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Abstract: The structure of rings without proper essential left ideals is de-

scribed, as well as that of rings having an essential minimal left ideal.

In the recent radical theoretical paper [4] Puczylowski and Zand
introduced and used the notion of essential left ideals. The purpose of
the present note is to investigate the effect of the presence and absence
of essential left ideals to the structure of rings. Analogous results to
some known ones [3] concerning two-sided essential ideals are estab-
lished; namely, we study some properties of rings having no non-trivial
essential left ideals, or having an essential minimal left ideal. Since
conditions on essential left ideals are stronger than those imposed on
essential two-sided ideals, we get more precise information on the struc-
ture of rings. These results are then used to give some characterizations
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of UD-semisimple artinian rings, where YD denotes the upper radical
class determined by the class of all c:iwxsmn rings.

Throughout this paper all rmlgs are assoc1at1ve and R will al-
ways denote a ring. We write [ <1'R (respectively, I <¢R) to denote
that I is a two-sided (respectively, left) ideal of R. A left ideal L of R
is said to be a direct summand of R if there exists an ideal I of R
such that R = L © I and L is called essential in R if, for every 0 #
#+ J< R, we have L NJ # 0 and, in this case, we write, L <jR. If
L <R, then {(R,L) = {re R:7L =0}, r(R,L) = {r€e R: Lr =0}
and ann (R, L) = {r € R: Lr = rL = 0}. For the fundamentals of rad-
ical theory we refer to [5].
Lemma 1. Let 0 # LR and suppose that L has a unity. Then L = R
if and only if (R, L) = 0.
Proof. Let e be the unity of L. Suppose first that ¢(R,L) = 0. For
each z € R we can write z = ze + £ — ze. Let K = {z —ze:z € R}.
Now, ze = e(ze) so that (z — ex) eL{ = 0. So, (z — ex) L = 0 and since
(R, L) = 0, it follows that z = ex. It is now easy to show that K < R.
Furthermore, L N K = 0. Indeed, i!f a € LNK, then a = ¢ — ze for
ae = (z —ze)e = 0. But, since
¢(R,L) = 0 implies that L is an essent1al left ideal of R, we conclude
that K = 0. Consequently, z = ze for any £ € R and so L = R. The
converse follows easily. ¢

In particular, we can state the following
Corollary 2. If0+# L<,R and L has a unity, then L <y R if and only
if L=R.

Proof. Suppose that L <jR . Since

L has a unity and L is essential in
R, it follows that £(R, L) = 0. Hence L = R by Lemma 1. The converse
is trivial. ¢ '

Lemma 3 (see [3], Lemma 1). IfP # L <4R (L # R), then either L

s a direct summand of R or there Ts a proper essential left ideal of R

containing L.

Proof. Let 0 # L <,R (L # R) and suppose that L is not a direct
summand of R. Let M={I<R:LNI=0}. By Zorn’s lemma, there
exists a maximal element M € M. Now L + M is an essential left
ideal of R. Indeed, if L NI # 0, then it is clear that (L+M)NI#0.
So, let us assume that L NI = 0. F‘hen Ie M. Now, if I C M, we

have (L+ M) NI # 0, as desired.| If I is not contained in M, then
(I+M)NL #0since M C I+ M and M is maximal with respect
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to LN M = 0. Thus, there exists a +m € I + M such that a + m =
=1l€ L. Thena € L+ M and hence (L+M)NI #0, if g # 0. If
a = 0, then m = [ so that LN M # 0. Moreover, since L is not a
direct summand of R, L + M is a proper essential left ideal of R and,
obviously, LC L+ M. ¢
The proof of the next lemma is straightforward.
Lemma 4. If every left ideal of R is a direct summand of R, then for
any ideal I of R, we have:
(i) If L <41, then L <,R.
(ii) Any left ideal L of I is a direct summand of I and also of R.
The following theorem and its proof are also analogous to ([3]
Th. 3). |
Theorem 5. The following conditions are equivalent for any ring R :

(i) R has no proper essential left ideals.

(ii) Each left ideal of R is a direct summand of R.

(iii) R is a direct sum of simple rings having only trivial left ideals.
Proof. If R has no proper essential left ideals, then by Lemma 3, each
left ideal of R is a direct summand of R and hence (i) implies (ii).
Clearly, (ii) implies (i). We shall now prove that (iii) implies (ii). Let
R be a direct sum of rings I; (i € A) where each I; is a simple ring
having only trivial left ideals. Let 0 # L <zR. For each subset J C A,
let Iy = Zje.]‘[j' Forany i, LNL;=0o0or LNL =1. LN = I,
for all 4, then L = R. This implies |A| = 1 and in this case condition
(ii) has been proved. Suppose that there exists J such that I; N L = 0.
Applying Zorn’s lemma, we can choose a set J which is maximal with
respect to LNI; =0.If j € J, then I; C I;+ L. If j does not belong to
J, then Iy g Ij+1; so that (I; + I;)NL # 0 and so ;N (Iy + L) # 0.

Thus I; N (I; + L) = I;. Therefore, I; CI;+Landhence R=I;8L.

We shall now prove that (ii) implies (iii). First, we show that
every non-zero ideal of R contains a non-zero simple ideal having only
trivial left ideals. Let 0 # I <R. If 0% a € I, let M = {L <] : a does
not belong to L}. Then, according to Zorn’s lemma, there exists T <l
which is maximal with respect to a ¢ T. By Lemma 4, I = T ® U for
some U < I. Now U is simple having only trivial left ideals. Indeed,
if there exists 0 # V «,U then, by the previous lemma, U=V oW
for some W aU. Then I =T &V @ W. If W # 0, then we have that
TgTGBVandT(;TEBWso that a € T®V and a € T ® W. Hence,
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"since I=T@®V & W,we have that t + v+ 0 =a =t; + 0+ w for some
t,th1: €T, weWandveV. Thenv=0=wanda=¢t =tecT,
which is a contradiction. Thus, W = 0 and so V = U. Therefore U is
simple having only trivial left ideals. We notice also that U is an ideal
of R. Next we show that if

S= z ( all simple ideals of R having only trivial left ideals ),

then S = R. Indeed, if S # R, then R = S®K for some 0 # K<R. But,
by the previous step, we can find a simple ideal of R containing only

trivial left ideals,which is not contained in S. This is a contradiction.
Finally, if

R = Z ( all simple ideal ofR having only trivial left ideals ),

then R is a direct sum of simple rings having only trivial left ideals.
In fact, if {I;};c, is the collection of all simple ideals of R having only
trivial left ideals, then, by Zorn’s lemma, there exists J C A which is
maximal with respect to } ;. ;I; being a direct sum. Since we have
shown that every non-zero ideal of R contains a non-zero simple ideal
having only trivial left ideals, we conclude that R = @3 ;. ;I;. ¢

It is well known [5] that a simple ring having only trivial left ideals,
is either a zero ring of prime order or a division ring. Hence, we can
state the following
Corollary 6. For a semi-prime (respectively, nil) ring R, the following
* conditions are equivalent:

(i) R is a direct sum of division rings (respectively, zero-rings of
prime order).
(ii) Ewvery left ideal of R is a direct summand of R.
(iii) R has no proper essential left ideals.
Theorem 7. The following conditions are equivalent for a ring R:
(i) R is UD-semisimple artinian (where UD denotes the upper rad-
ical determined by the class D of all division Tings).
(ii) R has no proper essential left ideals and R has a right unity.
(iii) Fvery left ideal L of R is a direct summand of R and R has a
right unity.
(iv) R is a finite direct sum of division rings.
(v) Every left ideal of R has a unity.
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Proof. Since UD-semisimple rings are semi-prime, and the simple UD-
semisimple rings are division rings, the equivalence of (i) and (iv) is
obvious. That condition (ii) is equivalent to condition (iii) follows im-
mediately from the previous theorem. We now prove that (iil) implies
(iv). Suppose that every left ideal L of R is a direct summand of R
and that R has a right unity. Then, from the previous theorem, R is a
direct sum of division rings. Since R has a right unity, this direct sum
must be finite. Then the right unity e of R is in a finite sum of these
division rings:

66.[1@]2@...@L~.
If I; is any further component of R, then

IjZIjegfl@IQEB...@IT,

which is a contradiction. To show that (iii) implies (v),let 0 # L«
<¢R. Then, from (iii), there exists M < R such that R = L @ M. So,
L = R/M. Now, since (iii) implies (iv) and we have shown that (iv)
is equivalent to (i), we know that R has a unity. Thus L also has a
unity. Finally, we show that (v) implies (ii). Suppose that every left
ideal of R has a unity and that L « ¢R. Then, from Cor. 2, it follows
that L=R. ¢
Rings which have an essential minimal left ideal are described in
the following theorem: ‘
Theorem 8. A ring R has an essential minimal left ideal L if and
only if R is subdirectly irreducible with heart H = I, + LR and
(i) either L* # 0, L is a minimal left ideal in R and then H is a
simple prime ring with minimal left ideal L,
(ii) or L? = RL = 0, H is a zero-ring on an elementary p-group,
and the additive group of L is a cyclic group of prime order p,
(iii) or RL #0,L* = H? =0 and L is a minimal left ideal of R.
Proof. Since L is minimal and essentia] in R, L is contained in every
non-zero ideal of R. Thus R is subdirectly irreducible with heart H —
=L+ LR.
We consider case (i). Since L? # 0, by the minimality of L, there
exists a € L such that L = Ra. Obviously,

H=L+LR=L+(Ra)R=L+ Y (Ra)z.
TER
Each left ideal Raz is an R-homomorphic image of Ra, so, by the
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minimality of L, either L 22gRaz or Rax = 0. This proves that H is
the sum of all minimal left ideals of R which are R-isomorphic to L.
Moreover, by the essentiality of L and H in R, each minimal left ideal
of R is R-isomorphic to L. Let 0 # K<,H such that K C L. If LK =0,
then K C r(H,L) and r (H,L) < H. Since by 0 # L? C H?, the heart
H is a simple prime ring, we have r (H,L) = H and, consequently,
L? C LH = 0; a contradiction. Hence LK # 0 and there exists k € K
such that Lk # 0. Since Lk <¢R and Lk C L, necessarily, L = Lk.
Thus, L = Lk C LK C HK C K. This proves that L is a minimal left
ideal also in H.
Next we consider case (ii). Since L? = 0, we have

= (L+LR)?=L?+L*R+L(RL) + L(RL)R = L* = 0.

RL = 0 implies that L = Za for any 0 # a € L. Hence, for b € L with
0 # b # a, we have b = na for some n € Z and, by the same token also,
a = kb for some k € Z. Hence, a = kna and (kn —1)a = 0. If such
an element b does not exist, then L is the two element group. Taking
into account the minimality of L, L is a zero-ring on a cyclic group of
prime order p.

Case (iii) is clear.

The converse statement is obvious. ¢ .
Remark 1. In case (i), the heart H is isomorphic to a dense ring of
linear transformations on a vector space over a division ring, and hence
H contains nonzero idempotents, that is, R is Behrens-semisimple.
Remark 2. In case RL # 0 and L? = H? = 0 there is nothing to say
about the structure of L.

For instance, consider the split-null extension Q*Q of the rational
numbers Q by itself: On Q * Q addition is defined componentwise and
multiplication by the rule

(a,b)(c,d) = (ad + be, bd)

for all a,b,c,d in Q. Now Q * Q is subdirectly irreducible with heart
= (Q,0) and L = H is the unique essential minimal left ideal in

Q*Q and L? = 0.

Corollary 9. A ring R has finitely many essential minimal left ideals

Li,...Ly if and only if R is subdirectly irreducible with heart H = S L;

and

(i) either L3 #0, n=1 and R = Ly is a division ring,
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(i) or L2 #0,2 < k < n, and H = R is isomorphic to a matriz
ring M (F') over a finite field F,
(i) or RH = 0 and H is a finite direct sum of zero-rings on the
cyclic group of prime order p,
(iv) or RH # 0, H? = 0 and H is a finite direct sum of minimal
left ideals of R.
Proof. For the proof of (ii) we notice that a matrix ring My(D),2 <
< k, over an infinite division ring D has infinitely many minimal left
ideals (cf. Lai [2]; this result can be deduced also from Beidar and
Salavova [1]) and each of them is essential. The rest is obvious in view
of Th. 8. ¢ ‘

It is easy to show that the semisimple class o of a left hereditary
radical v is left essentially closed (that is, L « ¢ and L € o imply
R € ). Recall that a radical v is left subhereditary if 0 £ L <,R € y
implies v (L) # 0. We notice that a radical y belongs to a left essentially
closed semisimple class o if and only if 7 is left subhereditary but not
necessarily left hereditary. An example of such a radical is the upper
radical v = UC of the class C of all commutative reduced rings, which
is also a special radical (see [4]).

Proposition 10. The semisimple class o0 = SUC is left hereditary,
whence v = UC is a left stable radical (that is, if L<,R then (L) C
Cv(R)).

Proof. Since UC is a special radical, every ring R € o is a sub-
direct sum of commutative reduced rings, that is, there exists a set
{I,\ aR: R/I)‘ € C} such that NI, = 0. If L <,R, then

L/ (LN 1) = (L+ 1)) /Iy <R/,

and so also L/ (L N I,) is a commutative reduced ring. Obviously, L is
a subdirect sum of the rings I/ (L N I,), whence L € ¢. {

As is well-known, the left hereditary and left stable radicals are
precisely the hereditary A-radicals. Hence UC is not left hereditary,
reproving a statement of [4].

We terminate with the following related problem:

Problem. Characterize the semisimple classes of left hereditary radi-
cal classes! This would yield also a characterization of the semisimple
classes of hereditary A-radicals.
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