Mathematica Pannonica
12/1 (2001), 27-38

GEOMETRIC PROPERTIES OF
NORMED SPACES AND ESTI-
MATES FOR RECTANGULAR
MODULUS

Ioan Serb

Babes-Bolyai” University, Department of Mathematics, 3400 Cluj-
Napoca, Romania

Received: March 2000
MSC 2000: 46 B 20
Keywords: Moduli for normed spaces, geometry of normed spaces.

Abstract: In this paper we study some geometric properties of a normed
space X using the rectangular modulus introduced in [22]. For instance,
lower bounds for the rectangular modulus of £P(2) spaces, p > 1 are given.
A characterization of nearly square spaces is also obtained. We prove that if
X and Y are isomorphic spaces and X is close to Y (in the Banach-Mazur
distance) then their rectangular moduli are also close. Using the technique
of ultrapowers one obtains a sufficient condition for a normed space to have

uniformly normal structure.

1. Introduction and notation

The geometric properties of a real normed space X, of dimension
> 2, may be described in terms of some constants or moduli attached
to X. We remember that the modulus of convexity [6], the modulus of
smoothness [16], the rectangular constant [14] and the radial projection
constant [26] of a normed space are often used in various applications.
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Recently, K. Przeslawski and D. Yost [18] introduced the squareness
modulus of the normed space X which permits to characterize uniformly
smooth [20], [4], uniformly convex, uniformly non-square [4] or an in-
ner product space [21], [4]. In [22] we have introduced the rectangular
modulus of X which is intimately connected with the radial projection
constant and the rectangular constant of X. Moreover, the rectangu-
lar modulus is an increasing convex function characterizing uniformly
convex and inner product spaces [23], [22]. The main purpose of this
paper is to continue the study of geometric properties of normed spaces
using the rectangular modulus. In particular, estimates for rectangular
moduli of some classes of normed spaces will be obtained.

For instance, lower bounds for the rectangular modulus of X are
given in the case of two-dimensional spaces which may be identified
with Bx(z,r) = {y € X : ||z ~y|| < r} and Sx(z,r) = {y € X :
: [z — y|| = r} be the closed ball, respectively the sphere with center z
and radius 7. Let Bx = Bx(6,1) be the closed unit ball of X and let
Sx = Sx(0,1) be the unit sphere of X. The symbol L will be used for
Birkhoff orthogonality in X. By definition z L y if and only if ||z|| <
< ||z + ty|, for all t € R and geometrically this means that the line
through z in the y-direction supports Bx (6, ||z||) at z. Recall that a
Banach space X is uniformly convez if its modulus of convezity defined
by '

ox(@) = int {1- | Z7 sy e ol =} e < 0,9

is strictly positive for every e € (0, 2]. The Banach space X is uniformly
smooth if its modulus of smoothness defined by

1
px(r) = sup {3+ 7ol + o =7yl - D oy € S 7 20,

verifies the relation lim,~,0 px (7)/7 = 0. Recall that the Banach-Mazur
distance between two isomorphic normed spaces is the infimum of
| T|||T~|| with respect to all isomorphisms T between them. A normed
space X is said to be nearly square if it contains arbitrarily close copies
of ¢1(2). Otherwise, X is said to be uniformly non-square. Any uni-
formly non-square space is reflexive. ,

For fixed z,y € X with ||y|| < 1 < ||z||, there is a unique z =
= z(z,y) in the line segment [z;y] with ||z|| = 1. Letting
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lz — z(z, )|
el =1~
define as in [18] the modulus of squareness of X, by
§x(B) = sup{w(z,y) : [yl < B <1 < =]}, 8€0,1),

which is an increasing and convex function on [0,1), [4]. Recently, we
have introduced the *-rectangular modulus of X, [22], as the function
p% 1 (0,00) — R defined by

w(z,y) =

px(A) =sup{prun(t):t>0,u,v € Sx,u Ll v}, A>0

where

A+t
SDA,u,u(t)=” + VAt >0,u,v € Sx,u L v,

u + tu]
and the rectangular modulus of X defined by

px (A) = max{px (X), A ux (1/A)}, A > 0.

The functions px and p% are strictly increasing, convex and if X
is an ip.s. then px(A) = p%(A) = V1+X2,X > 0. On the other
hand px, (u%) verifies a Day-Nordlander type inequality, i.e. ux(A) >
> V1I+ A2V > 0, (p%(A) > V14 A2,VA > 0). Moreover if ux(A) =
= V1+ A2, (p%x(A) = V14 X2) for a fixed A > 0, then X is an in-
ner product space [22]. In the opposite direction we have u%(\) <
< pgreay(A) = A+2,VA > 0 and consequently p1x (A) < max{i+2,2X+
+ 1}, VA > 0,[22]. Denoting by u(X) the rectangular constant of X
defined by J.L. Joly [14] and by k(X)) the radial projection constant of
X defined by R.L. Thele [26], we have ux (1) = p% (1) = u(X) € [v/2, 3]
and px (0+) = p% (0+) := limyo pi(A) = k(X) € [1,2], [22].

In [2], [3], [7], [8], [10] it is proved that, in its turn, £(X) is equal to
other four constants of X denoted by MPB(X), MPB'(X), MPB(X),
B(X), respectively.

2. Main results

At the beginning we give lower bounds for the *-rectangular mod-
ulus of some particular two-dimensional spaces.
Example 1. Let X be a two-dimensional space which may be identified
with R?, with £%° norm in the first and third quadrants. Then the unit
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sphere Sx will be completed in the fourth quadrant by an arbitrary
convex arc of extremities (0, —1) and (1,0) and by a symmetric arc in
the second quadrant. For our purpose we use the equivalent definition
of u% given in [23, Lemma 2.2}:
C o )
Hx () = inf{|ltw + (1 — t) ]| : u,v € Sx,u Lv,t €[0,1]}

Choosing ug = (1,0) and vg = (0,1) we obtain that

A
px(A) = inf{||tug + (1 — ) Aol : t € [0,1]} ~
A
> = )
> n - ) - A+LVA>0
T+A T T

This implies also that ux(A) > A+ 1.

Example 2. Let £P(2) be the two-dimensional #P space 1 < p < 0.
The modulus of convexity of #P(2), for instance, is given explicitly for
p > 2 and by an implicit formula for p € (1,2), [13]. The modulus of
squareness of £P(2) is not known even in the case p = 4, [4].

Our intention is to obtain lower bounds (asymptotically exact)
for the rectangular modulus and in particular for the radial projection
constant in the case of £P(2) spaces. Using the symmetry of Bys(2) we
can choose u (in the definition of p%) in the first quadrant and v, with
u L v, in the second quadrant respectively. Then

u = (cos?/P t,sinz/p t) = (u1(t), ua(t)) = (u1,ua), ‘
( — COS(Z_zp)/p t Sin(z_zp)/p A ) .
U= ( = .

cos?=2P ¢ + sin® P ¢)1/P’ (cos?~2P ¢ 4 sin® P )1/P
= (—v1(8), v2(t)) = (—v1,v3),
for t € (0,7/2) and
A+s

uz) + s(—v1,v2)|lp

(
MZp(z)(A) :maxi T, 18> 0,t € (O,7r/2)} =

A+s
N : 0,t € (0,7/2) p=
max{(lul_5U1IP+(Ug+svz)p)1/p §>0,t € (0,7/ )}

=max{¢(s,t): s > 0,t € (0,7/2)}.
Supposing that ¢ is fixed and 0 < s < uy(t)/v1(t), we conclude that for
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ug(t)/va(t) < A, (s, t) < 9(so,t), where

ug(ur 4 ) YD gy Ay — up)t/e-D) Lu
T up(ug + Au) VD fug (Mg — ug) /=D T gy

is the root of the equation o _ 0. In the case 0 < s < wy(t)/v1(t) and
]
ug(t)/ua(t) > A we have:
Ut (t) ) /\’01 + Uy
(s, t) <y L) = 2rTH
st < <v1(t) U1V2 + Uy
After a straightforward computation, one obtains that
((Av1 + u1)? + (Mg — uy)9)Y/e uy (t)
2P| —5t),
U1V2 + UV ug(t)

where ¢ > 1 is the conjugate of p. The case s > uy(t)/uas(t) can be
treated in a similar way.Finally it follows that
(()\’Ul + ul)q + l)\’UQ — u2|q)1/q 1 + 1

=1
U1V + UgVq p q -

77b<307 t) -

h(s,t) <

and the inequality is sharp. Letting z = cos?t in the last inequality,
after a simple calculation one obtains

(1) pgp(ay(A) = max {[Aa — )Y gl e (gPle 4 (1 = x)P/q)l/P]q +

z€[0,1]
+ l,\wl/q —-(1- x>1/;n($p/q +(1- x)p/q)ﬂplq} 7 1.1 =1.
S )
Now we observe that the radial projection constant of £7(2) is given by:
k(2P(2)) = uge(2)(0+) =
(2) = max {(xq/p + (1 — )V e(gP/a 4 (1 - m)p/q)l/p} =
z€[0,1]

. 11
= liga(2)(0+) = k(£9(2)), » + P L.

If we put in (1), z = 0, respectively z = 1/2, it follows that

g —1]a\ /¢
Hge(2)(A) = max{(,\q_f.l)l/q’ (()“*'1) ;—I)\ | > }:
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1/q
A+D)7THA-17 5o
= { ( 2 ) 4= =1+p£q(2)()\),/\>0,

(A7 + 1)1, g€ (1,2)

where 1/p 4+ 1/q = 1. Remember ([19]) that the modulus of smooth-
ness of X verifies the functional equation px(7) = Tpx(1/7)+7—1
and that the Banach space X is uniformly convex if and only if
im0 (% (A) —A) =0, ([23]). Consequently

frer (2)(A) = max{u?p(z)(/\), )\MZp(z)(l/)\)} >

> max{l + ppa(2)(A); A + A pea(a)(1/A)} = 1+ peagz)(A).
Since #7(2) is uniformly convex, we have

i [gr(2)(X) =1 = pea()(A)] = 1 [pgn(2)(A) = A= pra() (A) +A—1] =

= Algglo[wp(z)(/\) = A= Apu(z(1/A)] =0

So, for large A, pier(2)(A) = 1+ pga(a)(A).
On the other hand, letting z = 1/p in (2) we have:
» 1\9/p  s1Na/p\Y/a,/1\P/9 ,1\P/a\1/pP

P —k(/? > — - - — =
e =wean ()" () ()" (") 2 0
and limp o0 f(p) = limpn1 f(p) = 2. Since k(X) = 2 if and only if X
is nearly square [25], taking into account that k(¢2(2)) = 1 it follows
{k(#?(2)) : p > 1} = [1,2). For instance, in the particular case p = 3 we
have k(£3(2)) = (1/3)(7V/T+17)}/3 = 1.09573 and f(3) = (1/3)(10v/2+
+15)Y/3 ~ 1.02577.
Theorem 1. The normed space X is nearly square if and only if

hm (uX()\) A) =2

Proof. In [23, Th. 2.6] we have obtained the following estimates for p%
in terms of the squareness modulus:

(1 =BM)Ex(BA) =1+ B) £ 7k (X)) - ) <

(/\)

< (1= 7 )Ex (YO + 1= + 75,94 > 2,

where B(\) = €31 (A +1),7(\) = € (A — 1). By [4, Th. 2.7] we have
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€51 (A) = 1/€,+(1/A),¥A > 1 and this implies that

e/ F1)) -1 1 e (/O +)) -1
1/(A+1) Er(/O+1))  &e(1/(A+1) ~
A,
gx*(l/()\—l))—l. 1 : gxa(l/()\—l))—1+_1_
) Ex (/A -1)) 7 &(1/(A-1) 4

From limy 00 A/p% (A) = 1 and limgn 0 €x(B) = £€x(0) = 1 we obtain
: * i — !
Jim (5 (A) = A) = £ (0)-

Since X is nearly square if and only if X is so (see [5, p.173]) and since
by [4, Th. 2.4 (iii)], X is nearly square if and only if % (0) = 2, the
result follows. ¢
Remarks. a) The normed space X is uniformly non-square if and only
if

lim (% (X)) = A) < 2.

A0

b) By €%(0) = 2p%(0), [4, Theorem 2.4 (iv)] we have also

Hmy—yo0 (0% (A) — A) = 29 (0) and
. * e — T * . 1 —
Jm [15(A) =1 = pys (V)] = lim (uk(A) =) = lim (Apye (1/2))
= plx* (0)1
for any normed space X. In particular X is uniformly convex if and
only if limy o0 [% (A) =1 — py= (A)] = 0.

C. Benitez, K.Przeslawski and D. Yost [4] proved that for each 5 €
€ (0,1) the real-valued map defined on the Banach-Mazur compactum
by X — £x(0) is continuous. The core of the proof was the following
special case of the Bishop-Phelps Theorem for finite dimensional spaces.
Lemma 2 [4]. Let X be a finite dimensional normed space, z € X, f €
€ X ,e>0 with ||z]| < 1, f(2) > ||f|| — . Then for any XA > 0, we can
Cfind 2 € X, f' e X with ||| < 1L, F(Z) = I,z - 2| <€/ and
I1f =7l <A

Using again Lemma 2 we shall show that for each A > 0 the real

map X — p%(A) is also continuous on the Banach-Mazur compactum.
More exactly we have:
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Theorem 3. Let X andY be two isomorphic normed spaces. Suppose
that the Banach-Mazur distance between them is less than 14262, where
0<d<1/7. Then for each A >0

1% (A) — py (A)] < §.

(13X +3)(2+ A)?
A

Proof. Since the *-rectangular modulus of a normed space is the supre-
mum of the *-rectangular moduli of its two-dimensional subspaces, we
consider only the case when X and Y are finite dimensional. By hy-
pothesis we may regard X and Y as the same vector space endowed
with equivalent norms || - || and ||| - ||| such that (1+6%)71|||z||]| < ||z]] <
< (1 + 8)|||lz||l, vz € X. Choose two || - ||-unit vectors u and v such
that v L v in (X,| - ||). By [1, p.33] v L v if and only if there exists
f € X with ||f|| = 1 such that f(u) = 1 and f(v) = 0. Fixing such
an f, we have 1 — 82 < |||f|l| < 1+ 62, |lu/(1+62)||| < 1 and f(u/(1+
+62)) = 1/(1 +6%) > 1 - 62 > |||f|l| — 26%. By Lemma 2, (applied for
e = 202 and A = §), there exist v’ € X, ||v/|| =1 and f' € X such
shat [[If[ll = £ (), llw — u/(1 + 6%)|Il < 26 and ||| — f'[l| < 4. Since

A< WA+ = F I < 1+6+ 62
and analogously [[|F'lIl = W/ =WFf = F1Il > 1 -6 — 6% we have

NN =61€(1—-686-6%1+6+d%). Let f” = f//61. Then |||f"||| =
=1,f'(u') = f'(v)/61 =1 and ‘

51——1f,

I = £ < s = £+
1

§5+5+52<3(5,0<5<%.

Since
@)= 1) = @1 <11 = £l vl < 36(1+6%),
we obtain f”(v) = 82 € (—=36(1 + 62),36(1 + 62)). On the other hand

« 1 : 1
llo = Saw'lll 2 lllvlll = G2 lljwlll = 1 - 6% = 36(1 +6%) > 5,0 < 6 < ,
and
—6% —36(1+6%) < [llv = bo/||| — 1 < 6% +36(1 + 62).
Define the ||| - |||-unit vector v’ by: v’ = (v — d2u’)/|||v — d2¢'|||- Then
£/ = 0 and f/w) = LI = 1 = [l ie. w L o in

(Y, |l - 1) For a fixed a € [0, 1] it follows that:
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[low + (1 = )| = [[law’ + (1 — a) '] <
< (L4 0%)llow + (1 = a)ll| = fllaw’ + (1 - a)xv'|f| <
< aflu =@l + (1= a)lv = v'[l| + 8[llew + (1 - )Mol <

u — +

<lu =l + Mo — o[ + 621+ 6%) (1 + A) <

u
1+ 42

1 v — dgu’ 9 9
1— . S
* “( 1+52>lll“ v mv—cszuwnm”(”“(”M
A
<2464 — .
lllv — dau|||

Cllo = 62w/ [l = L)v + Gou'[f| + 6% (1 + %) (1 + A) <
<26+ 6% + 22(||llv — /|| — 1-
vl + d2lflu'{ll) +62(1 +6%) (1 +X) <
<26+ 6% 4+ 201 + 6%)(6% + 36(1 + 6%))+
+6A6(1+6%) +8°(1+6%)(L+ ) <6(13A+3),0 < 6 < 1/7.
So for a fixed triple (o, u,v) witha € [0,1] and u,v € Sx,u L v in X,

there exists a triple (¢/,u',v') with o’ = a,u/,v' € Sy and v’ L v’ in
Y such that ;

lloaw + (1. — &)l — [flow’ + (1 — @) M']]| < §(13A + 3).

A L
min{|jou + (1 — a)Mv|| : @ € [0,1],u,v € Sx,u L v}

px(A) =

by symmetry it follows that

A | |
w5 (A) - M?()\)' < 5(13X+ 3),
and | | |
[k (A) = 3 (A)] < S‘.Qf’_’/\\i?ﬁﬂ*x(/\)u;()\)s 5(13/\+2:\)(,\+z)2' o

Corollary 4. Let X andY bé two isomorphic normed spaces. Suppose
that the Banach-Mazur distance between them is less than 14-262, where
0 <4 <1/7. Then for each A >0




36 I. Serb

(A + 1)(25A2 + 94X + 25)

lbx(A) —py(A)] <6 3

Proof. First we have

Ak (1/A) = Apy (/X)) < A (3A+13) (21 +1)2

A2 ’
and by Th. 3
lux(A) = py (N =
lmax{ux(k) Apx(1/A)} — max{py (A), Auy (1/A)} <

< ux(A) = (N + Ak (1/2) — Apgp (/X)) <

<182+ 3)(A +2)° |, (13+ 3)\)/\(2,\ +1)°] _

A+ 1)(25,\2 + 94\ + 25)

5 0

Corollary 5. Let A > 0 be fized and let X be a nearly square space.
Then p%(A) = A+ 2.

Proof. Since X contains arbitrarily close copies of £1(2) (in the Banach-
Mazur distance) and since p}, (2)()\) = A+ 2, by Th. 3 it follows that
A+2—e < pi(A) < A+2, for all € > 0, and the result follows. ¢

Let A be a non-void subset of the normed space X and z € X.
The radius of A relative to x is given by rad(z, A) = sup,c4 ||z — al|,
and the radius of A is defined by rad(A4) = inf e 4 rad(z, A). A normed
space X is said to have normal (w-normal) structure if the radius of
each bounded convex (weakly compact convex) subset A C X with
diam(A4) > 0 is strictly less than its diameter. Clearly, if X is reflexive,
then normal and w-normal structure coincide. The normed space X
is said to have uniformly normal structure if there exists 0 < ¢ < 1
such that rad(A4) < cdiam(A), for any bounded convex set A, with
diam(A4) > 0.

In [4, Prop. 2.9] the authors proved that if £x(8) < 1/(1 — f),
even for only one g € (0,1) then X has uniformly normal structure. A
similar result can be proved also for *-rectangular modulus.
Theorem 6. Let A > 0 be fized and suppose that pi(A) < A+1. Then
X has uniformly normal structure. -
Proof. At the beginning we show that X has w-normal structure.
Supposing that X does not have w-normal structure, then by [11,



Geometric properties of normed spaces 37

Lemma 2.3] there exist a sequence (¥;,)n>1 of two-dimensional sub-
spaces of X and symmetric hexagons inscribed in Sy, with length of
each side within 1/n of 1 and with at least four sides whose distances
to Sy, are < 1/n. We can suppose that there exists (in the Banach-
Mazur compactum of two-dimensional spaces) a space Y such that ¥ =
= lim, ¥,,, with respect to the Banach-Mazur distance. Generally Y is
not isometric to a subspace of X, but Y can be identified with one of
spaces described in Ex. 1. Then u3 (A) > A+ 1. By Th. 3, u%()) >
> sup,, py, (A) = p3-(A) > XA+ 1, a contradiction. Now, if u% (\) <
< A+ 1, by Cor. 5, the space X is uniformly non-square so that it is
reflexive. Therefore X has normal structure. Denoting now by X, an
ultrapower of X, (see [12, p.146]), since X is isometric to a subspace of
Xy and every finite-dimensional subspace of X3, is almost isometric to a
finite dimensional subspace of X ([12, Th. 14.2]) we have that p% (\) =
= p%,, (A), A > 0. Since every ultrapower of X has normal structure, by
a similar argument to that in [12, Th. 14.3], (see also [15], [17], [24]) we
conclude that X has uniformly normal structure. ¢ ,
Remarks. a) In the limit case A = 0, since p%(0+) = k(X) > 1,
the condition in Th. 6 becomes p% (0+) = 1. In this case X is an inner
product space of dimension > 3 or X is a two-dimensional space having
the symmetric Birkhoff orthogonality, [9]. In all cases X has uniformly
normal structure.

b) If limyso0 (1% (A) = A) = 20/%(0) < 1, then X and X~ have
uniformly normal structure. (See also [12, Th. 14.3)).

c¢) If px(A) < A+ 1 then X has uniformly normal structure.
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