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Abstract: This paper contains several comparison results which are useful
to show the existence of solutions to antiperiodic boundary value problems of

functional differential equations.

1. Introduction

Let us consider the following antiperiodic boundary value problem
for functional differential equations of the form
1) { z'(t) = f(t,z), teJ=[0,T], T>0,
z(8) = z(0) = —z(T);, s¢€ Jy,
where f € C(J x Cq,R), Cy = C(Jo,R) with Jo = [—7,0] for 7 > 0,
and for any t € J, z; € Cy is defined by z:(s) = z(t + s) for s € Jo.

Note that the differential equation from problem (1) is a very
general type. It includes, for example, as special cases, ordinary differ-
ential equations if 7 = 0, differential-difference equations, and integro—-
differential equations too (see, for example [3]).

The method of lower and upper solutions is useful to obtain ap-
proximate solutions to differential equations (for details, see, for ex-
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ample [4], [5]). Recently, this method has been extended so as to be
applicable to a much larger class of nonlinear problems (see, for exam-
ple [2], [4]-[8]). The purpose of this paper is to show that it can be
applied successfully to antiperiodic boundary value problems of func-
tional differential equations. Under some assumptions on f it is shown
that linear monotone iterations converge to the unique solution of our
problem. A particular case of (1), [namely when f(t,z:) = f(¢, z(t))],
is investigated in [8], see also [5].

2. Assumptions

Put C; = C(J,R) N C*(J,R) with J = [-7,T]. Two functions
u,v € Cy are called weakly coupled (w.c.) lower and upper solutions of
problem (1) if
{ w'(t) < fltug), ted, u(s)=u(0) < —v(T), se€,
V'(t) > f(t,ve), ted, wv(s)=v(0)>—-u(T), se€dJ.
Now, we list the following assumptions for later use.

H, feC(Jx CyR),

H, 19, zg € C; are w.c. lower and upper solutions of (1) and yo(t) <
< z(t) on J,

Hj there exists N > 0 such that for u,v € Cp, yo,s < u < v < 294,
t € J, function f satisfies the one-sided Lipschitz condition of
the form

ft,v) — f(t,u) >N/ ) —u(s)lds, T>0,

H, there exists L > 0 such that for u,v € Cy we have
£(t,0) = £(6,0)| < L s Ju(r) = o(0)

3. Some lemmas

We need some comparison results.
Lemma 1. Let Assumptions Hy and Hy hold. Then the initial problem
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0
(2) w'(t) = f(t,wt)-I-N/w(t—}—r)dr, telJ, w(s)=w(0), secJy
has a unique solution.
Proof. Put |u|, = Izleaj([e_Kt[u(t)l] with K > L +|N|7. Integrating (2)

we obtain

’w(t) = w(0) +/ {f(s,ws) +N/w(s+ r)drjl ds = Aw(t), te..
0 -T

Then
|[Aw — Aw|, =

teJd

= max e X? /{f(s,ws)—f(s,ws)-f—N/[w(T—!—s)—zD(r—l-s)]dr}ds <

i

< —-Kt T —Ku _ Ku
< (L+|N|r) max e Jex [[w(w) — w(u)|e X K] ds <
0

< L+ |N|r

< K - e_KT] .

|w — W, [1

By Banach fixed point theorem, problem (2) has a unique solution
since 1 —e T < 1 and K > L + |N|r.

It ends the proof. ¢
Remark 1. Note that the problem

0
w'(t) = N/w(t+r)dr, ted, w(s)=w(0), secJ

has still a unique solution, and if w(0) = 0, then w(t) = 0, ¢t € J is this
unique solution.

Lemma 2. Let N > 0 and m € C(J,R). Then the problem
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o' (t) = N/a(t+ 8)+mll), t € J, afs) = a(0) = —B(T), s € Jo,

0
B(t) = N/,a(t+ s)—mit), teJ, B(s) = B0) = —a(T), s € Jy

\
has at most one solution.
Proof. Put p = a+ 3, so

@ Pt)=N /’p@ﬂ)ds, ted, p(s)=p(0) = —p(T), s€Jo.

Note that p(t) = 0, t € J is a solution of (4). We need to show that
.p(t) = 0, t € J is the unique solution of (4). Suppose that (4) has
another solution w € Cy. Let A = {tx € J: w(tx) = 0}. Assume that
to € A. If to =0 or tp = T, then w(0) = 0. Hence w(t) =0, ¢t € J, by
Remark 1. It is a contradiction. If 0 < tg < T, then w(to) = 0 showing
that w(t) =0, t € [to, T]. Thus —w(T) = w(0) =0, so w(t) =0,t € J.
It is a contradiction again. If we assume that w(t) > 0, ¢ € J, then
w(T) < 0 since w(0) = —w(T). It is a contradiction too. Similarly, if
we assume w(t) < 0,t € J, then w(T) > 0 which is also a contradiction.
It proves that p(t) = 0, t € J is the unique solution of problem (4). It
means that a(t) = —8(t), t € J, so

(5) o/(t) = N / a(t+s)ds+m(t), t € J, a(s) = a(0) = a(T), s € Jo,

—T

0
6) B(t) =N / B(t+5)—m(t), t€J, (s)=B(0) = BT), s € Jo.

Suppose that (5) has two solutions v; and 5. Let B = {t; € J :
: y1(ty) = y2(tx)}. I to = 0 or tp = T, then v1(0) = 2(0). Hence
71(t) = v2(t), t € J, by Remark 1. It is a contradiction. If 0 < ¢ <
< T, then 1 (tg) = v2(to) showing that v1(t) = v2(t), ¢ € [to, T']- Thus
71(T) = 72(T), s0 v1(0) = v2(0) proving that v1(t) = 72(t), t € J. It
is a contradiction again. We assume that v1(t) < v2(t), t € J. Put § =
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=72 — 1, 850 6(s) = 6(0) = 6(T), s € Jo. Now integrating the equation
for 4, we obtain

t 0
5(t) = 6(0) + N / / 5(r + s)drds > 6(0), te€J
0 —71
Hence 6(T) > 6(0). It is a contradiction. Same argument holds if we

assume vi(t) > ¥2(t), ¢ € J. It proves that problem (5) has at most
one solution, so problem (6) has also at most one solution.

It ends the proof. ¢

Remark 2. If m(t) = 0, ¢t € J, then problem (3) has exactly zero
solution, so a(t) = B(t) =0, t € J.

Lemma 3. Let Assumptions Hy, Hy and H3 hold. Let u,v € § be w.c.
lower and upper solutions of (1), andu <v; Q={p € Cp: yo: < ¢ <
< 2o:}. Then the antiperiodic boundary value system of the form

;

0
P ) = F(t,u) + N / (p(t + ) — ult + 8)]ds,
_ t € J, p(s) =p(0) = —q(T), s € Jo,

() = ft, o) + N / lq(t+ 5) — v(t + 5)]ds,

x | teJ, q(s) = q(0) = —p(T), s € Jo.
has a unique solution (p,q) in the segment [u,v], and p < q.
Proof. Let M # 0. Put

0
U(s,v,p) = Mp(s) + N /[p(s +7) —v(s +7)ldr + f(s,vs).

{7

Note that

—Mp(t) + U(ta u7p)a te J-;
—~Mq(t) + U(t,v,q), tE€J,

Il

and hence
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p(t) = e M¢ (p(O) + /eMSU(s,u,p)ds> , tedJ,

q(t) = e~ M? (q(O) + /eMSU(s,v,q)ds) , teld.

Using the boundary conditions p(0) = —¢(T'), ¢(0) = —p(T'), we see
that (p, q) is the solution of the following system

r

\

(t)_ (tp7 ), tEJa
") {q(t)—B(t,p, q), ted
with
( A(t,p, )—-

€

2—2—]\;‘,—,_,1— {/G(t s)eMsU (s, u,p)ds — MT/ MSU(S v q)ds}

<
B(t,p,q) =

= gz—i;[,— {/G(t s)eMsU(s,v q)ds—eMT/ Msr(s,u p)ds}

G(t )__{eZMT if 0<s<t,
AR ! if t<s<T.

Let us construct the sequences {pp+1, gn+1} by the following re-

lations
(8) { pn+1(t) = A(t,pnaQn), po(t) = 'u,(t)7 ted,
Gns1(t) = B(t,Pnyqn), qo(t) =v(t), t € J,

andeO(s) = u(0), qo(s) = v(0), Pnt1(s) = Pn+1(0), In+1(8) = @n41(0)

It is easy to see that
{ U(t,u,u) = Mu(t) + f(t,ur) > Mu(t) +4/(t), teJ,
U(t,v,v) = Mv(t) + f(t,v;) < Mu(t) +0'(t), te€J
Using the above properties we try to prove the following relation
(9) po(t) <p1(t) <q(t) < qolt), ted

Indeed, putting 6 = 2—6,;—;[1—, for the sake of brevity we have
e 1
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pl(t) = A(t po,go A(t U ’U) =
T

fl

T
0 /G (t,s)eM°U (s, u, u)ds — eMT
0

|
!
(e

=0

MU (s,v,v)d }

0

o Ot~y

G(t,s)eM* [Mu(s) +u'(s)]ds — M /eMS[M'u(s) + v’(s)]ds}

PMT 1] eMhu(t) —e?MTu(0) +o(T)] +eM 7 [v(0)+u(T)] } > u(t)
since u(0) +v(T) <0, v(0) + uw(T) > 0. Similarly, we have
Q1( ) - B(t,meO) - (t7 U, ’U)

T T
=01 [ G(t,8)eMU(s,v,v)ds—eMT [ MU (s, u, u)ds}
\ /
T T
<0 { / G(t, )M [Mu(s)+v'(5)|ds—eMT / M [Mu(s)+u!(s)]d }

:9{ [eZMT- 1] Mty () — e2MT[y(0) + u(T)] +eMT[u(T) +-u 0)

Moreover

T T
pi(t) =0 {/G(t, 5)eMsU (s, u, u)ds—eMT/eMSU(s,v,v)ds}
0 0

T T
<6 {/G(t, s)eMsU(s,v,v)ds—eMT/eMsU(s, u,u)ds} =q(t)
0 0 '

because U(t, u,u) < U(t, v, v). It means that (9) holds.
Let us assume that

Po(t) <+ <pp-1(t) <pu(t) < qult) S gr-1(t) < -~ < qolt), teJ
for some k£ > 1. Obviously,

Pr+1(t) = A(t, pr, ak) = A(t, Pr—1, ar—1) = pr(t),

Qr+1(t) = B(t, pr, ) < B(t, pr—1, th—1) = qi(t),

Pre+1(t) = A(t, pr, @) < B(t, Pk, @k) = Qr41(2)
for t € J. It proves that
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pr(t) < prgr(t) < gra(t) < ar(t), te .
Hence, by induction, we have
po(t) <p1(t) <+ <pp(t) < gn(t) < < qat) < qoft), t€J

for all n. Employing standard techniques, it can be shown that the
sequences {p,},{gn} converge uniformly and monotonically to the so-
lution (p, q) of (7), 80 pr — P, ¢n — g and u(t) < p(t) < g(t) < v(t) on
J. Now we are going to show that problem (7) has a unique solution.
Assume that it has two solutions (z,y) and (z,w). Puta=z—2, (=
=9y — w. Then,

o' (t) = N_fo a(t+s)ds, teJ, a(s)=a(0)=-8(T), secJo

B =N [ ple+ads ted, fs)=B0)=—all), sk

Remark 2 yields a(t) = 8(t) = 0 on J showing that z(¢) = z(t), y(t) =
= w(t) on J. It proves that problem (7) has a unique solution. The
assertion of Lemma 3 holds.

The proof is complete. ¢
Lemma 4. Assume that N,7 > 0. Let

a'(t) <N f a(t+s)ds, te€J, a(s)=a(0)=706(T), s€Jo,

g'(t) < N_fo Bt + s)ds, ted, B(s)=p0)=a(l), sc o

Then a(t) <0 and B(t) <0 on J.
Proof. Put p(t) = a(t)e™™Mt, q(t) = Bt)e ™! with M > N(T + 7).
Then

0
P(8) = —Mp(t) + o (t)e~Mt < —Mp(t) + Ne Mt / M)t + 5)ds
%
= —Mp(t) + Ne Mt / eMsp(s)ds, teJ,
t—r

t
¢'(t) < —Mq(t) + Ne~M? / eMsq(s)ds, teJ.
‘ t—1
Assume that the conclusion of Lemma 4 is false. We shall distinguish
three cases.
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Case 1. Assume that a(t) < 0 on J. Hence ¢(0) = B(0) = o(T) <
<0, ¢T) =pB(T)e™MT = o(0)e~MT < 0. We need to show that
q(t) < 0 on (0,T). Assume that it is not true. Then there exists
to € (0,T) such that g(tg) = e > 0 and g(t) < ¢, t € (0,T), so g(to) —
—q(to — h) > 0 for small h > 0. It yields

to
0 < ¢'(to) < —Mq(ty)+Ne Mo / eMeq(s)ds < ~Me+N(T+1)e < 0
to—T
since M > N(T + 7). It is a contradiction proving that q(t) < 0 on J,
so B(t) <0 on J.
Case 2. Use the proof from Case 1 to show that a(t) <0, t € J
when ((t) <0 on J.
Case 3. There exist t;,t; € J such that p(t1) = €1 > 0, q(tz) =
=€z > 0 and p(t) < €1, q(t) < €2 on J. Let ¢t; € (0,T]. Then

t1
0 <p(t) < ~Mp(t) + Ne [ Mops)ds <
t—r
<—Meg+NT +71)e1 <0
which is a contradiction. Let ¢ € (0,7]. Similarly as before we obtain

ta
0 < ¢'(t2) < —Mq(ty) + Ne~ Mtz / eMeg(s)ds <
ta—T
<—Mea+N(T+71)ea <0
which is also a contradiction. If ¢t; = t, = 0, then a(0) = B(T) <
< B(0) = o(T") < (0) which is a contradiction too. It proves that the

assertion of Lemma 4 holds. It ends the proof. {
Lemma 5. Let Assumptions Hy and Hs hold. Let

{ y(t)=Ffy), ted, y(s)=y(0)=—2(T), seJy,
2(t)=f(t,z), ted, 2(s)=2(0)=- (T), seJy,
and Yot < Y, 2z < 2o, t € J.

Then y(t) = 2(t) on J, so y and z are solutions of problem (1).

Proof. Put p =y — 2. Then
(10)

pl(t) :f(t,pt—I-Zt)_f(t,Zt), te Ja p(S) :p(O) IP(T), s & JO-
Note that p(0) = 0, ¢ € J is a solution of (10). We need to show that
p(t) = 0 on J is the unique solution of (10). Assume that problem (10)
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has another solution w. Put B = {tx € J : w(tx) = 0}. Let £ € B.
If to = 0 or tg = T, then w(0) = 0. Hence w(t) = 0 on J since the
problem

w/(t) = f(tawt + zt) - f(ta zt) = f(ta wt)’ te J: w(s) = ’LU(O), s € JO

has the unique solution. If 0 < ¢y < 7', then w(t) = 0 on [to, T']. Since
w(T) = w(0), it proves that w(t) = 0 on J. Assume that w(t) > 0 on
J. Integrating the equation for w, we obtain

w(t) = w(0) + /[f(s,ws + 25) — f(s,25)]ds, t€J,
w(s) =w(0) =w(T), seJdyp

Note that f is nondecreasing with respect to the second argument.
Hence w(T") > w(0) which is a contradiction. If we assume that w(t) <
< 0 on J, then w(T) < w(0) which is a contradiction too. It proves
that p(t) = 0 on J is the unique solution of (10), so y(t) = 2(t) on J.
It means that y(0) = —y(T') and 2(0) = —z(T) showing that y and z
are solutions of problem (1). It ends the proof.

4. Main results

Theorem 1. Assume that Assumptions Hy and Hy are satisfied. Let
LT < 2. Then problem (1) has exactly one solution.

Proof. Integrating the equation in (1) we have

5(t) = 5(0) + / f(s,m5)ds, teJ
0

Using the boundary condition z(0) = —z(T’), we see that problem (1)
is equivalent to the following one

T
(1) o(t) = % / H(t,8)f (s, 3.)ds = Az(t), teJ
0

with H(t,s) =1if0< s <t,and H(t,s) = —1ift < s <T. Then
Assumption Hy yields
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T
o 1 -
|Az — AZ|; = I’{lea']xlA:E(t) 5/ 8, %s) — f(8,%s)|ds <
0
%LTL’I) — 117|1

Hence problem (11) has a unique solution since LT < 2. The proof is
complete. §

Remark 3. Obviously, Th. 2 holds if Assumption Hy is replaced by
the following

£ (8, u) = £(8v)| < Lmax|u(s) - v(s)], L >0

Example 1. Let

ftze) = g(t,2(8), 2(t — au(t)), -, 2(t — (1)), te€J=10,T],
and o;(t) <t,teJ,i=1,2,---,r. Let g, oy be continuous. Assume
that g satisfies the Lipschitz condition with respect to the last r + 1
variables with a constant L. Then

(£t w) = f(t0)| < L+ 1) mmax fu(s) —o(s)l, teJ

By Th. 1, problem (1) [with f as above] has a unique solution if L(r +
+1)T < 2.

](i)xe)lmple 2. Consider the problem
12
‘ T
{ o (t) = g(t, [ K(t,5,2(a(s))ds), teJ=[0,T],
0
z(s) = z(0) = —z(T), s € [-7,0], mingeyaft) = —1.

Assume that g, K are continuous and a € C(J,[—7,T]). Let
lg(t, u1)—g(t, uz)| < Lilui—us|, |K(t,s,v1)—K(t,8,v2)| < Lojui—uvy).
Obviously, in this case

lg(t,u) — g(t,v)| < LngTmEa}du(s) —ov(s)|, te

Then, by Th. 1 and Remark 3, problem (12) has a unique solution if
LL,T? < 2.

Theorem 2. Assume that Assumptions Hy, Hy, H3 are satisfied. Then
there exist monotone sequences {yn}, {z,} such that y, — vy, 2z, = 2z
as n — oo uniformly and monotonically on J and y = z is a unique
solution of problem (1).

Proof. Let yn41(5) = yn+1(0), 2n41(8) = 2,41(0) on Jy and




212 T. Jankowski

0 ~ »
Yns1(t) = Fyns) + N /[yn+1(t +8) —yn(t + 8)lds, te,
Yn+1(0) = —2p41(T),

0
Zny1(t) = f(t 2ne) + N /[zn+1(t +8) — z(t+ 8)]ds, te,

2n41(0) = —Yn41(T)
forteJ, mn=0,1,---. Since yo, 20 are w.c. lower and upper solutions
of problem (1) and yo(t) < 2o(t) on J, it means, by Lemma 3, that y;
and z; are well defined and
yo(t) < pa(t) < za(t) < 20(t), ted

Now, we prove that ¥, 2; are w.c. lower and upper solutions of problem
(1). Obviously, y1(s) = y1(0) = —2z1(T), z1(s) = 21(0) = —y1(T) on
Jo. Using Assumption Hs, we get

y1(8) = f(t o) + N /[yl(t +8) — yo(t + s)lds — fF(t,y1,) + f(t, y1,t)

0
Sf@mﬂ—N/wm+ﬂ~mU+M®+

0
+N [+ 5) = ot + s)lds = f(t.), tET

—-T

and

0
%@=f@%ﬁ+N/hﬁ+$—%@+mﬁ~fwm@+f@aﬂ
o
> flt710) + N [ Lol +5) = za(t+ 9)lds+

0
+N/[zl(t+s) —20(t+ s)lds = f(t,z14), te€

The above proves that y1, 21 are w.c. lower and upper solutions of (1).
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Let us assume that
Yo(t) Sw1() < -+ S yp—1(t) S e(t) <
<z(t) < zp—1(t) < --- < 21(t) < 20(t), te
and let yg, zx be w.c. lower and upper solutions of problem (1) for some

k > 1. Then, by Lemma 3, the elements yg1, 2x+1 are well defined,
and

Uk(t) < yp1(t) < zrga(t) < z(t), ted
Hence, by induction, we have
Yo(t) Sy1(t) < - S ynlt) S znlt) < - <z (t) < 20(t), teT
for all n. Employing standard techniques, it can be shown that the
sequences {y,}, {zn} converge uniformly to the limit functions v, 2, so
Un = Y, Zn — 2, and y(t) < z(t) on J. Indeed, y, z satisfy the system
{ y't)=Ftuye), ted, y(s)=y(0)=-2(T), seJy,
Z’(t) - f(ta Zt)7 te ']7 | Z(S) = Z(O) = _y(T)a s € JO-
By Lemma 5, y(t) = z(t) on J, so y and z are solutions of problem (1).
To prove that y = z is a unique solution of (1) in [yo, 2], we need

to show that if w is any solution of (1) such that yo(¢) < w(t) < 2o(t)
on J, then

yo(t) <y(t) Sw(t) < z(t) < z(t), teld
To do this, suppose that for some &, yx(t) < w(t) < 2zx(t) on J, and
put p = ygy1 —w, ¢q=w — 2g41. Then, Assumption Hj yields

: 0
P6) = F(t,ys) + N / [Whsn (t+5) -y (E+ 8)]ds — £t w,) <

q'(t) = f(t,we) — F(¢, 2m) — N/[zk+1(t +8) — zx(t + 8)]ds <

-7

0
< N/q(t—l— s)ds

for t € J with p(0) = ¢(T'), ¢(0) = p(T'). By Lemma 4, we obtain p(t) <
<0, ¢(t) < 0on J showing that yx41(t) < w(t) < 2x41(t), t € J. Since
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yo(t) < w(t) < 2o(t) it proves, by induction, that y,(t) < w(t) < z,(¢)
on J. Taking the limit as n — oo, we conclude that y(t) < w(t) <
< z(t), t € J. The proof is complete. ¢

Example 3. Let

t
Flt, ) = g(t, / K(t,5,0(s)ds), teJ=[0,T], 7>0.
t—7
Assume that g, and K3 exist and go(t, u) K3(t, s,v) > L > 0, [go means
the derivative of g with respect to the second variable, and K3 the
derivative of K with respect to the third one]. Then, using the mean
value theorem, we see that assumptions H3 holds, so

¢ 0
flt,v) — ft,ug) > L / [v(s) —u(s)]ds =L /[U(t +5) —u(t+ s)]ds

for v(t) > u(t) on J.

Theorem 3. Assume that Assumption Hy is satisfied. In addition,
suppose there exist constants K,L > 0, ¢,a > 0 and (K + Lg®)T < 2q
such that the condition |f(t,z)| < K + L|z|* holds fort € J, z € Cy.
Then problem (1) has a solution.

Proof. Put Q = {:1: € C(J,R) :|z]o = ma}clx(tﬂ < gy¢. It is obvious
te

that the set ® is convex, closed and bounded. We prove that AS C S,
where the operator A is defined as in (11). Let z € Q). Then

T
[Aalo = max | [ H(t,9)f(s,2.)ds| < 5K + Lia)T <
0

< (K+Lg*)T <gq

showing that operator A maps the set S in itself. Let us show that
operator A is completely continuous. Note that the set {Az}, z € Q
is uniformly bounded. On the other hand, the functions z are in fact

DN | b [ SR

d
differentiable, and we have aAw(t) = f(t,z;). Hence, for z € Q, we
have
max iAm(t)
teJ |dt
Therefore the derivatives of functions Az are uniformly bounded, which
shows that these functions are equally continuous. The set {Az} will

< K+ Lg.
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be relatively compact if |z| < ¢, hence the operator A is completely
continuous. Therefore, operator A satisfies Schauder’s theorem and
has at least one fixed point. This completes the proof. {

4. =1 >
Remark 4. If o , then ¢ > 5 IT

LT < 2. In this case, Th. 3 holds under Assumption H; because we
have

£ 2)| < 1(t,2)= (2, 01+ (¢, 0)] < K+Lialo with K =max |f(5,0)].

and we need to assume that

Note that in this case problem (1) has a unique solution, by Th. 1.
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