 2-norm (and Frobenius norm), see [10],
[13], [20].

(10) vo(A) =inf{]] A-—N|,: N is normal},

(11) vp(A)=inf{||] A— N ||z : N is normal}.

First, we present some results on projections. Assume that Z €
€ M,, is a projection (idempotent). It was proved by Phillips (see [19))
that the infimum wvy(Z) is attained at 3(Z + Z*), a Hermitian part
of Z. The same holds for the Frobenius norm (see [3]). Bhatia, Horn
and Kittaneh (see [3]) generalized a result of Phillips to the binormal
operators with respect to every unitarily invariant norm. We use these
results to exhibit nearest normal to a quadratic matrix. It is obvious
that if N € M,, is a nearest normal to A € M,, in the 2-norm or
Frobenius norm, then for any «, 8 € C the matrix aN + I is a nearest
normal to A + BI. Now we write a quadratic matrix A € M,, such
that (A —pI)(A—¢I) =0in a form A = qI + (p— q)Z, where Z is a
projection, and Z = p%q(A —qI).

We have the following theorem (see [10] for a discussion on 2 x 2
case).

Theorem 5.1. Assume A € M, satisfies a quadratic equation
(A—pI(A—qlI)=0 where p,q € C and p # q. Then
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- 1
(12) N=q1+1%(z+z*), Z=——(A-al)
is a nearest normal to A in the 2-norm and the Frobenius norm.

6. Elementary matrices

The set of quadratic matrices includes the set of elementary ma-
trices of a form A = I — uw*, u,w € C".

They are frequently used in numerical linear algebra (see eg. 4],
[9], [21]). A matrix A = I — uw* satisfies a quadratic equation
(A—pI)(A—qI) =0 where p =1 — w*u and g =1 (see [9]).

We would like to find the singular values of A. We write A*A in
a form

*

2
We see that we need to determine the eigenvalues of a Hermitian matrix
B. By simple computations we get the following result.

uu

A*A=I—-B, B=pw"+wp", p=u-—

w.

Theorem 6.1. Assume that o1 > o9 > ... > o, are the singular
values of A = I — uw* where u,w € C* and w*u € R. Then

(13) Og=...=0p-1=1

and

(14) = -;—(\/(u*u)(w*w) + \/(u*u)(w*w) + 4 — 4(w*u)),

|1—w*u |
15 S Ml B
( ) On o1

7. Numerical range

If A € M,, is a given matrix, then the set
W(A) = {z*Az: z€C", o'z =1}
is called the field of values or numerical range of A.
In the following lemma we collect some basic properties of W (A)

(see [5], [6], [11], [16]).
Lemma 7.1. Let Ae M,,. Then

(a) W(A) is compact and convez subset of the complez plane.

(b) W(UAU*) = W(A) for every unitary U € M.
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(c) W(aA+ BI) =B+ aW(A) for every o, 8 € C.
(d) If A € My has eigenvalues p,q € C then the numerical range of
A is an elliptical disc with eigenvalues of A as foci and a minor

azis of the length \/tr(A*A) —Ipl*-1ql’

In 1993 J.I. Fuji and Y. Seo (see [8]) proved the following theorem.
Theorem 7.1. IfY € M,, is a nilpotent of a formY = (8 g) then
the numerical range of Y is a circular disc centered at 0 and the radius
equal to L|| B ||,

If Z € M, is a projection of a form Z = (IOT Jg) then the numer-

ical range of Z is an elliptical disc:

142 2
W(Z)z{m+iy:@~:——§~)—+y—<1}

a= 141 B2 b=1Bl,

Using (2)-(4), Lemma 7.1, Th. 7.1 and applying the Schur form
(5) we get the following theorem.
Theorem 7.2. Assume that a quadratic matriz A € M, has the Schur

form
_q(plr B .
A_U(O qIn_T>U

where U is unitary. Then the numerical range of A is an elliptical disc
with p,q as foci and || B ||, as the length of a minor azis.
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