POSNER'S SECOND THEOREM AND AN ANNIHILATOR CONDITION

V. De Filippis

Dipartimento di Matematica, Università di Messina, Salita Sperone, contrada Papardo, 98166 Messina, Italia

O. M. Di Vincenzo

Dipartimento di Matematica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italia

Received: September 1999

MSC 2000: 16 N 60, 16 W 25

Keywords: Derivation, PI, GPI, prime ring, differential identity.

Abstract: Let R be a prime algebra over a commutative ring K of characteristic different from 2, $d \neq 0$ a non-zero derivation of R, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over K in n non-commuting variables, $a \in R$ such that $a[d(f(r_1, \ldots, r_n)), f(r_1, \ldots, r_n)] = 0$, for any $r_1, \ldots, r_n \in R$. Then a = 0.

In [13] Posner proved that if R is a prime ring and d a non-zero derivation of R such that $[d(x), x] \in Z(R)$, the center of R, for all $x \in R$, then R must be commutative. Many related generalizations have been obtained in the literature, by considering the k-th commutator $[d(x), x]_k$ which, for k > 1, is defined by $[d(x), x]_k = [[d(x), x]_{k-1}, x]$. In [7] Lanski showed that if $[d(x), x]_k = 0$, for all x in a Lie ideal of R, then either L is central in R or char(R) = 2 and R satisfies

 $S_4(x_1,\ldots,x_4)$. Since a non-central Lie ideal of a prime ring R contains all the commutators [x,y] for x,y in some non-zero ideal except when $\operatorname{char}(R)=2$ and R satisfies $S_4(x_1,\ldots,x_4)$, it is natural to investigate the situation when $f(x_1,\ldots,x_n)$ is a (multilinear) polynomial and $[d(f(x_1,\ldots,x_n)),f(x_1,\ldots,x_n)]_k$ is a differential identity for some ideal of R. The result obtained by P.H. Lee and T.K. Lee in [8] and [9] show that in the multilinear case the polynomial $f(x_1,\ldots,x_n)$ must be central-valued unless $\operatorname{char}(R)=2$ and R satisfies $S_4(x_1,\ldots,x_4)$. In our recent paper we considered an other related generalization; more precisely in [3] we describe the structure of a semiprime algebra R such that any non-zero valuation of $[d(f(x_1,\ldots,x_n)),f(x_1,\ldots,x_n)]$ is an invertible element of R. Here we will continue the study of the set

$$S = \{ [d(f(x_1, \dots, x_n)), f(x_1, \dots, x_n)], x_1, \dots, x_n \in R \},\$$

by proving the following result

Theorem 1. Let R be a prime algebra over a commutative ring K of characteristic different from 2, d a non-zero derivation of R, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over K in n non-commuting indeterminates, $a \in R$. If $a[d(f(r_1, \ldots, r_n)), f(r_1, \ldots, r_n)] = 0$, for any $r_1, \ldots, r_n \in R$, then a = 0 that is $Ann_R(S) = 0$.

Remark 1. Our assumption on the characteristic of R is needed as the following example shows:

Let F be a field of characteristic 2, $R = M_2(F)$, the ring of 2×2 matrices over F and $f(x_1, x_2) = [x_1, x_2]$ the commutator polynomial. Let d be the inner derivation induced by a non-central element $q \in M_2(F)$, that is d(x) = [q, x], for all $x \in M_2(F)$; thus, for any $r_1, r_2 \in M_2(F)$,

$$[d(f(r_1,r_2)),f(r_1,r_2)] = [q,[r_1,r_2]]_2 = [q,[r_1,r_2]^2] = 0$$

because $[r_1, r_2]^2 \in Z(M_2(F))$. This implies S = 0 and so $\operatorname{Ann}_R(S) = R$. Of course we do not consider the case when R is a domain; in fact, in this case, either $\operatorname{Ann}_R(S) = 0$ or $[d(f(r_1, \ldots, r_n)), f(r_1, \ldots, r_n)] = 0$, for any $r_1, \ldots, r_n \in R$. In this condition, by $[8], f(x_1, \ldots, x_n)$ must be central in R.

In all that follows let Q be the Martindale quotient ring of R and C = Z(Q) the center of Q, $T = Q *_{C}C\{X\}$ the free product over C of the C-algebra Q and the free C-algebra $C\{X\}$, with X the countable set consisting of non-commuting indeterminates $x_1, x_2, \ldots, x_n, \ldots$. We refer the reader to [1] for the definitions and the related properties of

these objects.

We recall that every derivation of R can be uniquely extended to a derivation of Q. Moreover, since R is a prime ring, we may assume $K \subseteq C$ and so for any $\alpha \in K$ one has $d(\alpha) \in C$.

We will use the following notation:

$$f(x_1,\ldots,x_n)=x_1x_2\ldots x_n+\sum_{\sigma\in S_n}\alpha_\sigma x_{\sigma(1)}x_{\sigma(2)}\ldots x_{\sigma(n)}$$

for some $\alpha_{\sigma} \in C$ and moreover we denote by $f^{d}(x_{1}, \ldots, x_{n})$ the polynomial obtained from $f(x_{1}, \ldots, x_{n})$ by replacing each coefficient α_{σ} with $d(\alpha_{\sigma})$. Thus we write

$$d(f(r_1,...,r_n)) = f^d(r_1,...,r_n) + \sum_i f(r_1,...,d(r_i),...,r_n),$$

for all r_1, r_2, \ldots, r_n in R. Hence if

$$a \in \text{Ann}_R(\{[d(f(r_1, \dots, r_n)), f(r_1, \dots, r_n)], r_i \in R\})$$

then R satisfies the generalized differential identity

$$a[d(f(x_1,\ldots,x_n)),f(x_1,\ldots,x_n)] =$$

$$= a\Big([f^d(x_1, ..., x_n) + \sum_i f(x_1, ..., d(x_i), ..., x_n), f(x_1, ..., x_n)] \Big)$$

Since by [10] R and Q satisfy the same differential identities, then

$$a[d(f(r_1,...,r_n)), f(r_1,...,r_n)] = 0, \text{ for all } r_1,...,r_n \in Q.$$

Of course Q is a prime ring and, by replacing R by Q, we may assume, without loss of generality, R = Q, C = Z(R) and R is a C-algebra centrally closed. We also assume $\operatorname{char}(R) \neq 2$ and $f(x_1, \ldots, x_n)$ noncentral valued.

We begin with the following:

Lemma 1. If d is an outer derivation of R then a = 0.

Proof. Suppose by contradiction that $a \neq 0$. Since R satisfies the generalized differential identity

$$a[d(f(x_1,\ldots,x_n)),f(x_1,\ldots,x_n)] =$$

$$= a\Big(\big[f^d(x_1,\ldots,x_n) + \sum_i f(x_1,\ldots,d(x_i),\ldots,x_n), f(x_1,\ldots,x_n)\big]\Big)$$

and d is an outer derivation, then, by Kharchenko's theorem (see [6]

and [10]), R satisfies the generalized polynomial identity

$$a[f^d(x_1,...,x_n) + \sum_i f(x_1,...,y_i,...,x_n), f(x_1,...,x_n)]$$

$$egin{aligned} r_i v &= 0 \quad orall i; & r_i v_i &= v_{i-1}, \quad i &= 2, \dots, n-1; \ r_i w_i &= w_{i-1}, \quad i &= 2, \dots, n; & r_1 v_1 &= w_n; & r_1 w_1 &= v; \ r_i v_j &= r_i w_j &= 0 & ext{for all other possible choices} \ s_n v &= v_{n-1}; & s_n v_j &= s_n w_j &= 0 & orall j. \end{aligned}$$

Thus we have:

 $f(r_1, \ldots, r_n)v = 0$, $f(r_1, \ldots, r_{n-1}, s_n)v = w_n$, $f(r_1, \ldots, r_n)w_n = v$. Therefore we get the contradiction

$$0 = a[f(r_1, \dots, r_{n-1}, s_n), f(r_1, \dots, r_n)]v = -av \neq 0.$$

This implies that, for any $v \in V$, v and av are linearly D-dependent, and by standard arguments it follows that $a \in Z(R)$. Since $a \neq 0$, we get that $[f(x_1, \ldots, x_{n-1}, y_n), f(x_1, \ldots, x_n)]$ is an identity in R.

More generally, in the same way we can prove that, for any i = 1, ..., n, $[f(x_1, ..., y_i, ..., x_n), f(x_1, ..., x_n)]$ is a polynomial identity for R.

Let now dim DV = k finite and for any i = 1, ..., n let

$$S_i = \{ [f(r_1, \dots, s_i, \dots, r_n), f(r_1, \dots, r_n)], \quad r_1, \dots, r_n, s_i \in R \}.$$

Consider the following subring of $R: A = \bigcap_{i=1}^n \operatorname{Ann}_R(S_i)$. Since R is not a domain then $k \geq 2$ and R contains some non-trivial idempotent element. Moreover A is invariant under the action of all special automorphisms of R, in the sense of [4] and so one of the following holds: either A = R or $A \subseteq Z(R)$, that is $a \in Z(R)$. In both

cases, since $a \neq 0$ and R is prime, as above we have that, for any i, $[f(x_1, \ldots, y_i, \ldots, x_n), f(x_1, \ldots, x_n)]$ is a polynomial identity for R.

Now we will prove that R satisfies the polynomial identity

$$[f(y_1,\ldots,y_n), f(x_1,\ldots,x_n)]_n = 0.$$

By first, applying d to $[f(s_1, r_2, \ldots, r_n), f(r_1, \ldots, r_n)] = 0$, we have

$$0 = [f^{d}(s_{1}, r_{2}, \dots, r_{n}) + f(d(s_{1}), r_{2}, \dots, r_{n}) + \sum_{i \geq 2} f(s_{1}, r_{2}, \dots, d(r_{i}), \dots, r_{n}), f(r_{1}, \dots, r_{n})] +$$

$$+[f(s_1,r_2,\ldots,r_n),f^d(r_1,\ldots,r_n)+\sum_i f(r_1,\ldots,d(r_i),\ldots,r_n)].$$

As above, since d is not an inner derivation, R must satisfy the polynomial identity

$$[f^{d}(y_{1}, x_{2}, \dots, x_{n}) + f(z_{1}, x_{2}, \dots, x_{n}) + \sum_{i \geq 2} f(y_{1}, x_{2}, \dots, y_{i}, \dots, x_{n}), f(x_{1}, \dots, x_{n})] + + [f(y_{1}, x_{2}, \dots, x_{n}), f^{d}(x_{1}, \dots, x_{n}) + \sum_{i} f(x_{1}, \dots, y_{i}, \dots, x_{n})].$$

Of course the blended component of this identity in the n+2 variables $y_1, y_2, x_1, x_2, \ldots, x_n$ is the following polynomial

$$[f(y_1, y_2, x_3, \dots, x_n), f(x_1, \dots, x_n)] + [f(y_1, x_2, \dots, x_n), f(x_1, y_2, \dots, x_n)]$$

and, by [5, Lemma 1 pag. 15], it is a polynomial identity for R too. Therefore, by commuting this last identity with $f(x_1, ., x_n)$, we obtain the following polynomial identity

$$[f(y_1, y_2, \ldots, x_n), f(x_1, \ldots, x_n)]_2.$$

Now apply d to $[f(s_1, s_2, r_3, ..., r_n), f(r_1, ..., r_n)]_2 = 0$. We have

$$[f^{d}(s_{1}, s_{2}, r_{3}, \dots, r_{n}), f(r_{1}, \dots, r_{n})]_{2} + [f(d(s_{1}), s_{2}, r_{3}, \dots, r_{n}) + f(s_{1}, d(s_{2}), r_{3}, \dots, r_{n}) + \sum_{i>3} f(s_{1}, s_{2}, r_{3}, \dots, d(r_{i}), \dots, r_{n}), f(r_{1}, \dots, r_{n})]_{2} +$$

$$egin{aligned} &+ \Big[[f(s_1, s_2, r_3, \dots, r_n), f^d(r_1, \dots, r_n) + \\ &+ \sum_{i=1}^n f(r_1, \dots, d(r_i), \dots, r_n)], f(r_1, \dots, r_n) \Big] + \\ &+ \Big[[f(s_1, s_2, r_3, \dots, r_n), f(r_1, \dots, r_n)], f^d(r_1, \dots, r_n) + \\ &+ \sum_{i=1}^n f(r_1, \dots, d(r_i), \dots, r_n) \Big] = 0. \end{aligned}$$

As above, since d is not an inner derivation, R must satisfy the polynomial identity

$$\begin{split} \left[f^{d}(y_{1},y_{2},x_{3},\ldots,x_{n}),f(x_{1},\ldots,x_{n})\right]_{2} + \\ + \left[f(z_{1},y_{2},x_{3},\ldots,x_{n}) + f(y_{1},z_{2},x_{3},\ldots,x_{n}) + \right. \\ + \sum_{i\geq 3} f(y_{1},y_{2},x_{3},\ldots,y_{i},\ldots,x_{n}),f(x_{1},\ldots,x_{n})\right]_{2} + \\ + \left[\left[f(y_{1},y_{2},x_{3},\ldots,x_{n}),f^{d}(x_{1},\ldots,x_{n}) + \right. \right. \\ + \left. \sum_{i=1}^{n} f(x_{1},\ldots,y_{i},\ldots,x_{n})\right],f(x_{1},\ldots,x_{n})\right] + \\ + \left[\left[f(y_{1},y_{2},x_{3},\ldots,x_{n}),f(x_{1},\ldots,x_{n})\right],f^{d}(x_{1},\ldots,x_{n}) + \right. \\ + \left. \sum_{i=1}^{n} f(x_{1},\ldots,y_{i},\ldots,x_{n})\right]. \end{split}$$

The blended component of this identity in the n+3 variables

which is
$$y_1,y_2,y_3,x_1,x_2,\ldots,x_n$$
 becomes the constant of $y_1,y_2,y_3,x_1,x_2,\ldots,x_n$

is the following

(1)
$$[f(y_1, y_2, y_3, x_4, \dots, x_n), f(x_1, \dots, x_n)]_2 +$$

$$+ [[f(y_1, y_2, x_3, \dots, x_n), f(x_1, x_2, y_3, x_4, \dots, x_n)], f(x_1, \dots, x_n)] +$$

$$+ [[f(y_1, y_2, x_3, \dots, x_n), f(x_1, \dots, x_n)], f(x_1, x_2, y_3, x_4, \dots, x_n)]$$

Hence R must satisfy this last identity ([5]). Since

$$[f(y_1, y_2, x_3, \ldots, x_n), f(x_1, \ldots, x_n)]_2$$

and

$$[f(x_1, x_2, y_3, x_4, \ldots, x_n), f(x_1, \ldots, x_n)]$$

are identities for R, by commuting the (1) with $f(x_1, \ldots, x_n)$ we get that

$$[f(y_1, y_2, y_3, x_4, \ldots, x_n), f(x_1, \ldots, x_n)]_3$$

is an identity for R.

Continuing this process we will finally get

$$[f(s_1,\ldots,s_n),f(r_1,\ldots,r_n)]_n=0, \text{ for all } s_1,\ldots,s_n,r_1,\ldots,r_n\in R.$$

By main theorem in [8] $f(x_1, ..., x_n)$ is a central polynomial for R. In light of this contradiction, a must be zero and this conclude the proof. \Diamond **Remark 2.** In all that follows we will consider the only case when d is an inner derivation induced by a non-central element q of Q.

Remark 3. Recall that if B is a basis of Q over C, then any element of $T = Q *_{C}C\{x_{1}, \ldots, x_{n}\}$ can be written in the form $g = \sum_{i} \alpha_{i} m_{i}$, where $\alpha_{i} \in C$ and m_{i} are B-monomials, that is $m_{i} = q_{0}y_{1} \cdot \cdot \cdot \cdot y_{n}q_{n}$, with $q_{i} \in B$ and $y_{i} \in \{x_{1}, \ldots, x_{n}\}$. In [2] it is showed that a generalized polynomial $g = \sum_{i} \alpha_{i} m_{i}$ is the zero element of T if and only if any α_{i} is zero. As a consequence, if $a_{1}, a_{2} \in Q$ are linearly independent over C and $a_{1}g_{1}(x_{1}, \ldots, x_{n}) + a_{2}g_{2}(x_{1}, \ldots, x_{n}) = 0 \in T$, for some $g_{1}, g_{2} \in T$, then both $g_{1}(x_{1}, \ldots, x_{n})$ and $g_{2}(x_{1}, \ldots, x_{n})$ are the zero element of T. Lemma 2. If R does not satisfy any non-trivial generalized polynomial identity, then a = 0.

Proof. Since R does not satisfy any non-trivial generalized polynomial identity, we have that

$$a[q, f(x_1, \ldots, x_n)]_2$$

is the zero element in the free product $T = Q *_{C} C\{x_{1}, \ldots, x_{n}\}$, that is

$$a\Big(qf(x_1,\ldots,x_n)^2+f(x_1,\ldots,x_n)^2q-$$
$$-2f(x_1,\ldots,x_n)qf(x_1,\ldots,x_n)\Big)=0\in T.$$

Suppose $aq \neq 0$ and a, aq linearly independent over C. We have

$$aqf(x_1,...,x_n)^2 + a(f(x_1,...,x_n)^2q - 2f(x_1,...,x_n)qf(x_1,...,x_n)) = 0 \in T.$$

By Remark 3, $aqf(x_1, ..., x_n)^2 = 0 \in T$. Since R does not satisfy any non-trivial generalized polynomial identity, this forces aq = 0, which is a contradiction.

Thus we assume a, aq linearly C-dependent, that is

$$aq = \beta a, \beta \in C$$
 and also $a(\beta - q) = 0$.

Moreover q and $q - \beta$ induce the same inner derivation in R. Hence, without loss of generality, we may analyze the case aq = 0. In this case we have

$$g(x_1, ..., x_n) = af^2(x_1, ..., x_n)q -$$

 $-2af(x_1, ..., x_n)qf(x_1, ..., x_n) = 0 \in T.$

If a and q are linearly independent over C, we can consider a representation of g in terms of B-monomials, for some basis B which contains a and q. In this representation occour two kind of B-monomials; more precisely they are:

 $a \cdot x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n)} \cdot x_{\varrho(1)} x_{\varrho(2)} \cdots x_{\varrho(n)} \cdot q$ which come from the addend $af^2(x_1,\ldots,x_n)q$;

 $a \cdot x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)} \cdot q \cdot x_{\tau(1)} x_{\tau(2)} \cdots x_{\tau(n)}$ which come from the addend $af(x_1, \ldots, x_n) qf(x_1, \ldots, x_n)$.

By Remark 3 we obtain that both

$$af^2(x_1,\ldots,x_n)q$$
 and $af(x_1,\ldots,x_n)qf(x_1,\ldots,x_n)$

are the zero element in T. Since $q \neq 0$, we get the required conclusion a = 0.

Finally, if a and q are linearly dependent over C then, for some $\gamma \in C$, we have

$$g(x_1, \dots, x_n) = \gamma q f^2(x_1, \dots, x_n) q - \frac{1}{2} (x_1, \dots, x_n) q - \frac{1}{2} (x_1, \dots, x_n) q f(x_1, \dots, x_n) = 0 \in T.$$

In this case, for B containing q, the B-monomials which occour are the following:

$$q \cdot x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n)} \cdot x_{\varrho(1)} x_{\varrho(2)} \cdots x_{\varrho(n)} \cdot q;$$

$$q \cdot x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)} \cdot q \cdot x_{\tau(1)} x_{\tau(2)} \cdots x_{\tau(n)}.$$

Since $q \notin C$ then, as above we obtain

$$qf^2(x_1,\ldots,x_n)q=0$$
 and $qf(x_1,\ldots,x_n)qf(x_1,\ldots,x_n)=0$ in T .
In any case we must have $q=0$, a contradiction. \Diamond

Lemma 3. Let R be a dense ring of linear transformations over an infinite dimensional right vector space V over a division ring D. Then a = 0.

Proof. Suppose that a is non-zero.

Our first aim is to show that for any $v \in V$ then v, qv are linearly D-dependent.

By contradiction let v, qv be D-independent. There exists $w, w_1, \ldots, w_{n-1}, v_1, \ldots, v_{n-1} \in V$ such that $v, qv = u, w, w_1, \ldots, w_{n-1}, v_1, \ldots, v_{n-1}$ are linearly independent. By the density of R, there exist $r_1, \ldots, r_n \in R$ such that

$$r_i v = 0$$
, $\forall i$; $r_i u = r_i w = 0$, $\forall i \neq n$; $r_n u = w_{n-1}$, $r_n w = v_{n-1}$; $r_i w_i = w_{i-1}$, $r_i v_i = v_{i-1}$, $i = 2, ..., n-1$; $r_1 w_1 = w$, $r_1 v_1 = v$; $r_i v_j = 0$ $r_i w_j = 0$, for all other possible choices.

By calculation we obtain:

$$f(r_1, ..., r_n)v = 0, \quad f(r_1, ..., r_n)u = w, \quad f(r_1, ..., r_n)w = v.$$

Hence, if av is non-zero, then we get the contradiction

$$0 = a[q, f(r_1, \dots, r_n)]_2 v = af(r_1, \dots, r_n)^2 u = av \neq 0.$$

Now suppose av = 0.

Since $a \neq 0$, there exists $w \in V$ such that $aw \neq 0$. Hence $a(w - v) = aw \neq 0$. By the previous argument we have that w, qw are linearly D-dependent and (w - v), q(w - v) too.

Thus there exist $c, d \in D$ such that qw = wc and q(w - v) = (w - v)d. Moreover v, w are linearly independent and so there exist $w_3, \ldots, w_{n-1} \in V$ such that $v, w, w_3, \ldots, w_{n-1}$ are linearly independent and $r_1, \ldots, r_n \in R$ such that

$$r_iv=0 \quad \forall i; \quad r_nw=w_{n-1}$$
 $r_iw=0 \quad i=1,\ldots,n-1; \quad r_iw_i=w_{i-1}, \quad i=2,\ldots,n-1$ $r_1w_1=w-v, \quad r_iw_i=0 \quad ext{for all other possible choices}.$

This implies that

$$f(r_1, \dots, r_n)v = 0$$
, $f(r_1, \dots, r_n)w = w - v$, $f(r_1, \dots, r_n)^2 w = w - v$
and

$$0 = a(f(r_1, \dots, r_n)^2 q + qf(r_1, \dots, r_n)^2 - 2f(r_1, \dots, r_n)qf(r_1, \dots, r_n))w = qf(w - v)c + (w - v)d - 2(w - v)d = awc - awd = aw(c - d).$$

Because $aw \neq 0$ then c = d and qv = vd, that is v, qv are linearly D-dependent in any case. Standard arguments prove that there exists $\beta \in D$ such that $qv = v\beta$, for all $v \in V$ and also, by using this fact, that $q \in Z(R)$, which contradicts our hypotesis. \Diamond

Proof of Theorem 1. By the previous results, we assume that d is the inner derivation induced by $q \in R$, moreover C = Z(R) and R is a C-algebra centrally closed, that is R = RC. If R does not satisfy any non-trivial generalized polynomial identity then, by Lemma 2, a = 0. Thus we may suppose that R satisfies a non-trivial generalized polynomial identity. By Martindale's theorem in [12], R is a primitive ring which is isomorphic to a dense ring of linear transformations of a vector space V over a division ring D. If $\dim_D V = \infty$, then, by Lemma 3, we get the required conclusion.

Therefore we consider the case $\dim_D(V) = k$, with k finite positive integer. Of course $k \geq 2$, because R is not a domain. In this condition R is a simple ring which satisfies a non-trivial generalized polynomial identity. By [7, Lemma 2; 14, Th. 2.3, 29] $R \subseteq M_t(F)$, for a suitable field F and $t \geq 2$, moreover $M_t(F)$ satisfies the same generalized identity of R, hence

$$a[q, f(r_1, ..., r_n)]_2 = 0$$
, for all $r_1, ..., r_n \in M_t(F)$

and moreover $f(x_1, \ldots, x_n)$ is a non-central polynomial for $M_t(F)$. Since $f(x_1, \ldots, x_n)$ is not central then, by [11], there exist $u_1, \ldots, u_n \in M_t(F)$ and $b \in F - \{0\}$, such that $f(u_1, \ldots, u_n) = be_{kl}$, with $k \neq l$. Here e_{kl} denotes the usual matrix unit with 1 in (k, l)-entry and zero elsewhere. Moreover, since the set $\{f(v_1, \ldots, v_n) : v_1, \ldots, v_n \in M_t(F)\}$ is invariant under the action of all F-automorphisms of $M_t(F)$, then for any $i \neq j$ there exist $r_1, \ldots, r_n \in M_t(F)$ such that $f(r_1, \ldots, r_n) = be_{ij}$. Hence, for all $i \neq j$,

$$0 = a[q, f(r_1, \dots, r_n)]_2 = -2b^2 a e_{ij} q e_{ij}.$$

In other words, since $\operatorname{char}(R) \neq 2$ and $b \neq 0$, either the i-th column of the matrix a is zero or, for all j different from i, the (j,i)-entry q_{ji} of q is zero.

Case 1: t=2. Suppose that q is not a diagonal matrix, say $q_{12} \neq$

 $\neq 0$. In this case, as we said above, the 2-nd column of a is zero. Of course we may assume $q_{21} = 0$, otherwise the first column of a is zero too, and we are done. In other words we are in the following situation:

$$q = \begin{bmatrix} q_{11} & q_{12} \\ 0 & q_{22} \end{bmatrix}, \quad q_{12} \neq 0; \qquad a = \begin{bmatrix} a_{11} & 0 \\ a_{21} & 0 \end{bmatrix}.$$

Now, since $f(x_1, ..., x_n)$ is not central for M(F), by [11, Lemmas 2 and 9], there exists a sequence of matrices $\underline{r} = (r_1, ..., r_n)$ such that $f(\underline{r}) = \alpha e_{11} + \beta e_{22}$ is not central, that is $\alpha \neq \beta$. Let φ the inner automorphism on $M_t(F)$ defined by $\varphi(x) = (1 + e_{21})x(1 - e_{21})$. Thus $f(\underline{s}) = f(\varphi(\underline{r})) = f(\underline{r}) + (\alpha - \beta)e_{21}$ is a valuation of f on R.

By calculation, it follows that

$$[q, f(\underline{s})]_2 = (\alpha - \beta)^2 \begin{bmatrix} -q_{12} & q_{12} \\ q_{22} - q_{11} - 2q_{12} & q_{12} \end{bmatrix}.$$

If $a \neq 0$, since $a[q, f(\underline{s})]_2 = 0$ and $([q, f(\underline{s})]_2)^2 \in F$ we have that $([q, f(\underline{s})]_2)^2 = 0$. This implies that

$$q_{12}^2 + q_{12}(q_{22} - q_{11} - 2q_{12}) = 0$$
, that is $q_{12}(q_{22} - q_{11} - q_{12}) = 0$ and, since $q_{12} \neq 0$,

$$q_{22} - q_{11} - q_{12} = 0$$
, that is $q_{22} - q_{11} - 2q_{12} = -q_{12}$.

Therefore

$$[q, f(\underline{s})]_2 = q_{12}(\alpha - \beta)^2 \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$

and

$$0 = a[q, f(\underline{s})]_2 = q_{12}(\alpha - \beta)^2 \begin{bmatrix} -a_{11} & a_{11} \\ -a_{21} & a_{21} \end{bmatrix}$$

that is $a_{11} = a_{21} = 0$ and we get the contradiction that a = 0.

Of course we get the same contradiction in the case $q_{21} \neq 0$. To do this we choose the inner automorphism $\psi(x) = (1 + e_{12})x(1 - e_{12})$, replace $f(\varphi(\underline{r}))$ by $f(\psi(\underline{r}))$ and proceed as before.

Thus we conclude that if k=2 then q must be a diagonal matrix.

Case 2: $t \geq 3$. Also in this case we want to prove that q is a diagonal matrix. Suppose that there exists some non-zero entry q_{ji} of q, for $i \neq j$. As we said above the i-th column of a is zero. Let $m \neq i, j$ and $\varphi_{mi}(x) = (1 + e_{mi})x(1 - e_{mi})$. Consider the following valutations of $f(x_1, \ldots, x_n)$:

$$f(\underline{r}) = \gamma e_{ij}, \quad f(\underline{s}) = \varphi_{mi}(f(\underline{r})) = \gamma e_{ij} + \gamma e_{mj}, \quad \gamma \neq 0.$$

Since $f(\underline{s})^2 = 0$ we have

$$0 = a[q, f(\underline{s})]_2 = -2\gamma^2 a(e_{ij} + e_{mj})q(e_{ij} + e_{mj}).$$

Moreover, since the i-th column of a is zero, we obtain $-2\gamma^2 a(q_{ji} + q_{jm})e_{mj} = 0$. Notice that if $q_{ji} + q_{jm} = 0$, then $q_{jm} = -q_{ji} \neq 0$, so the m-th column of a is zero. On the other hand, if $q_{ji} + q_{jm} \neq 0$, it follows again that the m-th column of a is zero. Hence we can say that a has at most one non-zero column, the j-th one.

Let now ψ any F-automorphism of $M_t(F)$, then

$$0 = \psi(a)[\psi(q), \psi(f(r_1, \dots, r_n))]_2 = \psi(a)[\psi(q), f(s_1, \dots, s_n)]_2$$

for all $s_1, \ldots, s_n \in M_t(F)$. Therefore, as above, we can conclude that, if the (j,i)-entry of $\psi(q)$ is non-zero, for some $j \neq i$, then $\psi(a)$ has at most one non-zero column, the j-th one.

Let now $\psi(x) = (1 + e_{jm})x(1 - e_{jm})$, with $m \neq j, i$. Hence $\psi(q) = q + e_{jm}q - qe_{jm} - e_{jm}qe_{jm}$ and so its (j,i)-entry is $q_{ji} + q_{mi}$.

If $q_{ji} + q_{mi} = 0$ then $q_{ji} = -q_{mi} \neq 0$, that is the (m,i)-entry of q is non-zero. In this case a has at most one non-zero column, the m-th one; but $m \neq j$ and so any column of a is zero.

If $q_{ji} + q_{mi} \neq 0$ then the (j,i)-entry of $\psi(q)$ is non-zero, hence $\psi(a)$ has at most one non-zero column, the j-th one.

Since $\psi(a) = (\sum_h a_{hj}e_{hj} + a_{mj}e_{jj}) - (\sum_h a_{hj}e_{hm} + a_{mj}e_{jm})$, then, for any $h \neq j$ must be $a_{hj} = 0$ and also $a_{jj} + a_{mj} = 0$. But in this situation we get a = 0. Therefore, if $a \neq 0$, then $q_{ji} = 0$, for all $j \neq i$.

The previous two cases show that q is a diagonal matrix, $q = \sum q_{kk}e_{kk}$. Moreover if φ is an automorphism of $M_t(F)$, the same conclusion holds for $\varphi(q)$, since as above

$$0 = \varphi(a)[\varphi(q), \varphi(f(r_1, \ldots, r_n))]_2 = \varphi(a)[\varphi(q), f(s_1, \ldots, s_n)]_2.$$

Therefore, for any $i \neq j$, $\varphi(q) = (1 + e_{ij})q(1 - e_{ij})$ must be a diagonal matrix. Thus $(q_{jj} - q_{ii})e_{ij} = 0$, that is $q_{jj} = q_{ii}$ and q is a central element. This contradiction implies a = 0 and we are done. \diamondsuit

References

[1] BEIDAR K.I., MARTINDALE III, W.S. and MIKHALEV A.V.: Rings with generalized identities, Pure and Applied Math. Dekker, New York, 1996.

- [2] CHUANG, C.L.: GPIs having coefficients in Utumi quotient rings, *Proc. Amer. Mat. Soc.* 103/3 (1988), 723-728.
- [3] De FILIPPIS, V. and Di VINCENZO, O.M.: Derivations on multilinear polynomials in semiprime rings *Comm. in Algebra* **27**/12 (1999), 5975–5983.
- [4] HERSTEIN, I.N.: A theorem on invariant subrings, J. Algebra 83 (1983), 26-32.
- [5] JACOBSON, N.: P.I. Algebras, an introduction, Lecture Notes in Mathematics, No. 441, Springer Verlag, New York 1975.
- [6] Kharchenko, V.K.: Differential identities of prime rings, Algebra and Logic 17 (1978), 155–168.
- [7] LANSKI, C.: An Engel condition with derivation, Proc. Amer. Math. Soc. 118/3 (1993) 731-734.
- [8] LEE, P.H. and LEE, T.K.: Derivations with Engel conditions on multilinear polynomials, *Proc. Amer. Math. Soc.* **124**/9 (1996) 2625–2629.
- [9] LEE, T.K.: Derivations with Engel conditions on polynomials, *Algebra Colloq.* 5/1 (1998), 13-24.
- [10] LEE, T.K.: Semiprime ring with differential identities, Bull. Inst. Math. Acad. Sinica 20/1 (1992), 27–38.
- [11] LERON, U.: Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97–103.
- [12] MARTINDALE III, W.S.: Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
- [13] POSNER, E.C.: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [14] ROWEN, L.: Polynomial identities in Ring Theory, Pure and Applied Math. vol. 84, Academic Press, New York 1980.