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Abstract: We consider the problem to determine for which points X in the
plane of the triangle ABC will lengths of cevians of X be sides of a triangle.
We shall prove that points from the convex hull of only ten out of hundred
and one central points from Kimberling’s list have this property.

1. Introduction

One of the basic problems in triangle geometry is to decide when
three given segments are sides of a triangle. The opening chapter of the
book Recent Advances in Geometric Inequalities by Mitrinovié, Peéarié,
and Volenec [7] gives an extensive survey of results on this question.

The present article is looking for ways of associating to a triangle
ABC a point X of the plane such that segments AX,, BXp, and CX,
are always sides of a triangle, where X,, X, and X, are intersections
of lines AX, BX, and CX with the sidelines BC, CA, and AB, re-
spectively. Recall [hons| that segments AX,, BX}, and CX, are called
cevians of the point X. Some authors use this name for lines AX, BX,
and CX.
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With a help from a computer we can describe precisely the bound-
ary of the region ®c. of the plane consisting of those points whose
cevians are sides of a triangle. This is a curve of order 12 which has
reasonably short equation provided certain changes of variables is per-
formed. However, it is still quite complicated and our understanding of
its shape and its properties as the base triangle ABC changes is rather
limited.

This is the reason why we consider another question which does
not concern the properties of ®¢,. but it gives us some information
about it. The question is motivated by the fact that the centroid G
of ABC is always in ®g,. Indeed, segments AG,, BGs, and CG,, are
medians and it is well known that medians of any triangle are sides of
a triangle (see [7, p. 20] and [4, p. 282]).

Since G is just one of central points of a triangle ABC listed

in Table 1 of [5], our original question was to find for what natural
numbers ¢ less than 102 will the central point X; of the triangle ABC
from the Kimberling’s list have the property that cevians AX;,, BX;p,
and CX;. of X; are sides of a triangle. The answer gives the following
theorem.
Theorem 1. From 101 centers X; of the triangle ABC from Kimber-
ling’s Table 1, only values 2, 8, 9, 10, 21, 69, 72, 75, 76, and 78 of the
indez i have the property that the cevians AX;,, BXy, and CX;. of X;
are sides of a triangle regardless of the shape of ABC.

However, we shall prove a much better result that the convex hull
of the ten central points from Th. 1 consists only of points whose cevians
are sides of a triangle. In other words, their convex hull always lies in
@ce. A finer analysis shows that only six points are important while
the other four (Xs, Xg, X19, and X75) span a convex subset.

With the power of computers at our disposal, we can now consider
and open up new areas of research in geometry of triangles (see [1]
and [8]). This paper is simply an example of such a computer aided
discovery in mathematics (see [2] and [6]).

2. Preliminaries

For an expression f, let [f] denote a triple (f, ¢(f), ¥(f)), where
@(f) and ¥(f) are cyclic permutations of f. For example, if f = sin A
and g =b+c, then [f] and [g] are triples (sin A, sin B, sin C) and
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(b+c,c+a,a+b).

A triple [a] of real numbers is triangular when a, b, and c are
sides of a triangle. The letter Q is reserved for the set of all trian-
gular triples. Let T' be a function that maps each triple [a] of real
numbers to a number 2a2b2 +2a%c? +2b%2¢% — a* — b* — c*.  Since
T(la]) = (@+b+c)(b+c—a)a—b+c)(a+b—c), it is clear that for
a triple [a] of positive real numbers [a] € Q if and only if T'([a]) > 0.
Notice that when it is positive T'[a] is equal to 16 times the square of
the area of ABC.

3. Placement of ABC

We shall position the triangle ABC in the following fashion with
respect to the rectangular coordinate system in order to simplify our cal-
culations. The vertex A is the origin with coordinates (0; 0), the vertex
B is on the z-axis and has coordinates (r h, 0), and the vertex C has co-
ordinates (gqr/k, 2 fgr/k), where h=f+g,k=fg—1,p= f2+1,
g=f>-1,s=¢>+1,t=92~1, u=f*+1, and v=g*+1. The
three parameters r, f, and g are the inradius and the cotangents of
half of angles at vertices A and B. Without loss of generality, we can
assume that both f and g are larger than 1 (i.e., that angles A and B
are acute).

Nice features of this placement are that all central points from
Table 1 in [5] have rational functions in f, g, and r as coordinates and
that we can easily switch from f, g, and r to side lengths a, b, and ¢
and back with substitutions ¢ = r h and

rfs rgp (b+c)? —a?
a=—" p=92 S _DTY —@
z N ()
et T
T([a]) ’ 2(a+b+c)

Moreover, since we use the Cartesian coordinate system, computation
of distances of points and all other formulas and techniques of analytic
geometry are available and well-known to widest audience. A price to
pay for these conveniences is that symmetry has been lost.

The third advantage of the above position of the base triangle
is that we can easily find coordinates of a point with given trilinears.
More precisely, if a point P with coordinates = and y has projections
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P,, Py, and P, onto the side lines BC, CA, and AB and A = PF, /PP,
and = PPy/PP,, then z = and y = —v—‘{,— with U=gh(pp+q)r,
V=2fghr,and W = fsApu+gpp+ hk. This formulas will greatly
simplify our exposition because there will be no need to give explicitly
coordinates of points but only its first trilinear coordinate. For exam-
ple, we write Xg[a] to indicate that the symmedian point Xg has tri-
linears equal to a : b : c. Then we use the above formulas with A = a/b
and p = b/c to get the coordinates = = % and y = % of Xg in our
coordinate system, where U = (fqt+2gu)ghr, V= fg h?kr, and

W= f?v+fgqs+g*u.

4. Triangles from cevians

Let z, y, and z be absolute trilinear coordinates of a point X
with respect to a base triangle ABC. Let U = by +cz, V = ¢(U), and
W = 4(U), where a, b, and c are lengths of sides BC, CA, and AB, re-
spectively. Let me=VW,d,=V - W, 2, =V +W, 5, =V +W - U.
Put mp = ¢(m,) and m. = ¥(m,). The expressions dy, dc, 2b, 2¢, Sb,
and s. are defined similarly. For a natural number k, we let dg, be
Vk — Wk, Other expressions with k in their index are defined analo-
gously.

With this notation, the cevian AX, has length sy s.(2 U (b?/sp +
+c%/s.) — a?)/(4U?), while cevians BX; and CX, have lengths that
are its cyclic permutations. It follows that T'([ AX,]) is the quotient &/
/(16 U* V4 W*), where @ is the cyclic sum of products m, (2?2 F U%-
—a*maG) and F and G are polynomials 35  f;U? and Yo, g; U
with coefficients fo = 4m3 d2, fi = 2mq 2, d2, fo = 18 M2 29, +6m3 —
— 5Mg 24a — 2 26a, f3 = 222 (3220, - 7ma)a fa = 8777% — 6240, f5 =
= 2zad21 f6 = Mg, Jo = mi dés a1 = 0, g2 = 2mad(2;, (da+V)(da,_W)7
gs = "4ma.zad§,7 94 = 424 + mg — 4mg 290, g6 = 4d3, and g5 =
= —4 2, (dg + V)(de — W).

We conclude that the symmetric polynomial ® of order 12 in vari-
ables z, y, and z is the equation of the curve of order 12 which is the
boundary of the region Q¢, in the plane of the base triangle ABC con-
sisting of all points whose cevians are sides of a triangle. The region ¢,
is not connected and in spite of the above rather efficient description
of ® not much could be said about its properties. The vertices of the
anticomplementary triangle A,B,C, of ABC are important singular
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points of this curve.

In the rest of this paper we shall be searching for central points
of the triangle ABC from the Kimberling’s Table 1 in [5] that always
belong to ®¢, regardless of the shape of ABC. In this direction, our
main result is the following theorem.

Theorem 2. For any triangle ABC the convex hull U of central points
Xo, Xo1, Xe9, Xr2, Xv6, and Xvg lies in Pce, i.e., it consists only of
points X with the property that the cevians AX,, BX., and CX. are
sides of a triangle.

Proof. We shall only give outlines for the proof that the vertices X,
and Xgg, the interior of the segment X3 Xgg, and the interior of the
triangle X2 X951 Xgo lie in the region ®¢.. In a similar fashion one can
show that any vertex, any segment, and any triangle on the six central
points listed in the statement of the theorem have the same property.

The centroid  Xz[1/a] is the intersection of medians which
join vertices with midpoints of opposite sides. Its coordinates are
(r(k(h+f)+f—9)/(3k),2r fg/(3k)). Hence, T([A(X2).]) is the
quotient 97*g? f2h%/k% which is clearly always positive. Of course,
this result is old and well-known (see [7, p. 20] and [4, p. 282]).

The central point Xgg[cos A csc? A] is the isogonal conjugate of
Xa5 — the center of homothety of the orthic triangle 4,B,C, and the
tangential triangle A;B:C; of a given triangle ABC. It can also be
described as the intersection of the line joining the Gergonne point X7
with the Nagel point Xg and the line joining the centroid Xy with the
symmedian point Xg.

The triangle test T'([ A(Xgo)s]) is 48 7% Sgo/(k* p* s*), where Seo
is a polynomial 3°_ k; h% k™, with A; = 8,6,4,2,0,0for i =0,..., 5
and k; is a polynomial in the variable k represented as sequences (ao, . . .
..., 0y) of their integer coefficients as follows:

ko| —(1,1)%(3,3, 1)

k| —3(1, 1)2(2, 1)2(1, 1, 1)

ks | —(1, 1) (18, 54, 68, 46, 28, 14, 3)

k3| (—12, —48, —58, —6, 56, 66, 35, 9, 1)
ku| (1,2, =2, =3, —=1)(=3, —6, 3, 6, 1)
ks| (1,3,0,=5,0,3,1).

For example, ko and ks are equal to —(1+ k)3 (3 + 3k + k?) and 1 +
+ 3k —5k3 + 3 k5 + kS, respectively.
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It is not clear how one can argue that the polynomial Seg is always
positive. But, the following method will accomplish this goal.

Write Sgg in terms of f and g. We get a polynomial Usg with
101 terms. Since both f and g are larger than 1, we shall replace them
with 1 + f’ and 1 + ¢', where new variables f’ and ¢’ are positive. This
substitution will give us a new polynomial Vg9 with 266 terms only 12
of which have negative coefficients. If all coefficients were positive, we
would be done. In order to get rid of these 12 troublesome terms,
we must perform two more substitutions that reflect cases f' > ¢’ and
g’ > f'. Hence, if we replace f’ with g’ + ¢ for § > 0, from Vg9 we shall
get a polynomial Pgg in g’ and ¢ with 323 terms and all coefficients
positive. Similarly, if we substitute ¢’ with f' + ¢ for € > 0, from Vg
we shall get a polynomial Qg9 in f’ and ¢ also with 323 terms and all
coefficients positive. This concludes our proof that Xgg lies in ®ce.

A point P in the interior of the segment X3 Xg9 has coordinates
[7 (m1me+m3z)/ma, 2 fgr (ma+msz)/my], where my = ft+2gg,
mo=v f24+ug?+fgqt,mz=3f2#3f+2gquv), mg =3k (z+1)ma,
ms = 3 f g (h? — k?), and 7 is a positive real number. The triangle test
for cevians of this point is

- 37% 5, 60)
k4 (3 f2s2x+2mg)* (3g2p2z+2my)? (3h2 k2 z+2my)t

T([AF))

where S]p 9] is & polynomial of order 12 in variable z with coeflicients
polynomials in f and g. In expanded form S}y, g9) has 10489 terms. The
replacement of f with 1+ f and g with 1+ ¢ and then f with g+¢
and also g with f + &, where 0 and ¢ are positive, in each coefficient
of powers of z in Sy, 69 leads to polynomials in f, g, and ¢ (f, 9, and
g, respectively) with all coefficients positive which completes our proof
that the interior of X9 Xgg lies in Pce.

The Schiffler point X»1[1/(cos B + cos C)] is the point of concur-
rence of Euler lines of triangles BCX,, CAX;, and ABX;, where X,
is the incenter of ABC. Recall that the line joining the centroid and
the circumcenter of a scalene triangle ABC is called the Euler line of
ABC. ‘

Let us now consider the triangle X3X5;Xg¢9. A point P in its
interior has coordinates
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r
[m—g (mo ma mg + mg(ms T + my my)),

2r
m—g(momzm7+f9ms(m5$+m2)) -

where mo = 3(s + 2k)(z + 1)y, me = fs(g—2) +2gq, m7 = q +
+ 2k, mg = 3ps+ 8k, mg = mamamg(y + 1), and z and y are
positive real numbers. The triangle test for the cevians of the point P
contains as a significant factor a polynomial of order 8 in z and y and
whose coefficients k; (i =0,..., 24) are polynomials in f and g. The
replacement of f with 1+ fand gwith1+gink; fori =0,..., 24 leads
to polynomials with almost all coefficients positive. However, after we
perform substitutions f =g+’ and g = f+v' (with o/, v' > 0) we
obtain polynomials with all coeflicients positive which completes our
proof. For other triangles the same strategy always applies but with
far more complicated polynomials (with several thousands of terms and
very large coefficients). ¢

Corollary 1. For any triangle ABC the conver hull Uy of central
points Xg, Xg, X10, and Xrs lies in @g,.

Proof. By the above theorem, it suffices to prove that

(1) The Spieker centre Xiq[b+ c/a] (the incenter of the triangle
A B, Cr, whose vertices are midpoints of sides) is always the interior
point of the segment X5 Xrg.

(2) The Nagel point Xg[(b+ c— a)/a] (the intersection of lines
AAeo, BBep, and CCe., where Aey, Bep, and C,. are projections of
excenters A., B, and C, onto the sidelines BC, CA, and AB, respec-
tively) is always the interior point of the segment X;0X7s.

(3) The symmedian point of excentral triangle Xo[b+ ¢ — a] (the
point of concurrence of the symmedians of the excentral triangle A, B,
C. also known as the Mittenpunkt) is always the interior point of the
segment Xo1 X7s.

(4) The isogonal conjugate X7s[1/a?] of the 2nd Power Point
X31[a?] is always the interior point of the segment X9 X76.

Since all four of these statements have the same proof we shall
prove only the first.

The points X9, X109, and X5 are collinear so that we can find
a real number z such that X9 = (X2 + z X73)/(z +1). This is the
number




290 Z. Cerin

o LI+ /24949’ +5
322+ f24+4fg+92 -3

However, replacing f with f + 1 and g with g + 1 we get the quotient of
two polynomials in f and g with all coefficients positive which implies
that z is always positive so that Xg lies between X, and Xvs. ¢
Remark.One can prove that the ten central points from the statement
of our main theorem and its corollary are the only central points from
Kimberling’s list that always lie in ®¢.. In fact, only four triangles all
with r =1 and

triangle | t1 | t2 ts tg

f 2| 2| 1000| £ +3
g 5| 20| 1001 2 +/3

will suffice to eliminate the remaining 91 central points. Indeed,
T([A(X:)a]) < 0 for the triangle ¢t; and ¢ € I, where j =1,..., 4, Iy =
{1,...,101}, I3 ={35,63,99}, I, = {95, 97}, Is = {2, §, 9, 10, 21,
69, 72, 75, 76, 78 }, I,={5, 11, 15, 16, 30, 36, 37, 38, 45, 46, 48, 50, 52,
55, 59, 62, 68, 70, 83, 85, 86, 87,88, 91}, and [ =Iy—Iy—Is— Iy —Is.
The above statement is simple to state but the reader should be
aware that there is a lot of work behind it because we must know
coordinates of each central point from Kimberling’s list.
We can now compute the lengths of cevians of the central points
Xg, Xg, XlO, X21, X75, X76, and ng, respectively, and apply the
transformation formulas to get the following corollary.
Corollary 2. If the triple [a] is triangular, then the triples

[\/2(b—6)2+a(b+c—a)}’ \/2a2(b2+c2)—a4—(b—c)4]

|(b—c)?2—a(b+c)|va
[\/(b+C) (6> —bc+c?) + (20> —bc+2c?) a—as]

2a+b+c

\/(2b2—bc+2c2)a2+abc(b+c)——(b2+c2) (b—c)? —at
| (b+c)a?+2abe— (b+c)(b—c)® |

?
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VO —bet ) (b+)? —a?be
b+c ’

V(0% + c2) (0% + ct) — a2 b2 2
b2 4 ¢2 ’

V2 B2+ ) a2 43 (b— )2 (b+ o) — ot

a

are also triangular.
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