CHAIN OF DENDRITES WITHOUT OPEN SUPREMUM

Pavel Podbrdský

Department of Mathematical Analysis, Charles University, Sokolovská 83, CZ-186 75 Prague 8, Czech Republic

Pavel Pyrih

Department of Mathematical Analysis, Charles University, Sokolovská 83, CZ-186 75 Prague 8, Czech Republic

Received: April 2001

MSC 2000: 54 C 10, 54 F 50

Keywords: Dendrite, open mapping, chain.

Abstract: We consider an ordering with respect to open mappings on the class of all dendrites and construct a bounded chain of dendrites which does not have a supremum answering a question of its existence.

A chain of n-ods

All spaces considered in this paper are assumed to be metric. A continuum means a nonempty compact connected space. A simple closed curve is any space which is homeomorphic to the unit circle. A dendrite means a locally connected continuum containing no simple closed curve.

E-mail addresses: podbrdsk@karlin.mff.cuni.cz, pyrih@karlin.mff.cuni.cz

^{*} Joint research of the Open Problem Seminar, Charles University, Prague.

^{**} Partially supported by grants GAUK 165/1999 and GAUK 252/2000 from the Grant Agency of Charles University and partially supported by grant number MSM 113200007 from the Czech Ministry of Education.

A mapping means a continuous function. A surjective mapping $f: X \to Y$ is said to be *open* provided that for each open subset U of X its image f(U) is an open subset of Y.

We shall use the notion of order of a point in the sense of Menger-Urysohn (see e.g. [2, §51, I, p. 274], and we denote by ord (p, X) the order of the continuum X at a point $p \in X$ or just ord (p) if there is no risk of confusion. Points of order 1 in a continuum X are called end points of X. Points of order 2 are called ordinary points of X. Points of order at least 3 are called ramification points of X; the set of all ramification points of X is denoted by R(X).

Let S be a connected space, and let $p \in S$. If $S \setminus \{p\}$ is not connected, then p is called a *cut point of* S. An *arc* is any space which is homeomorphic to [0;1]. We denote by pq an arc with end points p and q.

- In [1, p. 7] J. J. Charatonik, W. J. Charatonik and J. R. Prajs introduced a quasiordering \leq_O on the class of all dendrites. We recall the definition. If X, Y are dendrites, then $Y \leq_O X$ if there is a surjective open mapping $f: X \to Y$. This quasiordering is not an ordering (i.e. $X \leq_O Y$ & $Y \leq_O X$ does not imply X is homeomorphic to Y). To guarantee this they said that X and Y are \mathbb{O} -equivalent iff $X \leq_O Y$ and $Y \leq_O X$ and then considered the quotient of the class of all dendrites. The quasiordering \leq_O induces the ordering \leq_O on the quotient.
- J. J. Charatonik, W. J. Charatonik and J. R. Prajs posed a question if every chain bounded with respect to this ordering has a supremum (see [1, §7, Q4(b) \mathbb{O} , p. 51]). In Theorem we give a negative answer to this question by proving that the sequence of n-ods has no supremum (for $n \in \mathbb{N}$, $n \geq 3$, denote by S_n the n-od, i.e. the dendrite where the only ramification point is of order n).

Fact. Let X be a dendrite.

- (a) Each point of X is either a cut point or an end point.
- (b) For each point $x \in X$ we have ord (x) = c(x), where c(x) is the number of components of $X \setminus \{x\}$, whenever either of these is finite.
- (c) For every subcontinuum $Z \subset X$ every component of $X \setminus Z$ is open in X.
- (d) Let $f: X \to Y$ be a surjective open mapping. Then Y is a dendrite.
- (e) The order of a point is never increased under an open mapping.

See [3, Chapter 10, Th. 10.7, p. 168], [3, Chapter 10, Th. 10.13, p. 170], [3, 5.22(a), p. 83], [3, Cor. 13.41, p. 297] and [4, Chapter 8, (7.31), p. 147].

Observation. Let D be a dendrite where ramification points (a) form a finite set (say of cardinality k) and (b) are of a finite order. If some ramification point r of D is of order $m \geq 3$, then $S_n \leq_O D$ for each $n \leq m$.

Proof. Easy by induction on k. If k=1 we identify some arcs starting from r and obtain a dendrite S_n (via an open mapping). If k>1 we find a ramification point $p \neq r$ such that there is exactly one component P of $D \setminus \{p\}$ containing some ramification point of D. We identify the other components (arcs) starting from p and obtain (via an open mapping) a dendrite D' with k-1 ramification points (the ramification point p of p has turned into an ordinary point of p.

Theorem. The chain $S_3 \leq_O S_4 \leq_O \cdots \leq_O S_n \leq_O \cdots$ is bounded and has no supremum.

Proof. We finish the proof in 22 steps.

(1) For
$$n \in \mathbb{N}$$
, $n \ge 3$, $1 \le k \le n$, $k \in \mathbb{N}$ we set $a_n^k = (0, 2^{-n} + 2^{-2nk})$, $b_n = (2^{-n}, 0)$, $c_n = (2^{-n-1}, 2^{-n-1})$, $a = (0, 0)$, $b = (1, 0)$,
$$B_n = \bigcup_{k=1}^n a_n^k b_n, \quad B = ab \cup \bigcup_{n=3}^\infty B_n,$$

$$C_n = b_n c_n \cup \bigcup_{k=1}^n a_n^k c_n, \quad C = ab \cup \bigcup_{n=3}^\infty C_n.$$

Both B and C are dendrites (see Fig. 1-2).

Figure 1 – dendrite B

- (2) We see that both a and b are end points of both B and C.
- (3) Ramification points of B are exactly the points b_n , $n \in \mathbb{N}$, $n \geq 3$, R(B) is infinite, the only cluster point of R(B) is a, ord p is finite for each $p \in R(B)$.
- (4) Ramification points of C are exactly points b_n and c_n , $n \in \mathbb{N}$, $n \geq 3$, R(C) is infinite, the only cluster point of R(C) is a, ord p is finite for each $p \in R(C)$.
 - (5) $S_n \leq_O B$ for $n \in \mathbb{N}$, $n \geq 3$.

(Proof. Using the projection $\pi: \mathbb{R}^2 \to \mathbb{R}^2$ sending (x,y) to (x,0), $x,y \in \mathbb{R}$, we map $\bigcup_{k=n+1}^{\infty} B_k$ onto ab_{n+1} ; then using the identity elsewhere in B we obtain an open image $\mathcal{B}_n = ab \cup \bigcup_{k=3}^n B_k$ of the dendrite B. The dendrite \mathcal{B}_n has finitely many ramification points, all of them of finite order and at least one of order n+2, hence Observation applies and $S_n \leq_O \mathcal{B}_n \leq_O B$.)

(6) $S_n \leq_O C$ for $n \in \mathbb{N}$, $n \geq 3$.

(Proof. The projection π maps $\bigcup_{k=n+1}^{\infty} C_k$ onto ab_{n+1} ; then using the identity elsewhere in C we obtain an open image $C_n = ab \cup \bigcup_{k=3}^{n} C_k$ of the dendrite C. The dendrite C_n has finitely many ramification points, all of them of finite order and at least one of order n+1, hence Obs. applies and $S_n \leq_O C_n \leq_O C$.)

- (7) Suppose that there exists a dendrite D such that the following three conditions hold:
 - (i) $D \leq_O B$ (with a surjective open mapping $f: B \to D$),
 - (ii) $D \leq_O C$ (with a surjective open mapping $g: C \to D$),
 - (iii) $S_n \leq_O D$ for each $n \in \mathbb{N}$, $n \geq 3$.

We conclude a contradiction in (22).

- (8) Points in R(D) are of a finite order in D due to (3), (7):(i) and Fact (e); moreover R(D) is infinite due to (7):(iii).
- (9) We fix a neighborhood P of b in B such that $P \cap R(B) = \emptyset$ due to (3), and denote $\hat{P} = f(P)$. Then \hat{P} is a neighborhood of $\hat{b} = f(b)$ due to (7):(i), hence $\hat{P} \cap R(D) = \emptyset$ due to Fact (e).
- (10) Moreover, for each neighborhood Q of a in B the set $R(B)\setminus Q$ is finite due to (3). $R(D)\setminus f(Q)$ is finite due to (7):(i) and Fact (e). We conclude that $\hat{a}=f(a)\notin \hat{P}$ due to (9).
- (11) We see that $\hat{a} \notin \hat{P}$, $\hat{b} \in \hat{P}$, hence $\hat{a} \neq \hat{b}$. Moreover \hat{a} and \hat{b} are end points of D due to (2), Fact (e) and (7):(i). Denote by J the arc $\hat{a}\hat{b}$.
- (12) CLAIM: $R(D) \subset J$. Suppose not. We conclude a contradiction.
- (13) Suppose that there exists $\hat{p} \in R(D) \setminus J$. Then we find $p \in R(B)$ such that $f(p) = \hat{p}$ due to (7):(i) and Fact (e).
- (14) We find $\hat{r} \in R(D) \cap J$ such that \hat{a} , \hat{b} and \hat{p} are in different components of $D \setminus \{\hat{r}\}$ due to (11) and (13).
- (15) f(ap) is connected, hence meets \hat{r} due to (14) and there exists $r_a \in R(B)$ such that $f(r_a) = \hat{r}$, $r_a \in ap \setminus \{a,p\}$ due to (7):(i), (14) and Fact (e).
- (16) Similarly f(bp) is connected, meets \hat{r} due to (14); hence there exists $r_b \in R(B)$ such that $f(r_b) = \hat{r}$, $r_b \in bp \setminus \{b, p\}$ due to (7):(i), (14) and Fact (e).
- (17) Denote by V the component of $B \setminus \{r_a\}$ containing a. Thus V is open due to Fact (c). Denote $U = B \setminus V$. Hence U is closed and contains only finitely many ramification points of B due to (3). Then f(U) contains only finitely many ramification points of D due to (7):(i) and Fact (e). We conclude $f(U) \neq D$ due to (8).
- (18) Observe that f(U) is closed due to (7):(i) and (17); $U \setminus \{r_a\}$ is open due to (3) and Fact (c); $f(U \setminus \{r_a\})$ is open due to (7):(i). Moreover, $f(U \setminus \{r_a\}) = f(U)$ because $r_b \in U$ due to (17) and $f(r_a) = f(r_b)$ due (15) and (16). Hence f(U) is both open and closed in D. We conclude that f(U) = D because D is connected due to (7).
- (19) The conclusions in the above two items cannot hold simultaneously a contradiction. Hence CLAIM holds.
- (20) We choose three different ramification points \hat{x} , \hat{y} and \hat{z} in D of order at least 4 such that $\hat{x} \in \hat{a}\hat{y}$ and $\hat{y} \in \hat{a}\hat{z}$ due to (7):(i), (8) and (12).

- (21) We find three different ramification points x, y and z of C such that $g(x) = \hat{x}$, $g(y) = \hat{y}$ and $g(z) = \hat{z}$ due to (7):(ii) and Fact (e). Obviously, x, y and z are of order at least 4 due to Fact (e). Hence $x = c_i$, $y = c_j$ and $z = c_k$ for some $i, j, k \in \mathbb{N}$ due to (1), $xz \setminus \{x, z\}$ contains ramification points (in C) of order 3 only due to (1) and (4). Hence g(xz) contains at most two points of order greater than 3 due to Fact (e).
- (22) $\{\hat{x}, \hat{y}, \hat{z}\} \subset g(xz)$ due to (20), hence g(xz) contains at least three points of order greater than 3 due to (20).

The above two items cannot hold simultaneously. Hence (7):(i)-(iii) lead to a contradiction. We have proved that $S_3 \leq_O S_4 \leq_O S_5 \leq_O \cdots$

is a bounded chain (bounded by both B and C due (5) and (6)) with no supremum due to (7). \Diamond

References

- [1] CHARATONIK, J. J., CHARATONIK, W. J., PRAJS, J. R.: Mapping hierarchy for dendrites, Dissertationes Math. (Rozprawy Mat.) 333 (1994), 1–52.
- [2] KURATOWSKI, K.: Topology, Vol. II, Academic Press, New York, 1968.
- [3] NADLER, S. B. Jr.: Continuum theory: an introduction, M. Dekker, Inc., New York, Basel and Hong Kong, 1992.
- [4] WHYBURN, G. T.: Analytic topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, 1942, Reprinted with corrections, 1971.