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Abstract: A class T(n,a,3;a,b) of certain analytic functions defined by
using Ruscheweyh derivatives, is introduced. The object of the present paper
is to derive some properties of the class T'(n, @, B;a, b).

1. Introduction

Let A denote the class of functions of the form
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(1.1) f(2z) = z+§:akz’“
k=2

which are analytic in the unit disc U = {z : |z| < 1}. We denote by
S the subclass of A consisting of functions which are univalent in U.
Then a function f(z) in S is said to be starlike of order o in U if and
only if

(1.2) Re{zJ{;S)} >a (zeU; 0<a<l).

We denote by S*(a) the class of all functions in S which are starlike

of order @ in U. Further, a function f(z) € S is said to be convez of
order o in U if and only if

2 f// ( z)
f'(2)
We denote by K () the class of all functions in S which are convex of

order « in U. It is well known that
S*(a) C S*(0) = S*

(1.3) Re{l-i— }>a (zeU; 0<a<l).

and
K(a) C K(0) =K.
The classes S*(a) and K (o) introduced by Robertson [5] were
studied by Schild [8], MacGregor [3], and Pinchuk [5]. In particular,
the class S*(3) was studied by Schild [9] and MacGregor [3].

Recently, Ruscheweyh [7] introduced the classes K., of functions
f(2) € A satisfying

0 (n+1) n
(1.4) Re{%}> ;1 (z € U)

for n € Ny = NU {0} (N = {1,2,...}). Ruscheweyh [7] showed the

basic property

(1.5) K11 CKpn, neNg.

We can observe that Ko = S*(3) and Ky = K. Let

10l
n!

This symbol D™ f(z) was introduced by Ruscheweyh [7] and was named

the n-th Ruscheweyh derivative of f(z) by Al-Amiri [1]. We note that
DYf(z) = f(z) and D'f(2) = zf'(z). The Hadamard product of two

(1.6) D"f(z) = , n€Ng.
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functions f(z) € A and g(z) € A will be denoted by f * g(z), that is, if
f(z) is given by (1.1) and g(2) by

(1.7) g(z) =z + Z bz",
k=2
then
(1.8) f*g(2) :z+Zakbkzk.
k=2
By using the Hadamard product, Ruscheweyh [7] observed that if
z
(1.9) D7f(z) = CEDLEN f(z) (v=-1)

then (1.6) is equivalent to (1.9) when v = n € Ny. Thus it follows
from (1.4) that the necessary and sufficient condition for f(z) € A to
belong to K, is

Drif(z)
Note that K_ is the class of functions f(z) € A satisfying
(1.11) Re {@} > —;— (z €U).

Since Kg = S*(%—), Ruscheweyh’s result implies that K,, C S* for each
n € Ny.
Let T'(n, @) denote the class of functions satisfying the condition

(1.12) Re {%} Sa (zeD).

for some 0 < a < % and n € Ny. The class T(n,a) was introduced
by Goel and Sohi [2]. We observe that T'(n, 3) = K,, for each n € Ny.
Further, Goel and Sohi [2] showed that T'(n+ 1,a) C T'(n, @) for every
neNpand0<a<i

Now, we define the followmg class T'(n, , B; a, b) by using the n-th
order Ruscheweyh derivative of f(z).
Definition.Let the function f(z) defined by (1.1) be in the class A and

019) P e san = (20O )" (DI g

where a and b are real numbers, n € Ny and «, 8 € [0, 3].We say that
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f(z) belongs to the class T(n,a,B;a,b) for n € Ny and o, 8 € [0, 1] if
f(z) satisfies the following condition
(1.14) Re {P(f(2);n,, B;a, b)}>0 zel.

The powers appearing in (1.14) are meant as principle values.
We note that:

(i) T(n,a,B3;1,0) = T(n,a),
(i) T(n,, B;0,1) =T(n+1,5),
(iii) T'(n, 5,06;1,0) = K,,
(iv) T(n,a,3;0,1) = Kpy1,
(v) T(n, o, a;a,b) = T(n,a; a,b), was introduced in [4].

2. Results

Theorem 1. Letn € Ny, and o, 8 € [0, 1]. Then
(2.1) T'(n,o,B;a,0) NT(n,a) C T(n,a,B;at; + tg, bty),

where |t1] + |ta] < 1.
Proof. Let the function f(z) be in the class T'(n,a, 8;a,b) N T'(n, a)
and

D)\ (D) '
) (G o) (B o) =
Then we see that Re{V(2)} > 0 for all z € U. Further let
pntl
_Dn_fj(”z()z_) —a = u(z).

Then f(z) € T'(n, ) implies that Re{u(z)} > 0 for all z € U. It follows
from (2.2) and (2.3) that

@@(Efﬁﬁ—ﬁmm(gfﬂﬁ—@m=mwwmm%

(2.3)

Dm f(z) Drtif(z)
Defining the function F'(2) by
(2.5) F(z2) = (u(2))” (v(2))",  [ta] + [t2] < 1,
we obtain
(2.6) F(0) = (1 —a)®tt2(1 — g)Phr > 0

and
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|arg(F(2))] = |arg ((u(2))2 (0(2)™)] <

(2.7) < |ta] |arg(u(2)| + lta] |arg(v(2)] <
< (ttal + 12D 5 < 5

This shows that Re{F(2)} > 0(z € U) which implies that f(z) €
€ T(n,a, B;aty + ta, bt1), |t1] + |t2] < 1. This completes the proof of
the theorem. ¢

Putting t; =tta=1-1 and 0 <t <1in Th. 1, we obtain
Corollary 1. Letn € Ng and o, B elo, %] Then

(2.8) T(n,a, B;a,b) N T(n,a) C T(n,a, B; (a— 1)t +1,bt).

Remark.Putting o = g in Cor. 1, we have the main theorem due to
Owa [4].

Puttinga=0and b=1 in Th. 1, we obtain:
Corollary 2. Letn € No, o, € [0,1] and |t + |ta] < 1. Then we
have

(2.9) T(n+1,8) NT(n,a) C T(n, o B b2 t1)-
Theorem 2. Letn € N, and o, B €[0,3]. Then
(2.10) T(n,a, B;a,b) N T(n+1,8) C T(n, o, B; aty, bty +t2),
where |t1] + |t2| < 1.

Putting t; =t,t2=1—1 and 0 <t < 1in Th. 2, we obtain:
Corollary 3. Letn € No and o, B € [0, 2]. Then
011 T(noBa8) T+ 1,6) € T(ma fat, (b =1+ 1)
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