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Abstract: Let R be a prime algebra over a commutative ring K of char-
acteristic different from 2, d # 0 a non-zero derivation of R, f(z1,...,%n)
a non-central multilinear polynomial over K in n non-commuting variables,
a € R such that a[d(f(r1,...,7n)), f(r1,...,7n)] =0, for any r1,...,rn € R.
Then a = 0.

In [13] Posner proved that if R is a prime ring and d a non-zero
derivation of R such that [d(z),z] € Z(R), the center of R, for all z €
€ R, then R must be commutative. Many related generalizations have
been obtained in the literature, by considering the k-th commutator
[d(z), z]r which, for k > 1, is defined by [d(z), z]x = [[d(z), z]k—1, z].
In [7] Lanski showed that if [d(z),z]r = 0, for all = in a Lie ideal
of R, then either L is central in R or char(R) = 2 and R satisfies
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Sy(z1,...,T4). Since a non-central Lie ideal of a prime ring R con-
tains all the commutators [z, y] for z,y in some non-zero ideal except
when char(R) = 2 and R satisfies Sy(z1,...,%4), it is natural to inves-
tigate the situation when f(zi,...,2,) is a (multilinear) polynomial
and [d(f(z1,-.-,%n)), f(1,-..,Zn)]k is a differential identity for some
ideal of R. The result obtained by P.H. Lee and T.K. Lee in [8] and
[9] show that in the multilinear case the polynomial f(z1,...,T,) must
be central-valued unless char(R) = 2 and R satisfies S4(z1,...,%4). In
our recent paper we considered an other related generalization; more
precisely in [3] we describe the structure of a semiprime algebra R such
that any non-zero valuation of [d(f(z1,...,Zn)), f(Z1,...,2Tn)] is an
invertible element of R. Here we will continue the study of the set

S={[d(f(z1,.-yZn)) [(Z1,- -, Zn)], 21,1 Zn € R},

by proving the following result
Theorem 1. Let R be a prime algebra over a commutative ring K of
characteristic different from 2, d a non-zero derivation of R, f(z1,..

.y Zn) a non-central multz’linear polynomial over K in n non-commut-
ing indeterminates, a € R. If a[d(f(r1,...,7mn)), f(r1,...,mn)] =0, for
any r1,...,mn € R, then a = 0 that is Anng(S) = 0.

Remark 1. Our assumption on the characteristic of R is needed as the
following example shows: ‘

Let F be a field of characteristic 2, R = My(F), the ring of 2 x 2
matrices over F' and f(z1,%2) = [z1,Z2] the commutator polynomial.
Let d be the inner derivation induced by a non-central element g €
€ M, (F), that is d(z) = [g, z], for all z € My(F'); thus, for any r1,7r9 €
€ My (F),

[d(f(Tla TZ))a f(Tl,Tz)] = [Q7 [7‘1’ 7'2]]2’: [qa [7‘1’ TZ]Z] =0

because [r1,72]? € Z(My(F')). This implies S = 0 and so Anng(S) = R.

Of course we do not consider the case when R is a domain; in fact,
in this case, either Anng(S) = 0or [d(f(r1,...,7n)), f(r1,..., )] =0,
for any 71,...,7, € R. In this condition, by [8], f(z1,...,Z,) must be
central in R

In all that follows let Q) be the Martindale quotient ring of R and
C = Z(Q) the center of Q, T = Q xcC{X} the free product over C of
the C-algebra @ and the free C-algebra C{X}, with X the countable
set consisting of non-commuting indeterminates z1,zs,...,Zn,... . We
refer the reader to [1] for the definitions and the related properties of
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these objects.
We recall that every derivation of R can be uniquely extended to

a derivation of (). Moreover, since R is a prime ring, we may assume
K C C and so for any a € K one has d(a) € C.
We will use the following notation:

f(z1,..yzn) = 2129 .. Ty + Z QoTo(1)To(2) - - ) To(n)

'Uesn :
for some a, € C and moreover we denote by f4(z1,...,z,) the polyno-
mial obtained from f(z;,...,z,) by replacing each coefficient o, with
d(a,). Thus we write '
d(f(riy ... ) = f3(ry,... +Zfr1,..., )reerTn),
for all r{,79,...,7, in R. Hence if

a € Anng({{d(f(r1,...,mn)), f(r1,...,ma)], 7s € R})
then R satisfies the generalized differential identity

ald(f(21,-- -, Tn)), (@1, T0)] =
_a([fd (1,..., +Zf (x1,...,d(z;), ...,:cn),f(:vl,...,:cn)])

Since by [10] R and @ satisfy the same differential identities, then

ald(f(ri,...,mn)), f(re,.. ;)] =0, forall ri,...,7, € Q.

Of course @ is a prime ring and, by replacing R by @, we may assume,
without loss of generality, R = @, C = Z(R) and R is a C-algebra
centrally closed. We also assume char(R) # 2 and f(z1,...,Z,) non-
central valued.

We begin with the following:
Lemma 1. Ifd is an outer derivation of R then a = 0.
Proof. Suppose by contradiction that a #* 0. Since R satisfies the
generalized differential identity

- ad(f (@ z0)), f(21, - 20)] =
L (T CRNNES S By ENN CORRES I RS |

and d is an outer derivation, then, by Kharchenko’s theorem (see [6]
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and [10]), R satisfies the generalized polynomial identity
a‘[fd(mla" -7$n) +Zf($17 ey Yis "7xn>7f($17-- wmn)]

and in particular a[f(z1,Z2,..-,Yiy.-sTn), f(T1,Z2,...,2,)] for 4 =
=1,...,n. This means that R satisfies a non-trivial generalized polyno-
mial identity. Since, as we said above, R is a C-algebra centrally closed,
then by [12] R is a dense ring of linear transformations of a vector space
V over a division ring .D. We will prove that R must satisfy the ordi-
nary polynomial identities [f(z1,...,Yi,.- ., Zn), f(Z1,...,2Zn)], for any
1 =1,...,n. By first suppose that dimp V = oco. Let v any vector of
V. If v and av are linearly independent over D then there exist vectors
V2,...,Unp—1, Wi,...,Ws such that v,av = v1,vs,...,Un_1,W1,...,Wn
are linearly independent. By density of R there exist r1,...,7,5, € R
such that

rv=0 Vi TV, = Ui_1, 1=2,...,m—1;

TiWi = Wi-1, 1= 2,000,050 TIUL=Wei o T1W1 =0
riv; = r;w; = 0 for all other possible choices
SpU = Up_1; Sp0; = spwj =0 V.

Thus we have:
fry,...,mn)v=0, f(ry,...,"n—1,80)0 =Wn, [(r1,-..,"n)Wp = v.

Therefore we get the contradiction

0=al[f(r1, .. ."n-1,5n), f(r1,...,mn)]v = —av # 0.
This implies that, for any v € V, v and av are linearly D-dependent,
and by standard arguments it follows that ¢ € Z(R). Since a # 0,we
get that [f(z1,...,Zn-1,Yn), f(T1,-..,T,)] is an identity in R.

More generally, in the same way we can prove that, for any 7 =
=1,...,n, [f(®1,.. -, Yir.- -, Tn), f(Z1,. .., Ts)] is & polynomial identity
for R.

Let now dimp V = k finite and forany i = 1,...,n let

S’i - {[f('rlr",si?'"7rn)7f(7'17"'7rn)]7 Tiy...,Tn,; 8 € R}
Consider the following subring of R : A = N, Anng(S;). Since R
is not a domain then k¥ > 2 and R contains some non-trivial idem-
potent element. Moreover A is invariant under the action of all spe-

cial automorphisms of R, in the sense of [4] and so one of the follow-
ing holds: either A = R or A C Z(R), that is a € Z(R). In both
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cases, since a # 0 and R is prime, as above we have that, for any 7,
[f(z1, ..y Yis--yTn), f(z1,...,2pn)] is a polynomial identity for R.
Now we will prove that R satisfies the polynomial identity

[f(ylw . ‘7yn)7f(x17' . '7x'n)]n = 0.
By first, applying d to [f(s1,72,---,7n), f(T1,...,7n)] = 0, we have
0=[f%s1,79,...,7mn) + f(d(51),72,...,7n)+
+Zf(sl,7‘2,...,d(ri),...,Tn),f(rl,...,rn)]—i-

i>2

+[f(31:7'2>--->;"n) f T1ye.. +Zf Ty ) Tn)]

As above, since d is not an inner derlvatlon, R must satisfy the poly-
nomial identity

[f%(y1, 22,y Tn) + 21,20, ..., Zp)+
+Zf(ylax27'")y’ia"'7mn)7.f($17"')$n)]+

i>2

+[f(y1, 22, - -, Tn), [ (21, - - —I—Zf T1yee ey Uiserrs Tn))-

Of course the blended component of this 1dent1ty in the n + 2 variables
Y1, Y2, L1, X2, - - ., Tp i the following polynomial

[f(yl,yg,xg, s Tp), [z, ..,xn)]—i—

+[f(?!17$2, e @), [(T1, Y2, - -,xn)}

and, by [5, Lemma 1 pag. 15], it is a polynomial identity for R too.
Therefore, by commuting this last identity with f(z1,.,2z,), we obtain
the following polynomial identity

‘ [f(y17y21 .- '7$n)7 f($11 .. '7-’1711.)]2-
Now apply d to [f(s1,52,73y---,7n), f(T1,-..,7n)]2 = 0. We have
[fd(sla 52,73, 'a’rn), f('rla . '7rn)]2 +
[f(d(31)7 52,73, '7’rn) + f(sla d(32)’r37 ey Tn)+

+3 f(s1,82,73, -5 d(ri), i), Ty )]t

i>3
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+[[f(31732,7‘3, sy ST, )+

1D DY (RN RS S|

+[[f(517327T3a .- '7Tn)’f('r1> .. '7"’,71)]) fd(rla »e ';’rn)'i‘
+Zfr1,.. d(r:),. )]zo.

As above, since d is not an inner derivation, R must satisfy the poly-
nomial identity

[fd(y17y27$3a .. .,",En)’ f(xly e 71"71,)]2 +
+[f(Z]_, Y2,T35. .., mn) + f(yh 22,23, .- '-a :E'n)—l_

+Zf(y17y2am3a'--7yi7"'7$n>7f(3317"')$n)]2+
i>3

-+ [[f(yl’ Y2,T3y ..., mn), fd(mlv v 7$n)+
n

—{—Zf(a:l,...,y,;,...,xn)],f(q;l,...,xn)]+

i=1

+{[f(y1, Y2, T3y - - +y Tpy)s f(:rl, ) .,mn)], fd(azl, ey Tp)F

+Zf 1y Yis- )]-

The blended component of this identity in the n + 3 variables
~ Y1, Y2, Y3, T1; T2y -« 5 Ty
is the following ‘
(1) [y y2, 98, T4 - ), FZ1, - TR) ot
+[f (Y1, 92,73, -1 Tn), [ (21, T2, Y3, Tay - -, Ta)], [0, ) [+
H[f (y1,¥2, T35 -« -y ), F (@15 -+ o, )]s F(Z1, T2, Y3, Tay « -« 5 Tn)]
Hence R must satisfy this last identity ([5]). Since

[f(ylv Y2,23, .., xn); f(IE]_, sey mn)]Z
and
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[f(mh T2,Y3,T4,y..., xn)’ f(x‘la vey mn)]

are identities for R, by commuting the (1) with f(z1,...,2,) we get
that

[f(yla Y2, y3a Tdyeroy "En)) f(mla ey wn)]?:
is an identity for R.
Continuing this process we will finally get

[f(s1y---y8n), f(T1,...,mn)]n = 0, for all 31,...‘, SnyT1y---5Tn € R.

By main theorem in [8] f(z1,...,Z,) is a central polynomial for R. In
light of this contradiction, a must be zero and this conclude the proof. ¢
Remark 2. In all that follows we will consider the only case when d is
an inner derivation induced by a non-central element g of Q).
Remark 3. Recall that if B is a basis of @) over C, then any element
of T = Q * ¢cC{z1,...,2,} can be written in the form g = Y. aym,
where a; € C and m; are B-monomials, that is m; = qoy1 - - * “Yngn,
with ¢; € B and y; € {z1,...,%,}. In [2] it is showed that a generalized
polynomial g = >, a;m; is the zero element of T if and only if any «;
is zero. As a consequence, if a1, as € Q are linearly independent over C
and a191(21,...,%,) + a2ga(z1,...,2,) = 0 € T, for some g1,92 € T,
then both g1(z1,...,2zs) and ga(z1,...,z,) are the zero element of T
Lemma 2. If R does not satisfy any non-trivial generalized polynomial
identity, then a = 0.

Proof. Since R does not satisfy any non-trivial generalized polynomial
identity, we have that

alg, f(T1,- .-, Tn)]2
is the zero element in the free product T' = Q *¢C{z1,...,z,}, that is

a(qf(a:l, o)+ f2n, ., Tn) g

—2f(z1,. - xn)qf(z1,. ,a:n)) =0eT.
Suppose aq # 0 and a, aq linearly independent over C. We have
aqf(zi,...,on)? +a(f(z1,. .., 7n) g~
—2f(z1y- - 2n)qf(Z1,. .., 2n)) =0€ T\

By Remark 3, aqf(z1,...,7,)% =0 € T. Since R does not satisfy any
non-trivial generalized polynomial identity, this forces ag = 0, which is
a contradiction.
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Thus we assume a, aq linearly C-dependent, that is
ag = Pa,f € C and also a(f—q)=0.

Moreover ¢ and ¢ — 8 induce the same inner derivation in R. Hence,
without loss of generality, we may analyze the case ag = 0. In this case
we have

9(x1, .. Tn) = af(z1,...,Tn)q—
—2af(z1,...,20)qf(z1,...,2n) =0 € T.

If a and g are linearly independent over C, we can consider a represen-
tation of g in terms of B-monomials, for some basis B which contains
a and g. In this representation occour two kind of B-monomials; more
precisely they are:

@ Tr(1)Zr(2) " Lr(n)  To(1)Zpo(2) * ** To(n) * ¢ Which come from the
addend af?(z1,...,7,)q;

0 Ty(1)To(2) " To(n) "4 Tr(1)Tr(2) " ** Tr(n) which come from the
addend af(z1,...,z,)qf(z1,...,Tn).

By Remark 3 we obtain that both

af?(z1,...,20)q and af(zy,...,zn)qf (Z1,. .., Tn)

are the zero element in 7'. Since ¢ # 0, we get the required conclusion
a=0.

Finally, if a and ¢ are linearly dependent over C then, for some
v € C, we have

g("El) fee 73771) - fyqu(:l"l) .. -,.'L'n,)q—
—2vqf(z1,...,2Tn)af(1,...,0,) =0 € T.

In this case, for B containing ¢, the B-monomials which occour are the
following:

9 Tr(1)Tm(2) """ Tr(n) " To(1)Te(2) * " " To(n) * T
4" To(1)To(2) """ To(n) "9 Tr1)Tr(2) " LTr(n)-
Since g ¢ C then, as above we obtain

qf*(z1,...,2,)g=0 and af(z1,-.-,2n)af (21, s 2n) =0 in T.

In any case we must have ¢ = 0, a contradiction. ¢
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Lemma 3. Let R be a dense ring of linear transformations over an
infinite dimensional right vector space V' over a division ring D. Then
a=0.

Proof. Suppose that a is non-zero.

Our first aim is to show that for any v € V then v, qu are linearly
D-dependent.

By contradiction let 4 qu be D-independent. There exists w, wy, . . .
-y Wn_1, V1,...,Vp—1 € V such that v,qv = v, w, w1 ..., Wp_1,v1,...
,Un—1 are linearly mdependent By the density of R, there exist
T1,...,7n € R such that ‘
riv=0, Vi, ru=rw=0, Vi#n;, ru=wp_1, TaW=Up_1;
TiW; —W; -1, TiU; —=Vj-1, 7;:2,...,7’1,-—1; w1 =w, TiV1=7,

rv;=0 rw;=0, forall other possible choices.
By calculation we obtain:

f(ri,...,rn)v =0, f(Tl,...,rn)u:w, 'f(rl,...,rn)w :’,U;

Hence, if av is non-zero, then we get the contradiction

0=alg, f(r1,...,mn)]2v = af(r1,-..,7n)?u = av # 0.

Now suppose av = 0.

Since a # 0, there exists w € V such that aw # 0. Hence a(w —
—v) = aw # 0. By the previous argument we have that w,qw are
linearly D-dependent and (w — v), g(w — v) too.

Thus there exist ¢,d € D such that qw = wc and g(w — v) =
= (w —v)d. Moreover v, w are linearly independent and so there exist
W3, ..., Wnp—1 € V such that v, w, ws, ..., w,_1 are linearly independent
and r1,...,7, € R such that '

70 =0 Vi 7ow=w,_1
riw=0 1=1,...,n—-1;, nw=w;—1, 1=2,...,n—1

riwy = w—v, r;w; =0 for all other possible choices.
This implies that

flry,...,rn)v =0, f(rl,...,fn)w =w—uv, f(ry,...,m)’w=w-v

and



78 V. De Filippis and O.M. Di Vincenzo

0=a(f(ry,...,rn)q+

4qf(re, ... ) =2f(r1y oy ma)af (e, o mR))w =
= a((w —v)e+ (w—v)d — 2(w — v)d) = awc — awd = aw(c — d).

Because aw # 0 then ¢ = d and gqv = wvd, that is v,qu are linearly
D-dependent in any case. Standard arguments prove that there exists
B € D such that quv = vf3, for all v € V and also, by using this fact,
that ¢ € Z(R), which contradicts our hypotesis. ¢

Proof of Theorem 1. By the previous results, we assume that d
is the inner derivation induced by ¢ € R, moreover C' = Z(R) and R
is a C-algebra centrally closed, that is R = RC. If R does not satisfy
any non-trivial generalized polynomial identity then, by Lemma 2, a =
= 0. Thus we may suppose that R satisfies a non-trivial generalized
polynomial identity. By Martindale’s theorem in [12], R is a primitive
ring which is isomorphic to a dense ring of linear transformations of
a vector space V over a division ring D. If dimpV = oo, then, by
Lemma 3, we get the required conclusion.

Therefore we consider the case dimp(V) = k, with & finite pos-
itive integer. Of course & > 2, because R is not a domain. In this
condition R is a simple ring which satisfies a non-trivial generalized
polynomial identity. By [7, Lemma 2; 14, Th. 2.3, 29] R C M(F),
for a suitable field F' and t > 2, moreover M;(F') satisfies the same
generalized identity of R, hence

alg, f(ri,...,ma)]2 =0, for all 71, ..., 7 € My(F)

and moreover f(zy,...,Z,) is a non-central polynomial for M;(F).
Since f(z1,...,Zn) is not central then, by [11], there exist u1,...,u, €
€ My(F) and b € F — {0}, such that f(u1,...,u,) = bex, with k # L.
Here eg; denotes the usual matrix unit with 1 in (k,1)-entry and zero
elsewhere. Moreover, since the set {f(v1,...,Vn) : V1;...,0n € My(F)}
is invariant under the action of all F-automorphisms of M;(F'), then for
any @ # j there exist r1,...,7, € My(F) such that f(ry,...,7,) = be;;.
Hence, for all 1 # j,

0=ualq, f(r1,...,7n)]2 = —2b%ae;;qe;;.

In other words, since char(R) # 2 and b # 0, either the i-th column of
the matrix a is zero or, for all j different from 4, the (j,i)-entry g;; of ¢
is zero.

Case 1: t = 2. Suppose that ¢ is not a diagonal matrix, say qi12 #
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# 0. In this case, as we said above, the 2-nd column of a is zero. Of
course we may assume go; = 0, otherwise the first column of a is zero
too, and we are done. In other words we are in the following situation:

_ | Q11 g1z . . o111 0
Q“‘lio q22jla Q127é0a a“f{azl 0]
Now, since f(z1,...,%n) is not central for M(F), by [11, Lemmas 2
and 9], there exists a sequence of matrices r = (ri,...,7n) such that
f(r) = aeiy + PBesz is not central, that is o #+ 3. Let ¢ the inner
automorphism on M(F) defined by ¢(z) = (1 + ex1)z(1 — e21). Thus
f(s) = fle(r)) = f(r) + (@ — B)ez1 is a valuation of f on E.

By calculation, it follows that

g, f(8)l2 = (o — B)? { —qiz Qm} -

go2 — q11 — 2412 Q12

Tf a # 0, since alg, f(s))2 = 0 and (g, f()]2)* € F we have that
(lg, £(8)]2)? = 0. This implies that

@3, + q2(g22 — qu1 — 2q12) = 0, that is g12(ge2 — q11 — q12) =0
and, since gqi2 # 0,
ga2 — qu1 — q12 = 0, thatis gu2 —q11 — 2q12 = —Q12-
Therefore

[%“Qh=mﬂa—m2tﬁ H
and

0= alg, F(al = anle~ 0 [ 00 2]

—a21 021

that is a11 = ao1 = 0 and we get the contradiction that a = 0.

Of course we get the same contradiction in the case ga1 #+ 0. To
do this we choose the inner automorphism (z) = (1 + e12)z(1 — €12),
replace f(p(r)) by f(3(r)) and proceed as before.

Thus we conclude that if k = 2 then ¢ must be a diagonal matrix.

Case 2: t > 3. Also in this case we want to prove that ¢ is a
diagonal matrix. Suppose that there exists some non-zero entry gj; of
g, for i # j. As we said above the i-th column of a is zero. Let m # 4,
and Qmi(z) = (1 + emi)z(1 — em;). Consider the following valutations
of f(a;l, ey .’En)l
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f(r) =veij,  f(8) = omi(f(r)) = ves; + vems, ¥ # 0.

Since f(s)? = 0 we have

0 = alg, f(8)]2 = —2v%alei; + emj)aleij + em;)-

Moreover, since the i-th column of a is zero, we obtain —2v%a(g;; +
+ @jm)em; = 0. Notice that if g;; + ¢jm = 0, then gjm = —g; # 0, so
the m-th column of a is zero. On the other hand, if gji + @jm # 0, it
follows again that the m-th column of a is zero. Hence we can say that
a has at most one non-zero column, the j-th one.

Let now ¢ any F-automorphism of M;(F), then

0= ¢(a)[¢(Q)> ¢(f(T1a s 7Tn))]2 — ¢(a)[¢(9), f(sla ey Sn)]Z

for all s1,..., 8, € My(F). Therefore, as above, we can conclude that,
if the (j,i)-entry of ¥(q) is non-zero, for some j # i, then 1(a) has at
most one non-zero column, the j-th one.

Let now 9%(z) = (1 + ejm)z(l — ejm)), with m # 7,i. Hence
¥(q) = ¢+ ejmq — qejm — €jmgejm and so its (j,i)-entry is gj; + gmq-

If gj; + qmi = 0 then gj; = —gm; # 0, that is the (m,i)-entry of ¢
is non-zero. In this case a has at most one non-zero column, the m-th
one; but m # j and so any column of a is zero.

If gj; + qms # 0 then the (j,i)-entry of 1(g) is non-zero, hence 9 (a)
has at most one non-zero column, the j-th one.

Since ¥(a) = (3, anjen; +amje€j;) — (Xop Anjehm +am;€jm), then,
for any h # j must be ap; = 0 and also a;; + am; = 0. But in this
situation we get a = 0. Therefore, if a # 0, then g;; = 0, for all j # .

The previous two cases show that ¢ is a diagonal matrix, ¢ =
= ) qgrkerk. Moreover if ¢ is an automorphism of M;(F), the same
conclusion holds for ¢(g), since as above

0= ¢(a){w(a), (£ (1, .. n))]2 = ¢(a)[p(a), (51 - .-, 5n)l2-

Therefore, for any i # j, ¢(q) = (1 + e;;)q(1 — e;;) must be a diagonal
matrix. Thus (g;; — gis)es;; = 0, that is ¢j; = ¢;; and ¢ is a central
element.. This contradiction implies a = 0 and we are done. ¢
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