SOME LARGE AND SMALL SETS IN TOPOLOGICAL GROUPS

Giuliano Artico

Università di Padova, Dipartimento di Matematica Pura e Applicata, via Belzoni 7, I-35131 Padova, Italy

Viatcheslav I. Malykhin

State University of Management, Rajzanskii prospect 99, Moscow 109542, Russia

Umberto Marconi

Università di Padova, Dipartimento di Matematica Pura e Applicata, via Belzoni 7, I-35131 Padova, Italy

Dedicated to Professor Romano Isler on his 60th birthday

Received: September 2000

MSC 2000: 20 K 45, 54 H 11

Keywords: Large and small set.

Abstract: Large, small and medium subsets of a group are studied, namely for the integers, for totally bounded groups, for locally compact and σ -compact groups.

In this paper all groups are abelian and infinite. In [1] some concepts of size for subsets of a group are provided. Some of them are connected with similar notions already used in the literature under

E-mail addresses: artico@math.unipd.it, matem@acman.msk.su, umarconi@math.unipd.it

Work supported by the research project "Metodi e problemi in Analisi Reale" of the Italian Ministero dell'Università e della Ricerca Scientifica e Tecnologica.

different names (big [4], discretely syndetic [6], [7], relatively dense [8]). We recall the definitions of [1] for Abelian groups.

A subset L of a group G is said to be large if there exists a finite subset F such that L+F=G. A subset S of G is said to be small if for every finite subset F the complement of L+F is large. A set which is neither large nor small is said to be medium. Obviously, every finite subset is small. A different notion of smallness is given in [5].

A set of the form g + F, where $g \in G$ and $F \subseteq G$, is said to be a circle of radius F. Circles are useful in the following criterium [1]. **Proposition 0.1.** The set $G \setminus A$ is not large in G iff A contains circles

of any finite radius.

The purpose of Section 1 is studying the above concepts in the group of the integers. In particular, we prove that the set of prime integers is small in \mathbb{Z} . In view of this result it is enough to study large and small subsets in the natural numbers.

In Section 2 we answer in the negative to the question whether there exists a topological group in which a set is large iff it has nonempty interior [1]. We also prove that in totally bounded groups closed subsets cannot be medium; furthermore, every countable unbounded group has a closed discrete subset which is medium.

In Section 3 we discuss some properties connected to category and measure of sets. In particular, every locally compact σ -compact group has a small dense subset which is meager and every compact group has a small closed subset of arbitrarily large measure.

1. The naturals

In this section we are going to study large and small subsets of \mathbb{N} . A subset L of \mathbb{N} is said to be large in \mathbb{N} if there exists a finite subset K of \mathbb{N} such that $L \pm K \supset \mathbb{N}$.

A subset S is said to be small in $\mathbb N$ if for every finite subset K of $\mathbb N$ we have that the complement of $S\pm K$ is large in $\mathbb N$.

If $X \subseteq \mathbb{N}$, we shall write $X = \{x_0, x_1, \dots, x_n, \dots\}$, where the sequence x_n is increasing.

Proposition 1.1. An infinite subset $X \subseteq \mathbb{N}$ is large iff $\delta = \sup\{x_{n+1} - x_n\} < +\infty$.

Proof. Suppose $\delta < +\infty$ and let $m = \max\{\delta, x_0\}$. Then $X \pm \{0, 1, \ldots, m\} \supseteq \mathbb{N}$. Conversely, let $F = \{0, 1, \ldots, m\}$ such that $X \pm F \supset \mathbb{N}$. Then $\delta < 2m + 1$. \Diamond

The previous proposition says that X is large iff $\limsup (x_{n+1} - x_n) < +\infty$. For small subsets, only a sufficient condition is available. **Proposition 1.2.** If $\lim (x_{n+1} - x_n) = +\infty$ then X is small.

Proof. For every finite subset $K = \{0, 1, ..., d\}$, put $(X \pm K) \cap \mathbb{N} = Y$. Choose \bar{n} such that $x_{n+1} - x_n > 2d + 1$ for $n > \bar{n}$. Then $Y \subseteq Z = [0, x_{\bar{n}} + d] \cup (\bigcup_{n > \bar{n}} [x_n - d, x_n + d])$. If a and b are consecutive elements of $\mathbb{N} - Z$, then $b - a \le 2d + 2$ and thus $\mathbb{N} - Z$ is large by Prop. 1.1. \lozenge Corollary 1.3. For every integer q > 1 the set $T = \{q^k : k \in \mathbb{N}\}$ is small.

Corollary 1.4. If X is a medium subset of \mathbb{N} , then $x_{n+1} - x_n$ has no limit.

In the following examples we show that if $\liminf (x_{n+1} - x_n) < +\infty$ and $\limsup (x_{n+1} - x_n) = +\infty$, the set X may be either medium or small (therefore the Prop. 1.2 cannot be improved).

Example 1.5. Let $S = T \cup (T + \{1\})$, where $T = \{2^k : k \in \mathbb{N}\}$. Obviously S is small and $1 = \liminf(x_{n+1} - x_n) < \limsup\{x_{n+1} - x_n\} = +\infty$.

Example 1.6. Let $M = \bigcup_{n \in \mathbb{N}} [2^n - n, 2^n + n]$. By Prop. 1.1, neither M nor $\mathbb{N} - M$ are large. Therefore M is medium.

An interesting question is to investigate whether the set of prime numbers is small in \mathbb{N} . The answer is positive. We need some preliminaries. Let us denote by P_r the subset of all natural numbers which have not more than r prime divisors, not necessarily different from each other. Thus $P_0 = \{1\}$ and P_1 is the set of prime numbers.

Proposition 1.7. Let $Q = \{q_1, q_2, \ldots, q_l\}$ be a set of l consecutive natural numbers such that $Q \cap P_r = \emptyset$. Let M be the least common multiple of these numbers and put $q'_i = q_i + M$. The set of consecutive numbers $Q' = \{q'_i : i = 1, \ldots, l\}$ is disjoint from P_{r+1} .

Proof. It is enough to observe that $q'_i = q_i \left(1 + \frac{M}{q_i}\right)$. \Diamond

Lemma 1.8. Let $l \geq 1$ be a natural number. For every $r \geq 0$ there exists a set Q_r consisting of l consecutive numbers such that $Q_r \cap P_r = \emptyset$.

Proof. By using Prop. 1.7, we can find Q_r inductively by putting $Q_0 = \{2, 3, \ldots, l+1\}, Q_1 = Q'_0, \ldots, Q_r = Q'_{r-1}. \diamondsuit$

Theorem 1.9. The set P_r is small for every $r \in \mathbb{N}$.

Proof. We shall prove that for every subset $K = \{0, 1, ..., k\}$ the set $\mathbb{N} \setminus (P_r \pm K)$ is large. Let l = 2k + 1 and choose subsets Q_s as in Lemma 1.8. If $Q_{r-1} = \{q_1, q_2, ..., q_l\}$, then simply put $W = Q_r = \{M + q_1, ..., M + q_l\}$, where M is the least common multiple of q_i 's.

For each $m \geq 1$ let $W_m = \{mM + q_1, \ldots, mM + q_{k+1}, \ldots, mM + q_l\}$. Again $W_m \cap P_r = \emptyset$. Since $mM + q_{k+1} \pm K \subseteq W_m$, we have that $mM + q_{k+1} \notin P_r \pm K$. Thus the set $B = \{mM + q_{k+1} : m = 1, 2, \ldots\}$ is contained in $\mathbb{N} \setminus (P_r \pm K)$. By Prop. 1.1, the set B is large in \mathbb{N} . \diamondsuit Corollary 1.10. For every $r \in \mathbb{N}$ the set $P_r \cup (-P_r)$ is small in \mathbb{Z} . Corollary 1.11. The set of prime numbers is small in \mathbb{N} . The set of

prime integers is small in \mathbb{Z} .

If X is a subset of \mathbb{N} , we denote by $X \cap n$ the set $\{x \in X : x_n < n\}$

and by |X| the power of the set X. **Definition 1.12.** The asymptotic density of a set X is $d(X) = \lim_{n \to +\infty} \frac{|X \cap n|}{n}$, if it exists.

Proposition 1.13. If a large subset X has asymptotic density d(X), then d(X) > 0.

Proof. Prop. 1.1 implies $d(X) > \frac{1}{d}$. \Diamond

The asymptotic density does not necessarily exist for large, small and medium subsets (examples may be easily found). The Ex. 1.6 is a medium set with asymptotic density 0. On the other hand, small subsets may have asymptotic density arbitrarily close to 1.

Proposition 1.14. For every $\varepsilon > 0$ there exists a small subset $S \subseteq \mathbb{N}$ such that $d(S) > 1 - \varepsilon$.

Proof. Take $m \in \mathbb{N}$ such that $\sum_{j=1}^{+\infty} \frac{2j-1}{m^j} < \varepsilon$ and for every $j \ge 1$ let $T_j = \bigcup \left\{ rm^j \pm \{0, 1, \dots, j-1\} : r = 1, 2, \dots \right\}$. It is easy to check that $d(T_j) = \frac{2j-1}{m^j}$. Put $T = \bigcup_j T_j$ and $S = \mathbb{N} \setminus T$. Since $d(T) \le \sum_{j=1}^{+\infty} d(T_j) < \varepsilon$, we have $d(S) > 1 - \varepsilon$.

For every finite subset $K = \{0, 1, ..., k\}$ there exists j such that $rm^j \notin S \pm K$ for each r > 0. Therefore the complement of $S \pm K$ is large for every finite subset K. \Diamond

2. Bounded and unbounded groups

We say that a subset B of a topological group G is bounded if for every neighborhood V of the neutral element there exists a finite subset F of G such that $F+V\supseteq B$ (the set F may be chosen to be a subset of B). In the converse case, we say that B is unbounded. If G itself is bounded, then it is said to be a totally bounded topological group.

Proposition 2.1. Let G be a topological group. The following are equivalent:

- (i) G is totally bounded.
- (ii) Every non-empty open subset is large.
- (iii) Every neighborhood of the neutral element is large.

Since a nowhere dense set cannot be large, we have immediately the following proposition.

Proposition 2.2. Let G be a totally bounded topological group. A closed subset is small iff it is nowhere dense. Otherwise it is large, i.e. there are no closed medium subsets.

We have the following strengthening of the Prop. 2.1.

Proposition 2.3. A topological group is unbounded iff there exists a neighborhood of 0 which is small.

Proof. The sufficiency is obvious by Prop. 2.1. Conversely, let V be a closed neighborhood of 0 such that $F+V \neq G$ for every finite subset F. Let W be a closed neighborhood of 0 such that $W \pm W \subseteq V$. We must prove that for every finite subset F the open set $G \setminus (F+W)$ is large. Take $h \in G \setminus (F+V)$. It is easy to check that $(h+W) \cap (F+W) = \emptyset$. Therefore, by traslating $G \setminus (F+W)$ with the elements of the finite subset -h+F, we cover F+W. \Diamond

In [1] it is asked whether there exists a topological group in which large subsets are exactly subsets with non-empty interior. By Prop. 2.3, such an example must be a totally bounded group. This group cannot be compact, because in [1] it is proved that every compact group has a dense small subset. In the next theorem we prove that the answer is negative by showing that every totally bounded group has a large subset which is codense.

Theorem 2.4. Every totally bounded group has a large subset with empty interior.

Proof. Let G be a totally bounded group. If G is countable, by [2] there exists a subset S which is dense and small. Otherwise, let H be a countable subgroup of G and let S be a subset of H which is small and dense in H. The quotient group G/H is infinite. Choose an element g_{λ} in every coset and put $E(S) = \bigcup_{\lambda} (g_{\lambda} + S)$. The subset E(S) is dense. It remains to prove that $G \setminus E(S)$ is large.

We have $G \setminus E(S) = \bigcup_{\lambda} (g_{\lambda} + (H \setminus S))$. Since $H \setminus S$ is large in H, there exists a finite subset F of H such that $F + (H \setminus S) \supset S$.

Therefore:

$$F + (G \setminus E(S)) = F + \bigcup_{\lambda} (g_{\lambda} + (H \setminus S)) =$$

$$= \bigcup_{\lambda} (g_{\lambda} + F + (H \setminus S)) \supset \bigcup_{\lambda} (g_{\lambda} + S) = E(S). \diamond$$

By Prop. 2.3, in unbounded topological groups there exists a base of neighborhoods of 0 which are closed and small. The situation is curious since there exist closed nowhere dense subsets which fail to be small (hence they are medium).

Theorem 2.5. In \mathbb{R}^n there exists a closed nowhere dense subset which is medium; furthermore, every closed discrete subset is small.

Proof. It is enough to construct a dense open subset which is not large. Let $D = \{v_j\}$ be a countable dense subset of \mathbb{R}^n and consider the set $A = \bigcup B_j$, where B_j is the open ball of radius $\frac{1}{2^j}$ centered at v_j . For every finite subset F of \mathbb{R}^n , the Lebesgue measure of A + F is finite, hence A + F cannot coincide with \mathbb{R}^n . The second assertion holds because every closed discrete subset is countable. \Diamond

One may ask whether the group Q of rational numbers have a nowhere dense subset which is medium. A consequence of the next theorem is that every countable unbounded topological group has a closed discrete subset which is medium.

Lemma 2.6. Let G be an unbounded topological group and let U be a symmetric neighborhood of 0 such that $K + U + U \neq G$ for every finite subset K. Let A and B be subsets of G which are contained in a finite union of translations of U. Then there exists $z \in G$ such that $A \cap (B+z) = \emptyset$.

Proof. Routine. \Diamond

Theorem 2.7. In any unbounded topological group G with a countable network there exists a discrete family consisting of translations of network elements whose union is medium.

Proof. Let $\mathcal{N} = \{N_i : i \in \omega\}$ be a countable network. Since the group is unbounded, there exists a symmetric neighborhood V of 0 such that $(V + V + V + V) + K \neq G$ for each finite subset K of G. It is not restrictive to assume that for each $N \in \mathcal{N}$ there exists $x_N \in G$ such that $N \in x_N + V$.

Let $P_n = \bigcup \{N_i : i < n\}$. Let $\{w_i : i \in \omega\}$ be a numeration of all finite discrete families of network elements and let $W_i = \cup w_i$. We are going to construct the desired family by induction.

Let us assume that we have found some $z_i, g_i \in G$ for i < n and let $M_n = \bigcup \{W_i + z_i : i < n\}$. It is clear that $M_n + P_n$ is contained

in the union of finitely many translations of V+V; therefore $M_n+P_n\neq G$. Let g_n be an element of $G\setminus (M_n+P_n)$. Since the sets $(M_n+V)\cup\{g_i: i\leq n\}$ and W_n+P_n are contained in the union of finitely many translations of V+V, by Lemma 2.6 we can choose an element z_n such that

$$((M_n+V)\cup\{g_i:\ i\leq n\})\cap(W_n+P_n+z_n)=\emptyset.$$

After finishing our induction, let us put $M = \bigcup \{M_n : n \in \omega\}$. By the properties of our construction, it is clear that M is the union of a discrete family of translations of network elements.

Let us prove that M is medium. Let K be a finite subset of G. Then K is a subset of P_n for some $n \in \omega$. Thus $M + K \subseteq M + P_n \subseteq (M_n + P_n) \cup (\bigcup_{j>n} W_j + P_j + z_j)$, and therefore $g_n \notin M + K$; consequently M is not large. On the other side, K is contained in W_m for some $m \in \omega$ and hence $K + z_m \subseteq W_m + z_m \subseteq M$; consequently M is not small because it contains circles of every finite radius. \Diamond

Corollary 2.8. Every countable unbounded group has a discrete closed medium subset.

3. Small sets and measure

In this section, groups are not required to be commutative.

Let G be a locally compact topological group and let λ be a left Haar measure on G.

In [1] it is observed that a compact group has a dense subset which is small. We are going to prove that every locally compact σ -compact group has a small dense subset which is meager. First we need to describe the behaviour of large and small subsets with regard to surjective homomorphisms (the proof is straightforward, see e.g. [9]). **Proposition 3.1.** Let $f: G \longrightarrow H$ be a surjective homomorphism.

- 1. If E is large in G, then f(E) is large in H.
- 2. If F is large in H, then $f^{-1}(F)$ is large in G. If f(E) is small in H, then E is small in G.
- 3. If $f^{-1}(F)$ is small in G, then F is small in H.

The following proposition is useful in the sequel.

Proposition 3.2. Let $f: X \longrightarrow Y$ be a surjective open continuous map between two topological spaces. Then:

(i)
$$\overline{f^{-1}(S)} = f^{-1}(\overline{S})$$
 for every $S \subseteq Y$.

(ii) If M is a meager subset of Y, then $f^{-1}(M)$ is a meager subset of X.

We give a reformulation of a well-known theorem.

Theorem 3.3 (Kakutani–Kodaira). If G is a locally compact σ -compact group and Ω is a \mathcal{G}_{δ} -set containing the identity, then there exists a compact normal subgroup $N \subseteq \Omega$ such that G/N is metrizable. Moreover, if G is not discrete, N may be chosen in such a way that G/N is not discrete.

Proof. We prove only the latter statement (for the former one, see [10, 8.7]). Suppose that G is not discrete and G/N is discrete. Then N is open and we can choose an open neighborhood V_1 of the identity which is strictly contained in N. There exist a compact normal subgroup N_1 contained in V_1 such that G/N_1 is metrizable. If G/N_1 is not discrete, the proof is concluded. Otherwise we can proceed: if the process is infinite, we get a strictly monotone sequence of normal compact open subgroups N_k such G/N_k is discrete. Let $N_\infty = \cap N_k$. Since the G_δ -set N_∞ is the intersection of compact open subgroups, the quotient G/N_∞ is metrizable. Furthermore, N_∞ is not open because N is compact and N/N_∞ is infinite. \diamondsuit

Theorem 3.4. Let G be a non-discrete group and suppose that G is locally compact and σ -compact. Then:

- 1. There exists a dense small subset which is meager.
- 2. There exists a residual set F with $\lambda(F) = 0$. Therefore F is medium.
- 3. There exists a meager set E such that $\lambda(E) = \lambda(G)$. Therefore E is medium.
- 4. If G is compact, then for every real number $r < \lambda(G)$ there exists a closed small set S such that $\lambda(S) > r$.

Proof. 1. If G is metrizable, it contains a countable dense subset $D = \{b_n\}$. Clearly D is meager. Furthermore it is small since G has the power of continuum [3, Th. 3.9].

If G is not metrizable, take the quotient map $f: G \longrightarrow G/N$, where N is the subgroup of Th. 3.3 (choose N in such a way that G/N is not discrete). The quotient map is open and continuous and G/N is metrizable, locally compact and σ -compact. Take a countable dense subset $D \subseteq G/N$. Then $f^{-1}(D)$ is small by Prop. 3.1 (3), is dense because f is open. Since G/N is not discrete, then N has empty interior and therefore $f^{-1}(D)$ is meager.

- 2. In the proof of 1, we have shown that the subgroup N of Th. 3.3 may be choosen in such a way that G/N is metrizable and non-discrete. Consider a countable dense subset $D = \{b_n\}$ of G/N. Let μ the Haar measure on G/N defined by $\mu(Y) = \lambda(f^{-1}(Y))$. For every $n \in \mathbb{N}$ and for each positive $\varepsilon \in \mathbb{Q}$, take an open neighborhood $V_n(\varepsilon)$ of b_n such that $\mu(V_n(\varepsilon)) < \frac{\varepsilon}{2^n}$. Consider the open set $A(\varepsilon) = \bigcup_{n>0} V_n(\varepsilon)$. Since $\mu(A_{\varepsilon}) < \varepsilon$, the dense G_{δ} subset of G/N given by $\Omega = \bigcap_{\varepsilon} A_{\varepsilon}$ has measure 0. Therefore $M = f^{-1}(\Omega)$ is a residual subset of G with λ -measure equal to 0. M is not large because it is null; M is not small because $G \setminus M$ is meager and G is a Baire space (it is Čech-complete).
- 3. It is enough to take $E = G \setminus M$, where M is the residual subset constructed in the proof of 2. Notice that E is a meager \mathcal{F}_{σ} set.
- 4. Let $r < \lambda(G)$ and choose E as in 3. Then $E = \bigcup_n F_n$, where F_n is an increasing sequence of closed nowhere dense subsets of G. Since $\lambda(E) = \sup_n \lambda(F_n)$, there exists \overline{n} such that $\lambda(F_{\overline{n}}) > r$. By Prop. 2.2, $F_{\overline{n}}$ is small. \Diamond

References

- [1] BELLA, A. and MALYKHIN, V. I.: Small and other subsets of a group, Q and A in General Topology 17 (1999), 183–197.
- [2 BELLA, A. and MALYKHIN, V. I.: On certain subsets of a group, Preprint, 2000.
- [3] COMFORT, W. W.: Topological groups, In K. Kunen and J. E. Vaughan, editors, *Handbook of set-theoretic topology*, pages 1143–1263, Elsevier Science Publishers B.V., Amsterdam, 1984.
- [4] COTLAR, M. and RICABARRA, R.: On the existence of characters in topological groups, Amer. J. Math. 76 (1954) 375–388.
- [5] DIKRANJAN, D., PRODANOV, I. and STOYANOV, L.: Topological Groups: Characters, Dualities and Minimal Group Topologies, volume 130 of Pure and Applied Mathematics, Marcel Dekker Inc., New York-Basel, 1989.
- [6] ELLIS, R.: Lectures on topological dynamics, W. A. Benjamin Inc., New York, 1969.
- [7] ELLIS, R. and KEYNES, H.: Bohr compactification and a result of Følner, *Israel J. Math.* **12** (1972), 314–330.
- [8 FØLNER, E.: Note on a generalization of a theorem of Bogoliouboff, *Math. Scand.* 2 (1954), 224–226.
- [9] GUSSO, R.: Insiemi large, small e *p*-small nei gruppi astratti e nei gruppi topologici, Master's thesis, Università di Padova, 2000.
- [10] HEWITT, E. and ROSS, K. A.: Abstract Harmonic Analysis I, Springer Verlag, Berlin, 1963.