A REMARK ON CERTAIN ANALYTIC CLASS BY USING RUSCHEWEYH DERIVATIVES

M. K. Aouf

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt

H. E. Darwish

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt

A. A. Attiya

 $Department\ of\ Mathematics,\ Faculty\ of\ Science,\ University\ of\ Mansoura,\ Mansoura,\ Egypt$

Dedicated to Prodessor Ludwig Reich on his 60th birthday

Received: September 1999

MSC 2000: 30 C 45

Keywords: Analytic, Hadamard product, Ruscheweyh derivatives, starlike, convex.

Abstract: A class $T(n, \alpha, \beta; a, b)$ of certain analytic functions defined by using Ruscheweyh derivatives, is introduced. The object of the present paper is to derive some properties of the class $T(n, \alpha, \beta; a, b)$.

1. Introduction

Let A denote the class of functions of the form

$$(1.1) f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the unit disc $U = \{z : |z| < 1\}$. We denote by S the subclass of A consisting of functions which are univalent in U. Then a function f(z) in S is said to be *starlike* of order α in U if and only if

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in U; \ 0 \le \alpha < 1).$$

We denote by $S^*(\alpha)$ the class of all functions in S which are starlike of order α in U. Further, a function $f(z) \in S$ is said to be *convex* of order α in U if and only if

(1.3)
$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha \quad (z \in U; \ 0 \le \alpha < 1).$$

We denote by $K(\alpha)$ the class of all functions in S which are convex of order α in U. It is well known that

$$S^*(\alpha) \subseteq S^*(0) = S^*$$

and

$$K(\alpha) \subset K(0) = K$$
.

The classes $S^*(\alpha)$ and $K(\alpha)$ introduced by Robertson [5] were studied by Schild [8], MacGregor [3], and Pinchuk [5]. In particular, the class $S^*(\frac{1}{2})$ was studied by Schild [9] and MacGregor [3].

Recently, Ruscheweyh [7] introduced the classes K_n of functions $f(z) \in A$ satisfying

(1.4)
$$\operatorname{Re}\left\{\frac{(z^n f(z))^{(n+1)}}{(z^{n-1} f(z))^{(n)}}\right\} > \frac{n+1}{2} \quad (z \in U)$$

for $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ ($\mathbb{N} = \{1, 2, \dots\}$). Ruscheweyh [7] showed the basic property

$$(1.5) K_{n+1} \subset K_n, \quad n \in \mathbb{N}_0.$$

We can observe that $K_0 \equiv S^*(\frac{1}{2})$ and $K_1 \equiv K$. Let

(1.6)
$$D^n f(z) = \frac{z(z^{n-1} f(z))^{(n)}}{n!}, \quad n \in \mathbb{N}_0.$$

This symbol $D^n f(z)$ was introduced by Ruscheweyh [7] and was named the *n*-th Ruscheweyh derivative of f(z) by Al-Amiri [1]. We note that $D^0 f(z) = f(z)$ and $D^1 f(z) = z f'(z)$. The Hadamard product of two

functions $f(z) \in A$ and $g(z) \in A$ will be denoted by f * g(z), that is, if f(z) is given by (1.1) and g(z) by

$$(1.7) g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$

then

(1.8)
$$f * g(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

By using the Hadamard product, Ruscheweyh [7] observed that if

(1.9)
$$D^{\gamma} f(z) = \frac{z}{(a-z)^{\gamma+1}} * f(z) \quad (\gamma \ge -1)$$

then (1.6) is equivalent to (1.9) when $\gamma = n \in \mathbb{N}_0$. Thus it follows from (1.4) that the necessary and sufficient condition for $f(z) \in A$ to belong to K_n is

(1.10)
$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \frac{1}{2} \quad (z \in U).$$

Note that K_{-1} is the class of functions $f(z) \in A$ satisfying

(1.11)
$$\operatorname{Re}\left\{\frac{f(z)}{z}\right\} > \frac{1}{2} \quad (z \in U).$$

Since $K_0 \equiv S^*(\frac{1}{2})$, Ruscheweyh's result implies that $K_n \subset S^*$ for each $n \in \mathbb{N}_0$.

Let $T(n,\alpha)$ denote the class of functions satisfying the condition

(1.12)
$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} > \alpha \quad (z \in U).$$

for some $0 \leq \alpha \leq \frac{1}{2}$ and $n \in \mathbb{N}_0$. The class $T(n,\alpha)$ was introduced by Goel and Sohi [2]. We observe that $T(n,\frac{1}{2}) \equiv K_n$ for each $n \in \mathbb{N}_0$. Further, Goel and Sohi [2] showed that $T(n+1,\alpha) \subset T(n,\alpha)$ for every $n \in \mathbb{N}_0$ and $0 \leq \alpha \leq \frac{1}{2}$.

Now, we define the following class $T(n, \alpha, \beta; a, b)$ by using the *n*-th order Ruscheweyh derivative of f(z).

Definition.Let the function f(z) defined by (1.1) be in the class A and

(1.13)
$$P(f(z); n, \alpha, \beta; a, b) = \left(\frac{D^{n+1}f(z)}{D^n f(z)} - \alpha\right)^a \left(\frac{D^{n+2}f(z)}{D^{n+1}f(z)} - \beta\right)^b$$
,

where a and b are real numbers, $n \in \mathbb{N}_0$ and $\alpha, \beta \in [0, \frac{1}{2}]$. We say that

f(z) belongs to the class $T(n, \alpha, \beta; a, b)$ for $n \in \mathbb{N}_0$ and $\alpha, \beta \in [0, \frac{1}{2}]$ if f(z) satisfies the following condition

(1.14)
$$\operatorname{Re}\left\{P(f(z); n, \alpha, \beta; a, b)\right\} > 0 \quad z \in U.$$

The powers appearing in (1.14) are meant as principle values.

We note that:

- (i) $T(n, \alpha, \beta; 1, 0) = T(n, \alpha)$,
- (ii) $T(n, \alpha, \beta; 0, 1) = T(n + 1, \beta),$
- (iii) $T(n, \frac{1}{2}, \beta; 1, 0) = K_n$,
- (iv) $T(n, \alpha, \frac{1}{2}; 0, 1) = K_{n+1},$
- (v) $T(n, \alpha, \bar{\alpha}; a, b) = T(n, \alpha; a, b)$, was introduced in [4].

2. Results

Theorem 1. Let $n \in \mathbb{N}_0$, and $\alpha, \beta \in [0, \frac{1}{2}]$. Then

(2.1)
$$T(n, \alpha, \beta; a, b) \cap T(n, \alpha) \subset T(n, \alpha, \beta; at_1 + t_2, bt_1),$$

where $|t_1| + |t_2| \leq 1.$

Proof. Let the function f(z) be in the class $T(n, \alpha, \beta; a, b) \cap T(n, \alpha)$ and

(2.2)
$$\left(\frac{D^{n+1}f(z)}{D^nf(z)} - \alpha\right)^a \left(\frac{D^{n+2}f(z)}{D^{n+1}f(z)} - \beta\right)^b = v(z).$$

Then we see that $Re\{V(z)\} > 0$ for all $z \in U$. Further let

(2.3)
$$\frac{D^{n+1}f(z)}{D^nf(z)} - \alpha = u(z).$$

Then $f(z) \in T(n, \alpha)$ implies that $\text{Re}\{u(z)\} > 0$ for all $z \in U$. It follows from (2.2) and (2.3) that

$$(2.4) \left(\frac{D^{n+1}f(z)}{D^nf(z)} - \alpha\right)^{at_1+t_2} \left(\frac{D^{n+2}f(z)}{D^{n+1}f(z)} - \beta\right)^{bt_1} = (u(z))^{t_2}(v(z))^{t_1}.$$

Defining the function F(z) by

$$(2.5) F(z) = (u(z))^{t_2} (v(z))^{t_1}, |t_1| + |t_2| \le 1,$$

we obtain

(2.6)
$$F(0) = (1 - \alpha)^{at_1 + t_2} (1 - \beta)^{bt_1} > 0$$

and

(2.7)
$$|\arg(F(z))| = |\arg((u(z))^{t_2}(v(z))^{t_1})| \le \le |t_2| |\arg(u(z))| + |t_1| |\arg(v(z))| \le \le (|t_1| + |t_2|) \frac{\pi}{2} \le \frac{\pi}{2}.$$

This shows that $\operatorname{Re}\{F(z)\} > 0 (z \in U)$ which implies that $f(z) \in$ $\in T(n,\alpha,\beta;at_1+t_2,bt_1), |t_1|+|t_2|\leq 1.$ This completes the proof of the theorem. \Diamond

Putting $t_1 = t$ $t_2 = 1 - t$ and $0 \le t \le 1$ in Th. 1, we obtain Corollary 1. Let $n \in \mathbb{N}_0$ and $\alpha, \beta \in [0, \frac{1}{2}]$. Then

(2.8)
$$T(n,\alpha,\beta;a,b) \cap T(n,\alpha) \subset T(n,\alpha,\beta;(a-1)t+1,bt).$$

Remark. Putting $\alpha = \beta$ in Cor. 1, we have the main theorem due to Owa |4|.

Putting a = 0 and b = 1 in Th. 1, we obtain:

Corollary 2. Let $n \in \mathbb{N}_0$, $\alpha, \beta \in [0, \frac{1}{2}]$ and $|t_1| + |t_2| \leq 1$. Then we have

(2.9)
$$T(n+1,\beta) \cap T(n,\alpha) \subset T(n,\alpha,\beta;t_2,t_1).$$

Theorem 2. Let $n \in \mathbb{N}_0$, and $\alpha, \beta \in [0, \frac{1}{2}]$. Then

$$(2.10) T(n,\alpha,\beta;a,b) \cap T(n+1,\beta) \subset T(n,\alpha,\beta;at_1,bt_1+t_2),$$
where $|t_1|+|t_2| \leq 1$.

where $|t_1| + |t_2| \le 1$. Putting $t_1 = t$, $t_2 = 1 - t$ and $0 \le t \le 1$ in Th. 2, we obtain:

Corollary 3. Let $n \in \mathbb{N}_0$ and $\alpha, \beta \in [0, \frac{1}{2}]$. Then

(2.11)
$$T(n, \alpha, \beta; a, b) \cap T(n+1, \beta) \subset T(n, \alpha, \beta; at, (b-1)t+1),$$

References

- [1] AL-AMIRI, H.S.: On Ruscheweyh derivatives, Ann. Polon. Math. 38 (1980), 87 - 94
- [2] GOEL, R.M. and SOHI, N.S.: A new criterion for univalent and its applications, Glas. Mat. 16 (1981), 39-49.
- [3] MacGREGOR, T. H.: The radius of convexity for starlike functions of order ½, Proc. Amer. Math. Soc. 14 (1963), 71-76.
- [4] OWA, S.: On certain class defined by using the Ruscheweyh derivatives, Math. Japon. 30/2 (1985), 301-306.
- [5] PINCHUK, B.: On starlike and convex functions of order α , Duke Math. J. **35** (1968), 721–734.

- [6] ROBERTSON, M. S.: On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408.
- [7] RUSCHEWEYH, St.: New criteria for univalent functions, *Proc. Amer. Math. Soc.* 49 (1975), 109–115.
- [8] SCHILD, A.: On starlike functions of order α , Amer. J. Math. 87 (1965), 65–70.
- [9] SCHILD, A.: On a class of univalent, starshaped mappings, Proc. Amer. Math. Soc. 9 (1958), 751–757.