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Abstract: Semi-confluent mappings between metric continua are investi-
gated. The obtained results concern compositions, pointed versions of semi-
confluence, and inverse limits properties. - Some examples related to semi-
confluent mappings of hereditarily indecomposable continua are also con-
structed.

Introduction

Let f : X — Y be a mapping between topological spaces. Then
f is said to be: :
— confluent provided that for each subcontinuum @ of Y and for
each component C of f~1(Q) we have f(C) = Q;
— weakly confluent provided that for each subcontinuum @ of Y
there is a component C of f~1(Q) such that f(C) = Q;
— semi-confluent provided that for each subcontinuum @) of Y and
for every two components C; and Cs of f~1(Q) we have either

f(C1) C f(Cy) or f(Ca) C f(Ch).
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The concept of confluent mappings, introduced by the first named
author in 1964, [2], has been extended by A. Lelek in 1971 to weakly con-
fluent mappings, [13], and by T. Mackowiak in 1973 to semi-confluent
ones, [14]. Semi-confluent mappings of continua were investigated in a
number of papers, see e.g. [14], [15], [10] and [4]. The present paper

contains a further study in this topic.
The paper consists of four sections. In the first of them conditions

are discussed which imply that the composition of semi-confluent map-
pings is semi-confluent. The second section is devoted to localization of
the global concept of semi-confluence. The concepts of pointed versions
of confluent and weakly confluent mappings, defined in [3], are here ex-
tended by introducing pointed versions of semi-confluent mappings, and

studying their properties.
Inverse limits are studied in the third section. First, it is shown

that if a class of mappings between compact spaces has the inverse limit
property, then it has the inverse limit projection property. (This general
result is not related to semi-confluent mappings only.) Next, inverse
limit property is obtained for pointed versions of semi-confluent and
strongly semi-confluent mappings. As a corollary and an application of
the general result it is shown that the class of semi-confluent mappings

has the inverse limit property and the inverse limit projection property.
Two examples related to hereditarily indecomposable continua are

presented in Section 4. The first of them shows that the known charac-
terizations of these continua in terms of confluent and of semi-confluent
mappings cannot be extended to wider classes of mappings, viz. to join-
ing mappings. The second example is related to the Eilenberg property.
It indicates that the presence of hereditarily indecomposable continua
is not necessary (both in domain and in range spaces) for examples
showing that the classes of mappings larger than ones of semi-confluent
(as locally semi-confluent, weakly confluent, or joining) do not have
the Eilenberg property. The paper contains also several open problems
related to obtained results.

1. Cdmpositions ‘

It is known that the composition f; o fi; of two semi-confluent
mappings f1 : X = Y and fo : Y — Z between continua need not be
semi-confluent, see [14, Ex. 3.4, p. 254] and [15, Ex. 5.10, p. 31]. The
implication holds under an additional assumption that f; is confluent,
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see [14, Th. 3.3, p. 254]. Another sufficient condition, now concerning
the mapping fo, is presented below. Recall that a monotone mapping
is defined as one with connected point-inverses.

1.1. Statement. If f1 : X — Y is semi-confluent and fo:Y — Z is
monotone, then the composition f = fs 0 fi is semi-confluent. '
Proof. Let @ C Z be a continuum. Since f; is monotone, f;1(Q) is a
continuum, and therefore components of f~1(Q) coincide with compo-
nents of fi'(f; 1(Q)). Taking some two of them, Cy and C,, we have
either f1(C1) C f1(C2) or vice versa by semi-confluence of f;, whence it

follows that either fo(f1(C1)) C f2(f1(C2)) or invertedly, as needed. ¢
The assumption that f, is monotone cannot be changed into its

openness, even if X, Y and Z are very simple locally connected con-
tinua. The following example shows this.
1.2. Example. If X is a simple triod, and Y and Z are closed seg-
ments, then there are a semi-confluent mapping f1 : X — Y and an
open mapping fo ' Y — Z such that the composition fy o fi is not
semi-confluent.
Proof. In the plane R? let pq stand for the straight line segment with
end points p and ¢. Putting ,
a=(1/2,1/2), b=(0,1), c= (0,0), d = (0,-1), e = (1/2,-1/2),

define X = abUbd U ce. Then X is a simple triod with end points
a, d and e, and with the center ¢. Let fi : X — Y = bd be the
projection defined by fi((z,y)) = (0,y) € Y for each point (z,y) € X,
and determine fy : Y — Z = be by f2((0,3)) = (0,]y|) € Z for each
point (z,y) € Y. Note that f; is semi-confluent, and fo is open. The
composition f = f3 o f; is not semi-confluent since for @ = {(0,y) €
€ Z:y € [1/4,3/4]} the set f~1(Q) has four components, and for some
two of them, C; = {(z,y) € ab: y € [1/2,3/4]} and Cy = {(=z,y) €
€ce:y € [1/4,1/2]}, we have f(Cy) = {(0,y) € Z : y € [1/2,3/4]}
and f(Cq) = {(0,y) € Z : y € [1/4,1/2]}, thus neither of the images is
contained in the other. ¢

The above example shows that Statement 1.1. cannot be extended
to MO-mappings (1.e., to compositions of open and monotone mappings,
the class being common generalization of the classes of monotone and
of open ones, see e.g. [15, p. 15]).

2. Local properties

For the (global) concépts of confluent, semi-confluent and weakly
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confluent mappings we have two implications, the first of which follows
from the definitions, and the second is shown in [14, Cor. 3.2, p. 254]
and in [15, Th. 3.8, p. 13].
2.1. Proposition. (a) Each confluent mapping is semz—conﬂuent. (b)
Each semi-confluent mapping between continua is weakly confluent.

In [3, p. 2] the following pointed version of a confluent mapping
have been introduced. A mapping f is said to be:

— confluent relative to a point p € X provided that for each sub-
continuum @ of ¥ with f(p) € @ the component of f —1(Q) that
contains the point p is mapped onto the whole @ under f.

Further, another pointed version has been introduced there, at a
point of the range space. However, some assertions related to the other
pointed version (at a point of the range space) of confluent mappings
are mistaken. To correct these assertions we should change either the
formulation of the assertions, or the introduced definition. Here the
latter case is applied. Namely we introduce now two concepts of a
pointed version of a confluent mapping at a point of the range space.
A mapping f is said to be:

— confluent at a point ¢ € Y provided that for each subcontinuum
Q of Y with with g € Q each component of f~!(Q) whose image
contains ¢ is mapped onto the whole ) under f;

— strongly confluent at a point ¢ € Y provided that for each sub-
continuum @ of Y with with ¢ € ) each component of f HQ)
is mapped onto the whole ¢} under f.

Now the following statement (compare [3, (4), p. 2]) is a conse-
quence of the definitions.

2.2. Statement. A mapping f: X — Y is confluent at a pointq €Y
if and only if it is confluent relative to each point of f~1(q).

Since the concept of mapping that is confluent at a point of its
range was used in [3] in the sense of the equivalence of 2.2, all assertions
formulated in [3] that concern the mentioned concept (namely [3, (4)
and (5), p. 2; Cors. 3 and 6, p. 5; and Cor. 12, p. 8]) remains valid for
the (new) definition of confluence at ¢ € Y as formulated above.

The mapping f : [0,1] — [0, 1] defined by f(z) = 2z for z € [0,1/
/2], and f(z) = 3/2 — z for = € [1/2,1] is confluent at ¢ = 0, while
not strongly confluent at this point. Consequently, by 2.2, it is not
confluent relative to the point 0 of the range, which is the only point
of the preimage f~!(g). This shows that assertion (4) of [3, p. 2] is
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not true if the (old) definition of confluence at ¢ as used in [3] (i.e., of
strong confluence as defined above) is applied in this assertion.
The pext statement is again a consequence of the definitions.
2.3. Statement. The following conditions are equivalent for a map-
ping f: X —=Y: ‘
(a) f is confluent;
(b) f is confluent relative to each point p € X;
(c) f is confluent at each point g €Y ;
(d) f 1is strongly confluent at each pointq €Y.
Concerning weakly confluent mappings pointed versions can be

formulated as follows (for the latter one see [3, p- 2]). A mapping
f: X — Y is said to be:

— weakly confluent relative to a point p € X (weakly confluent at
a point ¢ € Y ) provided that for each subcontinuum @ of ¥
with f(p) € Q (such that ¢ € Q) there exists a component of

~1(Q) that is mapped onto the whole @ under f.
Therefore f is weakly confluent relative to p € X if and
only if it is weakly confluent at f(p) € Y. Hence we have the
following statements.

2.4. Statement. A mapping f is:

(a) weakly confluent relative to a point p of its domain if and only
if it is weakly confluent at the point f(p);
(b) weakly confluent at a point q of its range if and only if it is
weakly confluent relative to each (to some) point of f~1(q).
2.5. Statement. The following conditions are equivalent for a map-
ping f: X = Y: ‘ ‘
(a) f is weakly confluent;
(b) f is weakly confluent relative to each point p € X;
(¢) f is weakly confluent at each point g €Y.

2.6. Proposition. (a) Each mapping confluent relative to a point p
of its domain is weakly confluent relative to p.

(b) Fach mapping confluent at a point q of its mnge 18 weakly
confluent at g.

Pointed versions of seml—conﬂuence can be defined as follows. A
mapping f: X — Y is said to be:

— semi-confluent relative to a point p € X provided that for each
subcontinuum @ of Y with f(p) € @ if C; is a component
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of f71(Q) that contains p, then for every component Cy of
F~HQ) such that f(p) € f(Cs) we have either f(C1) C f(Ca)
or f(C2) C f(C1);

— strongly semi-confluent relative to a point p € X provided that
for each subcontinuum @ of Y with f(p) € Q if Cj is a compo-
nent of f~!(Q) that contains p, then for every component C,
of f=1(Q) we have either f(C1) C f(C2) or f(Cs) C f(Cy);

— semi-confluent at a point ¢ € Y provided that for each subcon-
tinuum @ of Y with ¢ € @Q and for every two components C; and
Cy of f71Q) if g € F(C1) N f(Cy), then either f(Cy) C f(Co)
or f(Ca) C f(Ch); ‘

~— strongly semi-confluent at a point ¢ € Y provided that for each
subcontinuum @ of Y with ¢ € @) and for every two components
C1 and C; of f71(Q) we have either f(C1) C f(C2) or f(Cs) C
C f(C1).

Below we present some relations between introduced concepts.
Their proofs are consequences of the definitions, so they are left to the
reader.

2.7. Statement. A mapping f : X =Y is semi-confluent at a point
g €Y if and only if it is semi-confluent relative to each pomt off q).

The next result follows from the previous one.

2.8. Statement. A mapping f: X — Y is semi-confluent relative to
a point p € X if and only if it is semi-confluent at f(p).

For strong confluence of the mapping at a point of the range space
we have only one implication.

2.9. Statement. If a mapping f: X — Y is strongly semi-confluent
at a point q € Y then it is strongly semi-confluent relative to each point
of f~*(a)-

Consequently, if f is strongly semi-confluent at f(p), then it is
strongly semi-confluent relative to p. The opposite implication does
not hold by the following example.

2.10. Example. There exists a mapping from an arc onto a sim-
ple triod that is strongly semi-confluent relative to the only point p of
F7H(f(p)) but is not strongly semi-confluent at f(p).
Proof. Let X = [0,14]. Put in the plane v = (0,0), a = (0,2),
= (—2,0), ¢ = (2,0), and let Y be the union of three straight line
segments va, vb and ve. Additionally denote by a’, b’ and ¢’ the mid
points of the arms of Y. Define f : X — Y as piecewise linear mapping
determined by:
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FO)=d, f(1)=v, f3)=0, f(5)=v, f(T)=a, f(9) =0,
fA1) =¢, f(13)=wv, f(14) =4’

Then f is strongly semi-confluent relative to p = 7 which is the only
point of f~!(p), while taking Q = wa U vb' U vc’ we see that f is not
strongly semi-confluent at f(p) = a. ¢
2.11. Statement. The following conditions are equivalent for a map-
pingf: X —>Y:

(a) [ is semi-confluent;

(b) f is strongly semi-confluent relative to each pointp € X ;

(¢) f is strongly semi-confluent at each point g € Y.

Strong semi-confluence of the' mapping cannot be replaced by its
semi-confluence in parts (b) and (c) of 2.11 by the following example.
2.12. Example. There ezists a mapping from the Cantor fan onto
the two-cell which is semi-confluent relative to each point of its domain
and semi-confluent at each point of its range, while not weakly confluent
(and thus not semi-confluent). ,
Proof. Let C' be the Cantor ternary set lying in the standard way in
[0,1], and let g : C — [0,1] be the well known Cantor-Lebesgue step
function (see e.g. [11, §16, II, (8), p. 150]; compare [17, Chapter II, §4,
p. 35]). Consider the Cantor fan X as the cone over C with the vertex
v, and the two-cell Y as the cone over [0,1] with the vertex v’. For
each point ¢ € C map linearly the segment vc onto the segment v/g(c),
and let f : X — Y be the resulting mapping. Thus card f=1(q) < 2
for each ¢ € Y, and since f|vc is a homeomorphism, it follows that f is
both semi-confluent relative to each p € X and (by 2.8) semi-confluent
at each ¢ € Y. It is not weakly confluent since components of the
preimage of the base segment [0, 1] of ¥ are singletons in C which form
the base of X. Applying 2.1 we see that f is not semi-confluent. The
argument is complete. { ;

Relations between pointed versions of confluence and of semi-
confluence are formulated in the next statement, which again is a con-
sequence of the definitions.

2.13. Proposition. (a) Each mapping confluent relative to a point p
of its domain is strongly semi-confluent relative to p, hence it is semi-
confluent relative to p.

(b) Each mapping (strongly) confluent at a point q of its range is

(strongly) semi-confluent at q.
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2.14. Proposition. If a surjective mapping of a compact space is
strongly semi-confluent relative to a point p of its domain, then it is
weakly confluent relative to p.
Proof. Let a mapping f : X — Y of a compact space X be strongly
semi-confluent relative to a point p € X, and let a subcontinuum @
of Y contain the point f(p). Consider a family H of subcontinua H
of @ with f(p) € H and for which there is a continuum C C f~1(Q)
such that H = f(C). The family H is nonempty because {f(p)} €
€ H. The family is not only partially ordered, but even ordered by
inclusion, whence by compactness of X there is a maximal element M
in H. By the definition of H there is a subcontinuum K of f~1(Q)
such that M = f(K). We will show that M = @. Suppose that there
is a point ¢’ € @\ f(K). Take a component C of f~(Q) such that
¢ € f(C). Since f is strongly semi-confluent relative to p, we have
either f(C) C f(K) or f(K) C f(C). Since ¢’ € f(C) and ¢’ ¢ f(K),
the first inclusion does not hold. Thus f(K) C f(C) \ {¢'}, contrary
to the maximality of M. Thus f(K) = @, as needed. The proof is
complete. O

By Statements 2.9 and 2.4 we have the following corollary to 2.14.
2.15. Corollary. If a surjective mapping of a compact space is strongly
semi-confluent at a point q of its range, then it is weakly confluent at q.

Note that both assertions 2.14 and 2.15 are pointed versions of,
and therefore stronger results than, the above mentioned Prop. 2.1 (b).

3. ‘Inverse limits

The following notation will be used. S = {X), f{, A} denotes
an inverse system of topological spaces X, with (continuous) bonding
mappings f§ : X, — X, for any A < p, where A\, p € A, and A is a
set directed by a relation <. We assume that f,{‘ is the identity, and
we denote by X = @{X x fo, A} the inverse limit space. Further,
fx: X = X, denotes the projection from the inverse limit space into
the A-th factor space. Given a point p € X = lim {Xy, f§, A}, we put
px = fr(p) € X and we write p = (p*). Obviously we have

(3.1) f{(pu) =ps for any A p€A with A<

A point p € X, i.e., a system of points py € X, for A € A satisfying
(3.1) is called a thread. Besides, we denote by z* a point of X}, not
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necessary being the A-th coordinate of a thread; similarly, we will use
Ay C X, to denote a set of the form fy(A) for some A C X, while
A* C X, need not be of this form.

Let two inverse systems S = {X}, f{’, A} and T = {Y,, g7, X} are
given. By a mapping h of S to T we mean a family {¢, h?} consisting
of a nondecreasing function ¢ : ¥ — A such that the set ¢(X) is cofinal
in A, and of mappings h° : X,(s) —+ Y, defined for all 0 € ¥ and such

that g7 o h™ = h% o #2() i e. such that the diagram

w(o)’
5
Xo(o) —— Xp(n)
(3.2) "”l l,,;
Y, +— Y.

9z

is commutative for any o, 7 € X satisfying 0 < 7. Any mappingh : S —
— T induces a (continuous) mapping of X = lim StoY = lim T, called
the limit mapping induced by {p, h°} and denoted by h = Lgn{cp, ho}

: X =Y (see [7, Section 2.5, p. 101].

Let S = {X, f{, A} and T = {Y, g7, ¥} be inverse systems, and
let h = {p,h?} be a mapping of S into T. For some classes I of
mappings the implication

f& € Mt for each A\, p € A with A <y implies fy € M
(called the inverse limit projection property), and the implication

h? € Mforo € X implies h=lim{p,h7} €M

(called the inverse limit property) were discussed in several papers (see
e.g. [1], [3], [8], [16]). In the present chapter we first prove that the
inverse limit property implies the inverse limit projection property, and
next we investigate these two properties for semi-confluent mappmgs
between compact spaces. :

The first main result of the present section is the following.

3.3. Theorem. If a class of mappings between compact spaces has the
inverse limit property, then it has the inverse limit projection property.

Proof. Let 9t be a class of mappings and let S = {X}, f{', A} be an
inverse system of compact factor spaces X and bonding mappings f¥
belonging to M for all A < p. Fix g € A, put A’ ={A € A: Xy <A}
and consider two inverse systems. The former, S', is obtained from S
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by restricting the index set A to A, i.e., 8’ = {X), fi', A’}. The latter,
C, is a constant one, with all factor spaces equal to X, and with the
identities as the bonding mappings: C = {Y}, g}, A}, where Y} = X,
and g§ = f;\\g for all A, u € A’ with A < p. Take a mapping h: 8’ — C
defined by h* = f : X — X, for all A € A’. By assumption all
mappings h* are in 9M, and since 9 has the inverse limit property, it
follows that the limit mapping h : X — X, is also in 9. Consider
now the diagram

X, o x

i |

X)\O (-‘z— X)\O
in which 7 = ))\‘g stands for the identity mapping on X,,. Since the
diagram commutes (see [7, (6), p. 101]), we have io f), = % o h. Thus
fxo = h, and therefore fy, € 9, as needed. The proof is complete.

In connection with 3.3 it would be interesting to know if the im-

plication is true.
3.4. Remark. The converse implication to that of Th. 3.3 is not
true. Namely the class of all open mappings between metric continua
has the inverse limit projection property (see [16, Th. 5, p. 61]), while
it does not have the inverse limit property (see [5, Ex. 3. 24]).

Now we will show the second main result of this section.

3.5. Theorem. The class of (strongly) semi-confluent mappings rela-
tive to points of the domain spaces has the inverse limit property. More
precisely, let S = {Xy, fi', A} and T = {Y,, g7, L} be inverse systems,
and leth = {¢, h} be a mapping of S into T. If, for a point p = (p,) €
€ X, all mappings h? : X, (o) — Y, are (strongly) semi-confluent rela-
tive 10 Py(o) € Xp(o), then the limit mapping h: X — Y is (strongly)
semi-confluent relative to p.

Proof. We will argue for strong semi-confluence; for the other version
the proof is almost the same.

Take a subcontinuum @ C Y with h(p) € Q. Let A C X be the
component of A~*(Q) that contains the point p, and let B be any other
component of h~1(Q). We have to show that either h(A) C h(B) or
h(B) C h(A). ,

Let A®(°) stand for the component of (A%)~ (g, (Q)) that contains
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the point py(s). Since Ay(o) = fou(0)(4) C (h7)"Hgo(h(A))), it follows
that

(3.6) Ay C A®9) for each o € ¥.

Observe that f;p((;)) (A?(T)) c A0) ) whence it follows that A =

= {A¥(), f:‘:((;)) |A¥(T) | $} is a well defined inverse system of compact
spaces. We claim that

(3.7) lim A = A.
In fact, the left member of 3.7 is a continuum containing p, whose image
under h is contained in @), while A is, by its definition, the component
of h~1(Q) that contains p, so one inclusion follows. To see the other one
it is enough to note that A = lim {f,)(4), g((;)) |fo(ry(4), 5} C lim A
by (3.6). So (3.7) is established.

Fix a point ¢ € B and let B¥(?) be the component of (k%)™ ¥g,(Q))
that contains the point g, (). As previously for the component A we

can show that B = {B¥(%), f“’(T)|B‘P(T) ¥} is an inverse system, and
that

(3.8) lim B = B,
analogously to (3.7).
By assumption, for each ¢ € ¥ we have at least one of the two
inclusions
(3.9) he (A% ¢ ho(B¥(),
(3.10) he(B#()) C ho(A¥()).

Define £; = {0 € ¥ : (3.9) holds} and %5 = {o € ¥ : (3.10) holds}.
Then ¥ = 31 U X9, so at least one of these sets is cofinal in ¥. With-
out loss of generality we can assume that ¥; is cofinal in . Then

by (3.7) and (3.8) we have A = @{A‘P(”),f(f((;))mq’(ﬂ, Y1} and B =
= LiLn{B‘P(”),fg((;))lB‘P(T),El}. Since for each ¢ € ¥ inclusion (3.9)
holds, we infer that h(A) C h(B). The proof is finished. ¢

The next statement is a consequence of 3.3 and 3.5.

3.11. Statement. The class of (strongly) semi-confluent mappings
relative to points of the domain spaces has the inverse limit projection

property.
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By the equivalence of conditions (a) and (b) in 2.11, we get the
following corollary to 3.5 and 3.11.
3.12. Corollary. The class of semi-confluent mappings has the inverse
limit property and the inverse limit projection property.

4. Hereditarily indecomposable continua

A continuum X is said to be decomposable provided that it con-
tains two proper subcontinua whose union is X. Otherwise it is said to
be indecomposable. A continuum is said to be hereditarily decomposable
(hereditarily indecomposable) if each of its subcontinua is decomposable
(indecomposable, respectively). A mapping f : X — Y between con-
tinua is said to be hereditarily confluent (semi-confluent) provided that
for each subcontinuum X’ of X the restriction f|X': X' —» f(X)C Y
is confluent (semi-confluent, respectively).

The following statement summarizes known characterizations of
hereditarily indecomposable continua. ,

4.1. Statement. The following conditions are equivalent for a con-
tinuum Y :

(a) Y is hereditarily indecomposable;

(b) each mapping from a continuum X onto Y is confluent;

(c) each mapping from a continuum X onto Y is hereditarily con-
fluent;

(d) each mapping from a continuum X onto Y is semi-confluent;

(e) each mapping from a continuum X ontoY is hereditarily semi-
confluent. '

Proof. Equivalence of conditions (a), (b) and (c) is known (see e.g.
[15, (6.11), p. 53], where references to the original proofs are given).
Implications from (c) to (e) and from (e) to (d) are obvious. Finally
equivalence of (a) and (e) is proved in [9, Th. 5.1, p. 359]. The argument
is then complete. ¢

A class of mappings that is wider than the class of semi-confluent
ones is the class of joining mappings. Recall that a mapping f : X =Y
between continua is said to be joining provided that for each subcon-
tinuum @ of Y and for every two components C; and Cy of f~1Q)
we have f(C1) N f(Cy) # 0. One can ask if the above characterization
of hereditarily indecomposable continua can be extended by adding the
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class of (hereditarily) joining mappings to the list presented in 4.1. The
answer to this question is negative by the following example.

4.2. Example. IfY is the one-point union of two hereditarily inde-
composable continua, then each mapping from a continuum X onto Y
1S joining.

Proof. Let P; and P, be two hereditarily indecomposable continua
such that P; N Py = {p}, and let Y = P; U P,. Consider a surjection
f: X — Y from a continuum X. To show that f is joining take a
subcontinuum @ of Y and consider three cases.

Case 1. @ C P\ P,. Let 7 : Y — P; be a retraction that shrinks
P, to the singleton {p}. Since P; is hereditarily indecomposable, the
composition r o f : X — P; is confluent according to equivalence of
conditions (a) and (b) of 4.1. Therefore each component of f~1(Q) =
= (r o f)~}(Q) is mapped onto the whole Q, and thus the condition in
the definition of a joining mapping is obviously satisfied.

Case 2. Q C P, \ P;. The argument is the same as for Case 1.

Case 3. p € Q. We will show that for each component C of
f~HQ) we have p € f(C). Suppose the contrary, i.e., that there is a
component C of f~(Q) such that p ¢ f(C). Then either f(C) C P\ P,
or f(C) C P;\ P;. Assume the former inclusion. Let K be a continuum
in X satisfying f(C) € K C P;\{p}. Then C is a component of f~*(K)
with f(C) € K, contrary to the conclusion of Case 1. Thus p € f(C)
for each component C of f~1(Q), so the needed condition holds. The
proof is complete. ¢

Let R be the real line, C be the complex plane, and S= {z € C:
: |z| = 1} be the unit circle. A mapping a : X — S of a separable metric
space X is said to be inessential (writing & ~ 1 on X) provided
that it belongs to the same component of the space SX as the constant
mapping ap : X — {1} C S (compare [17, Chapter 11, Part b, §§5-9]).
- For compact spaces X the condition & ~ 1 on X is equivalent to
the existence of a mapping ¢ : X — R such that a = p o ¢, where the
universal covering projection p: R — S is defined by p(t) = exp(2mit)
for t € R ([6, Th. 1, p. 162]; compare [17, Chapter 11, §6, Cor. 6.22,
p. 226]).

We say that a mapping f : X — Y from a space X onto a space Y’
has the Eilenberg property provided that for every mapping g: Y — S
the implication holds
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(4.3) if gof~1 on X, then g~1 on Y.

Note that the condition g ~ 1 on Y obviously implies go f ~ 1 on X
for every surjection f: X — Y (namely one can put y = pof: X -+ R
to have g o f = p o). Thus the implication (4.3) can be replaced by
the equivalence of the two conditions go f ~1on X andg~1lonY.

A continuum is said to be hereditarily unicoherent provided that
the intersection of any two its subcontinua is connected. The follow-
ing result is a consequence of [10, Th. 4.2, p. 350] (where the authors
consider mappings g from continua into an arbitrary graph G in place
of S).

4.4. Proposition. Fach semi-confluent mapping f : X =Y of a con-
tinuum X onto a hereditarily unicoherent continuum Y has the Eilen-
berg property.

According to [10, Problem 1, p. 353] it is not known whether
hereditary unicoherence of Y is an essential assumption in the above
quoted result. Thus we have the following question which is a particular
case of Problem 1 of [10].

4.5. Question. Is it true that each semi-confluent mapping between
continua has the Eilenberg property?

A mapping f : X — Y is said to be locally semi- conﬂuent pro-
vided that for each point z € X there is a closed neighborhood V of
the point = such that f(V') is a closed neighborhood of f(z) and the
partial mapping f|V is semi-confluent. It is known that neither weakly
confluent, nor joining, nor locally semi-confluent mappings have the
Eilenberg property, even if the continuum Y is hereditarily unicoher-
‘ent, see [4, Statement 14 and Ex. 15, p. 99]. Namely there exist an
arc-like continuum X, a hereditarily unicoherent continuum Y, and a
weakly confluent, joining and locally semi-confluent mapping f : X —
—+ Y and a surjection g : Y — Ssuch that gof ~1 on X andgnon~ 1
on Y. The range space Y in the example above cannot be hereditarily
decomposable, see [4, Remark 16, p. 100]. However, the continuum Y in
the constructed example contains the pseudo-arc. Thus one can ask if
it is true that each continuum Y having the above discussed properties
must contain a hereditarily indecomposable contmuum The answer is
negative by the following example.

4.6. Example. There exist an arc-like continuum X and a hered-
itarily unicoherent continuum Y, both containing no hereditarily in-
decomposable subcontinua, and a weakly confluent, joining and locally
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semi-confluent mapping f : X — Y and a surjection g :' Y — S such
thatgof~1o0onX andg non~1onY.
Proof. Let P be an indecomposable arc-like Knaster-type continuum
with exactly two end points (see e.g. [12, §48, V, Ex. 3 (Fig. 5), p. 205]).
Then each proper subcontinuum of P is an arc. Denote the end points
of P by a and b and note that they are in different composants of P.
Put :

X = (P x{0,1})/{(a,1),(b,0)} and Y = P/{a,b}.
Thus X and Y are hereditarily unicoherent continua no one of which
contains any hereditarily indecomposable subcontinuum, and X is arc-
like. Define f : X — Y by f((s,t)) = s for s € P and ¢t € {0,1}.
Denoting p = {(a,1),(b,0)} € X and ¢ = {a,b} € Y we have

F7Ha) = {(a,0),p, (b,1)} and ™} (y) = {(y,0), (3, )} for y € ¥\ {g}.
The reader can verify that f is weakly confluent and joining; an ar-
gument that it is locally semi-confluent is the same as in [4, Ex. 15,

p. 99]. ¢
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