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Abstract: Large, small and medium subsets of a group are studied, namely
for the integers, for totally bounded groups, for locally compact and o-com-
pact groups.

In this paper all groups are abelian and infinite. In [1] some
concepts of size for subsets of a group are provided. Some of them
are connected with similar notions already used in the literature under
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different names (big [4], discretely syndetic [6], [7], relatively dense [8]).
We recall the definitions of [1] for Abelian groups.

A subset L of a group G is said to be large if there exists a finite
subset F' such that L + F = G. A subset S of G is said to be small if
for every finite subset F' the complement of L+ F is large. A set which
is neither large nor small is said to be medium. Obviously, every finite
subset is small. A different notion of smallness is given in [5].

A set of the form g + F, where g € G and F C G, is said to be a
circle of radius F'. Circles are useful in the following criterium [1].
Proposition 0.1. The set G\ A is not large in G iff A contains circles
of any finite radius.

The purpose of Section 1 is studying the above concepts in the
group of the integers. In particular, we prove that the set of prime
integers is small in Z. In view of this result it is enough to study large
and small subsets in the natural numbers.

In Section 2 we answer in the negative to the question whether
there exists a topological group in which a set is large iff it has non-
empty interior [1]. We also prove that in totally bounded groups closed
subsets cannot be medium; furthermore, every countable unbounded
group has a closed discrete subset which is medium.

In Section 3 we discuss some properties connected to category and
measure of sets. In particular, every locally compact o-compact group
has a small dense subset which is meager and every compact group has
a small closed subset of arbitrarily large measure.

1. The naturals

In this section we are going to study large and small subsets of N.

A subset L of N is said to be large in N if there exists a finite
subset K of N such that L4+ K D N.

A subset S is said to be small in N if for every finite subset K of N
we have that the complement of S &+ K is large in N.

If X C N, we shall write X = {zo,%1,...,Zn,...}, where the
sequence z, is increasing.
Proposition 1.1. An infinite subset X C N is large iff 6 = sup{Tn+1—
— T} < 400.
Proof. Suppose § < +oo and let m = max{d,zo}. Then X =+
+ {0,1,...,m} O N. Conversely, let F = {0,1,...,m} such that
X+FDON Thenéd <2m+1. 9
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The previous proposition says that X is large iff lim sup(zp41 —
—Zp) < +o00. For small subsets, only a sufficient condition is available.
Proposition 1.2. If lim(z,y1 — z,) = +oo then X is small.

Proof. For every finite subset K = {0,1,...,d}, put (X+K)NN =Y.
Choose 7 such that zp41 — 2, > 2d+1forn > 7. Then Y C Z =
= [0, za+d]U(U,, > n[2n—d, 2n+d]). If a and b are consecutive elements
of N— Z, then b — a < 2d + 2 and thus N — Z is large by Prop. 1.1.
Corollary 1.3. For every integer ¢ > 1 the set T = {¢* : k € N} is
small.

Corollary 1.4. If X is a medium subset of N, then p.1 — 2, has no
limit.

In the following examples we show that if lim inf(zn41 — zn) <
< +oo and lim sup(z,4+1 — %) = 400, the set X may be either medium
or small (therefore the Prop. 1.2 cannot be improved).

Example 1.5. Let S = TU (T + {1}), where T = {2* : k € N}.
Obviously S is small and 1 = liminf(zn41 — z,) < limsup{z,1 —
— Zp) = +o00. 4 ‘
Example 1.6. Let M = |J,cy[2" — n,2" + n]. By Prop. 1.1, neither
M nor N — M are large. Therefore M is medium.

An interesting question is to investigate whether the set of prime
numbers is small in N. The answer is positive. We need some prelim-
inaries. Let us denote by P, the subset of all natural numbers which
have not more than r prime divisors, not necessarily different from each
other. Thus Py = {1} and P, is the set of prime numbers.
Proposition 1.7. Let Q = {q1,q2,...,q} be a set of | consecutive
natural numbers such that Q N P, = (. Let M be the least common
multiple of these numbers and put ¢; = ¢; + M. The set of consecutive
numbers Q' = {q;: i =1,...,1} is disjoint from P.;.

Proof. It is enough to observe that ¢} = g; (1 + Aq/f—) O

Lemma 1.8. Let | > 1 be a natural number. For every r > 0 there
exists a set @, consisting of I consecutive numbers such that Q, NP, =
= 0.

Proof. By using Prop. 1.7, we can find @, inductively by putting
Qo=1{23,....1+1}, Qi =Q), ... Qe =Q/_,. 0

Theorem 1.9. The set P, is small for every r € N.

Proof. We shall prove that for every subset K = {0,1,...,k} the
set N\ (P, £ K) is large. Let [ = 2k + 1 and choose subsets Q, as
in Lemma 1.8. If Qr—1 = {¢1,42,... ,q}, then simply put W = Q, =
={M+gqi,...,M+q}, where M is the least common multiple of g;’s.
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For each m > 1 let W, = {mM +q1,... ,mM + gxy1,... ,mM + q}.
Again W,, N P, = 0. Since mM + gqg+1 = K C Wy,, we have that
mM + qur1 € P. = K. Thus the set B={mM +ggt1: m=1,2,...}
is contained in N\ (P, & K). By Prop. 1.1, the set B is large in N. ¢
Corollary 1.10. For every r € N the set P, U (—F;) is small in Z.
Corollary 1.11. The set of prime numbers is small in N. The set of
prime integers is small in Z.

If X is a subset of N, we denote by XNn theset {z € X : z, <n}
and by | X| the power of the set X.
Definition 1.12. The asymptotic density of a set X is d(X) =
= limp 400 ]Xgm], if it exists.
Proposition 1.13. If a large subset X has asymptotic density d(X),
then d(X) > 0. '
Proof. Prop. 1.1 implies d(X) > -(13. O

The asymptotic density does not necessarily exist for large, small
and medium subsets (examples may be easily found). The Ex. 1.6 is
a medium set with asymptotic density 0. On the other hand, small
subsets may have asymptotic density arbitrarily close to 1.
Proposition 1.14. For every € > 0 there exists a small subset S C N
such that d(S) > 1 —e.
Proof. Take m € N such that ;fl’ 3;17;—1 < € and for every j >
>1let T; = U{rmj +{0,1,...,5—1}: r = 1,2,...}. It is easy
to check that d(Tj) = 251, Put T = U;T; and § = N\ T. Since
d(T) < Zjﬁ d(T;) < e, we have d(S) > 1 —e.

For every finite subset K = {0,1,...,k} there exists j such that
rm? ¢ S+ K for each r > 0. Therefore the complement of S £ K is
large for every finite subset K. ¢

2. Bounded and unbounded groups

We say that a subset B of a topological group G is bounded if for
every neighborhood V of the neutral element there exists a finite subset
F of G such that F +V D B (the set F' may be chosen to be a subset
of B). In the converse case, we say that B is unbounded. If G itself is
bounded, then it is said to be a totally bounded topological group.
Proposition 2.1. Let G be a topological group. The following are
equivalent:
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(i) G is totally bounded.
(i) Ewvery non-empty open subset is large.
(ili) Ewvery neighborhood of the neutral element is large.

Since a nowhere dense set cannot be large, we have immediately
the following proposition.

Proposition 2.2. Let G be a totally bounded topological group. A closed
subset is small iff it is nowhere dense. Otherwise it is large, i.e. there
are no closed medium subsets.

We have the following strengthening of the Prop. 2.1.

Proposition 2.3. A topological group is unbounded iff there ezists a
neighborhood of 0 which is small.

Proof. The sufficiency is obvious by Prop. 2.1. Conversely, let V be a
closed neighborhood of 0 such that F+V # G for every finite subset F.
Let W be a closed neighborhood of 0 such that W +W C V. We must
' prove that for every finite subset F' the open set G \ (F + W) is large.
Take h € G\ (F+V). It is easy to check that (h+W)N(F+W) = 0.
Therefore, by traslating G \ (F + W) with the elements of the finite
subset —h + F', we cover F'+W. ¢

In [1] it is asked whether there exists a topological group in which
large subsets are exactly subsets with non-empty interior. By Prop. 2.3,
such an example must be a totally bounded group. This group cannot
be compact, because in [1] it is proved that every compact group has
a dense small subset. In the next theorem we prove that the answer
is negative by showing that every totally bounded group has a large
subset which is codense.

Theorem 2.4. Every totally bounded group has a large subset with
emptly interior.
Proof. Let G be a totally bounded group. If G is countable, by [2]
there exists a subset S which is dense and small. Otherwise, let H be a
countable subgroup of G and let S be a subset of H which is small and
dense in H. The quotient group G/H is infinite. Choose an element g
in every coset and put E(S) = J,(gx + S). The subset E(S) is dense.
It remains to prove that G \ E(S) is large.

We have G\ E(S) =, (gA + (H\ S)). Since H\ S is large in H,
there exists a finite subset F' of H such that F+ (H\ S) D> S.

Therefore:
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F+(G\E©®)=F+Jr+(H\S)) =
A

=Jr+F+EH\S) 2> Jlor+ ) = B(S). ¢
A A

By Prop. 2.3, in unbounded topological groups there exists a base
of neighborhoods of 0 which are closed and small. The situation is
curious since there exist closed nowhere dense subsets which fail to be
small (hence they are medium).

Theorem 2.5. In R" there exists a closed nowhere dense subset which
is medium; furthermore, every closed discrete subset is small.

Proof. It is enough to construct a dense open subset which is not
large. Let D = {v;} be a countable dense subset of R* and consider
the set A = |J B;j, where B; is the open ball of radius 2% centered
at v;. For every finite subset F' of R*, the Lebesgue measure of A + F
is finite, hence A + F' cannot coincide with R™. The second assertion
holds because every closed discrete subset is countable. ¢

One may ask whether the group Q of rational numbers have a
nowhere dense subset which is medium. A consequence of the next
theorem is that every countable unbounded topological group has a
closed discrete subset which is medium.

Lemma 2.6. Let G be an unbounded topological group and let U be
a symmetric neighborhood of 0 such that K + U + U # G for every
finite subset K. Let A and B be subsets of G which are contained in
a finite union of translations of U. Then there exists z € G such that
AN(B+z)=10.

Proof. Routine. ¢

Theorem 2.7. In any unbounded topological group G with a count-
able network there exists a discrete family consisting of translations of
network elements whose union is medium.

Proof. Let N = {N;: i € w} be a countable network. Since the group
is unbounded, there exists a symmetric neighborhood V of 0 such that
(V+V +V+V)+ K # G for each finite subset K of G. It is not
restrictive to assume that for each N € N there exists zxy € G such
that N e xy + V.

Let P, = |J{N; : i <n}. Let {w; : i € w} be a numeration of all
finite discrete families of network elements and let W; = Uw;. We are
going to construct the desired family by induction.

Let us assume that we have found some z;,g9; € G for i < n and
let M,, = U{W;+ 2 : i < n}. It is clear that M,, + P, is contained
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in the union of finitely many translations of V' + V; therefore M, +
+ P, # G. Let g, be an element of G \ (M,, + P,). Since the sets
(Mp, +V)U{g;: i <n} and W,, + P, are contained in the union of
finitely many translations of V + V, by Lemma 2.6 we can choose an
element z, such that

(Mp+V)U{gi: i<n}) N (Wy+ Py +2,) = 0.
After finishing our induction, let us put M = |{M,, : n € w}. By
the properties of our construction, it is clear that M is the union of a
discrete family of translations of network elements.

Let us prove that M is medium. Let K be a finite subset of G.
Then K is a subset of P, for some n € w. Thus M + K C M +
+ Pn © (Mn + Po) U (Ujsp, Wi+ Py + 25), and therefore g, ¢ M + K;;
consequently M is not large. On the other side, K is contained in Wy,
for some m € w and hence K + z,, C Wy, + zp, € M; consequently M
is not small because it contains circles of every finite radius. ¢

Corollary 2.8. Every countable unbounded group has a discrete closed
medium subset. :

3. Small sets and measure

In this section, groups are not required to be commutative.

Let G be a locally compact topological group and let A be a left
Haar measure on G.

In [1] it is observed that a compact group has a dense subset
which is small. We are going to prove that every locally compact o-
compact group has a small dense subset which is meager. First we
need to describe the behaviour of large and small subsets with regard
to surjective homomorphisms (the proof is straightforward, see e.g. [9]).
Proposition 3.1. Let f: G — H be a surjective homomorphism.

1. If E is large in G, then f(E) is large in H.

2. If F is large in H, then f~1(F) is large in G.

If f(F) is small in H, then E is small in G.

3. If f~Y(F) is small in G, then F is small in H.

The following proposition is useful in the sequel.
Proposition 3.2. Let f: X — Y be a surjective open continuous
map between two topological spaces. Then:

Q) f~H(S) = f~YS) for every SCY.
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(i) If M is a meager subset of Y, then f~Y(M) is a meager subset
of X.
We give a reformulation of a well-known theorem.

Theorem 3.3 (Kakutani-Kodaira). If G is a locally compact o-
compact group and 2 is a Gs-set containing the identity, then there
exists a compact normal subgroup N C Q such that G/N is metrizable.
Moreover, if G is not discrete, N may be chosen in such a way that
G/N is not discrete.
Proof. We prove only the latter statement (for the former one, see [10,
8.7]). Suppose that G is not discrete and G/N is discrete. Then N is
open and we can choose an open neighborhood V; of the identity which
is strictly contained in N. There exist a compact normal subgroup Ny
contained in V; such that G/N; is metrizable. If G/Ny is not discrete,
the proof is concluded. Otherwise we can proceed: if the process is
infinite, we get a strictly monotone sequence of normal compact open
subgroups Ni such G/Ny is discrete. Let Noo = NNj. Since the Gs-set
N is the intersection of compact open subgroups, the quotient G/ Ny,
is metrizable. Furthermore, N, is not open because N is compact and
N/Ny is infinite. ¢
Theorem 3.4. Let G be a non-discrete group and suppose that G is
locally compact and o-compact. Then:

1. There exists a dense small subset which is meager.

2. There exists o residual set F with A\(F) = 0. Therefore F is
medium.

3. There erists a meager set E such that A(E) = A(G). Therefore
FE is medium.

4. If G is compact, then for every real number r < AG) there
erists a closed small set S such that A(S) > r. '

Proof. 1. If GG is metrizable, it contains a countable dense subset
D = {b,}. Clearly D is meager. Furthermore it is small since G has
the power of continuum [3, Th. 3.9].

If G is not metrizable, take the quotient map f : G — G/N,
where N is the subgroup of Th. 3.3 (choose N in such a way that G/
/N is not discrete). The quotient map is open and continuous and
G/N is metrizable, locally compact and o-compact. Take a countable
dense subset D C G/N. Then f~!(D) is small by Prop. 3.1 (3), is
dense because f is open. Since G/N is not discrete, then N has empty
interior and therefore f~1(D) is meager.
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2. In the proof of 1, we have shown that the subgroup N of Th. 3.3
may be choosen in such a way that G/N is metrizable and non-discrete.
Consider a countable dense subset D = {b,} of G/N. Let y the Haar
measure on G/N defined by u(Y) = A(f~Y(Y)). For every n € N
and for each positive e € Q, take an open neighborhood Vu(e) of by,
such that u(V,(e)) < 5. Consider the open set A(e) = Unso Val(e).
Since u(A:) < e, the dense Gs subset of G/N given by Q = Me Ae
has measure 0. Therefore M = f~1(Q) is a residual subset of G with
A-measure equal to 0. M is not large because it is null; M is not small
because G \ M is meager and G is a Baire space (it is Cech-complete).

3. It is enough to take E = G\ M, where M is the residual subset
constructed in the proof of 2. Notice that E is a meager F, set.

4. Let r < A(G) and choose F as in 3. Then E = |J,, F,,, where F,
is an increasing sequence of closed nowhere dense subsets of G. Since
A(E) = sup,, A(Fy,), there exists 7 such that A\(Fy) > r. By Prop. 2.2,
F5 is small. ¢
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