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Abstract: Sufficient conditions for the oscillation of all the solutions of the
first order delay differential equation with positive and negative coefficients

(&) +pt)z(t —7) —g(t)z(t —0) =0
are given.

1. Introduction

The oscillation theory of delay differential equations has been
mostly developed during the past few years. This is motivated by the
many applications of delay differential equations in physics, biology,
ecology and physiology. We refer, for example, to [5], [9], [11], [13],
[15], [27], [30], [32] and to the references cited therein.

The purpose of this paper is to consider the delay differential
equation
(1) £(t) +pt)z(t — 1) — q(t)z(t — 0) = 0,
where p and g € C([tg, +00),RT) and 7,0 € RT.
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By a solution of equation (1) on [tg, +00), where to > 0, we mean
a continuous function defined on [tg—max{T, o}, +00), which is a differ-
entiable function z on [tg, +00) and satisfies equation (1) for all ¢ > £o.
Such a solution is called oscillatory if it has arbitrarily large zeros. Oth-
erwise it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of the
delay differential equation with positive coefficient

(2) £(t) +p(t)z(r(t)) = 0
was undertaken by Mishkis. In 1950 [31], he proved that every solution
of the equation (2) oscillates if

. .. .. 1
lir_r)lillop[t — 7(t)] < 400, ltlinﬁ&f[t —7(t)]- ltlin_&gofp(t) >

In 1972, Ladas, Lakshmikantham and Papadakis [25] proved that
the same conclusion holds if

¢
(3) limsup/ p(s)ds > 1.
t—+oo Jor(s)
In 1979, Ladas [24] and in 1982, Koplatadze and Chanturiya [18]
improved (3) to

t
(4) liminf/ p(s)ds > %.

t—+o0 (t)

Concerning the constant 1/e in (4), it is to be noted that if the

inequality
t 1
p(s)ds < =
() €
holds eventually, then, according to a result in [18], the equation (2)
has a non-oscillatory solution.
How to fill the gap between the conditions (3) and (4) when the
limit : ~
t
t—l)l—}n—:loo T(t) p(S)dS
does not exists, is an interesting problem which has been recently in-
vestigated by several authors.
In 1988, Erbe and Zhang [10] developed new oscillation criteria
by employing the upper bound of the ratio z(7(¢))/z(t) for possible
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non-oscillatory solutions z of the equation (2). Their result says that
all the solutions of the equation (2) are oscillatory if 0 < m < 1/e and

m2

(5) M>1_T

where

ot t
m = liminf/ p(s)ds and M= limsup/ p(s)ds.
t—=to0 J, o t—+oo Ji—r

Since then, several authors obtained better results by improving
the upper bound for z(7(t))/z(t). Among them, we can cite Chao [4],
Yu and Wang [33] and Yu, Wang, Zhang and Qian [34].

In 1990, Elbert and Stravroulakis [8] and in 1991, Kwong [23],
using different techniques, improved condition (5) in the case where
0 < m < 1/e to the conditions

2
M>1—<1——1—) and M>2Mtl1

vV )\1 }\1 ’
respectively, where A; is the smaller root of the equation A = e™*.
We also mention that in the case where

t 1 ¢ 1
> — i = —
/T(t)p(s)ds 2 - and t—l-g-noo T(t)p(s)ds =
this problem has been studied in 1995 by Elbert and Stravroulakis [8],
Kozakiewics [19] and Li [28], and in 1996 by Li [29] and by Domshlak
and Stavroulakis [6].

In 1998, Domshlak and Stavroulakis [7] and in 1999, Jaros and
Stavroulakis [17] established sufficient conditions for the oscillation of
all solutions of the equation (1) in the critical state that the correspond-
ing limiting equation admits a non-oscillatory solution.

Among several other works devoted to the study of oscillatory
properties of delay differential equations, we can cite the papers by
Agwo [1], Arino and Gyéri [2], Arino, Ladas and Sficas [3], Gopalsamy
[12], Gopalsamy and Ladas [14], Gy&ri and Ladas [15], Gyéri, Ladas
and Pakula [16], Kulenovic and Ladas [20], [21], Kulenovic, Ladas and
Meimaridou [22] and Ladas and Stavroulakis [26].

In this paper, we provide new sufficient conditions for the oscilla-
tion of all the solutions of the equation (1) by means of the generalized
characteristic equation. '
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2. The main result

We first give some results needed in the proof of our main theorem

(Th. 2.1).
Lemma 2.1. Let z € R andr > 0. Then
(6) re™® > rz+Iner.

Proof. Write the right hand side of (6) as
rz+Iner =lne™ +Ilner =lne+Inre™ =1+Inre™.
So, inequality (6) becomes
(7) re™ >1+Inre™ or re™® —Inre™ > 1.
Let z = re™ and consider the function f(z) = z —Inz. In terms of

z and f(z), inequality (7) reads f(z) > 1. Note that f(1) = 1 and

% (z) = z‘z‘l, which implies that f admits 1 as a minimum and then
f(z)>1forall z>0.¢
Lemma 2.2 [15]. Suppose that x € C([to, +00),R) satisfies the inequal-

ity

t) < t>1t
o) et max o) for 2o

where ¢ < 0, 7 € Rt and tg € R. Then x cannot be a nonnegative
function.

Lemma 2.3 [15]. Let p; € C([tg, +o0),RT) and 7; e RT,i=1,... ,n.
The differential inequality

E(t) + > pi()zt—7) <0, t>to
i=1
has an eventually positive solution if and only if the differential equation
n
§(t) + Y piyt—) =0, t>t
1=1

has an eventually positive solution.
Consider the delay differential equation

(8) y(t) +a()y(t —7) =0, &=t
and let
t t
m = lim inf a(s)ds and M = limsup a(s)ds.
t=too Jy_ o, t—+00 Jit—7r

Lemma 2.4 [17]. Suppose that m > 0 and the equation (8) has an
eventually positive solution y. Then m < 1/e and
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I
MSC]_:L—l—A_i{-“Al—L,
1

where A1 is the smaller root of the equation d=e™* and L=lim inf y(_t) .

: t—+oo Y(E—T)
Lemma 2.5 [33]. Let 0 < m < 1/e and let y be an eventually positive
solution of the equation (8). Then

MSczz 2 .
1—m—+1-2m—m?

Lemma 2.6. Consider the delay differential equation (1) and assume
that the following conditions hold:

limsu
t—>+oop y(t)

(H1): p,q € C([to, +00),R"), 7,0 € Rt and r > o,
(H2): p(t) > qt+0o—7) fort>teg+1—o0,
(H3): b= q(s+o0)ds <1 fort>ty+r.

t—1
Let x be an eventually positive solution of the equation (1) and X the
function defined by

t—o

9) X =) — / (s +0)z(s)ds, t>tgtT—o

t—1
Then X is decreasing and positive.
Proof. By differentiation, (9) gives

X(t) = 2(t) — q(t)z(t — o) + q(t + 0 — T)z(t — 7).
By (1) we see that

(10) X(t) =—[p(t) —q(t+ 0~ 7)|z(t — 7).

Because that z is positive for t > t; — 7, where t; > o + T, and from
hypothesis (H2), we conclude that

(11) X@t) <0 for t>t 4,

which implies that X is decreasing on [t; + 7, +00).

Now, by contradiction we prove that X is positive. Suppose that
there exists a ta > t1 such that X (¢5) < 0. Inequality (11) implies that
there exists a ¢3 > ¢ such that X (¢) < X(¢3) <0 for ¢t > t3. From (9)
it follows that for £ > ¢3 we have
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t—ao

dmwmwwsmm+L o(s + 0)a(s)ds <

-7

t—o

2(t) = X () + /t

-T

< X(t3)+< max :c(s)) /tt_aq(s—}—a)ds.

t—r<s<t—o —T
Hypothesis (H3) yields

< > is3.
z(t) < X(t3) + t—TIélSa%gt*o‘m(S) for t>13

By Lemma 2.2, z cannot be nonnegative on [t3, +00), which is a contra-

diction to the assumptions of our theorem. This completes the proof. ¢
Our main result about the oscillation of all solutions of the equa-

tion (1) is embodied in the following:

Theorem 2.1. Let the hypotheses (H1) to (H3) of Lemma 2.6 are true.

Let a(t) = p(t) — q(t + 0 — 7) and assume that

(H4): liminfftt a(s)ds >0,
(H5): hm sup ft s)In ( f:+T a(u)du) ds = +oo, for some t.

Then every solution of the equation (1) s oscillatory.

Proof. For the sake of contradiction, we assume that (1) has a positive
solution z. (For the case that (1)x has a negative solution Z, we simply
let z = —7%). By Lemma 2.6, the functlon X defined by (9) is positive.
Also by (10) we have

X () + [p(t) — qt + o — )]zt — 1) =0.

Since 0 < X(t) < z(t) and p(t) > q(t + o — 1) (see (H2)), X satisfies
X(t)+[pt) — gt +o—7)]X({t—T) <0.

By Lemma 2.3, the delay differential equation

(12) §(t) + [p(t) —q(t +o— 1)yt —7) =0

has a positive solution. Let y be such a solution. Note that y is de-

creasing for sufficiently large ¢. Dividing both sides of equation (12) by
y(t), we have

i) =) _
U (0 —ale o - =0

Integrating both sides of this equation from ¢ — 7 to ¢, for sufficiently
large t, we have
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y(t) i y(s =)
———+ [p(s) — q(s + o — 7)]=——2ds = 0.
y(t—7)  Jir y(s)

Let W(t ) y(t(t)T ). By the last equation, we have

In

. [p(s) — g(s + 0 — 1)]W(s)ds = In W (),

W =eo ([ a@wios),

where a(t) = p(t) —g(t+o0—7). Multiplying the factor a(t) in both sides
of this equation, the function a(t) = a(t)W (t) satisfies the generalized
characteristic equation

a(t) = a(t) exp ( /t tT a(s)ds> .

Let r(t) = ft ,a(s)ds and z(t) = T(t) ft , @(s)ds. The equation above
is equivalent to

r(t)a(t) = a(t)r(t)er®=®),
By Lemma 2.1 we get

rt)a(t) > a(t) [r(t)z(t) + Iner(t)],

which is equivalent to

r(®)a(t) > a(t) [ /t i os)ds + lne'r(t)]

(/t: “(S)ds) a(t) — a(t) /t: a(s)ds 2‘ a(t)In (e /:T a(s)ds) _

Integrating both sides of this inequality from %o to T, for T' > %y, &g
sufficiently large, we have

L ([ atas)aar [ at) [ atopasac>
2 /: a(t) In (e /t: a(s)ds) dt.

By interchanging the order of integration, we find that

or

(13)
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/on a(t) (/ a(s)ds) dt > /: ' (/:+T a(t)a(s)dt> ds =
‘éTT (/ Tdﬂﬁ)dw=AjEZAﬂ<L+Ha@yw>m

Hence
/EOT a(t) (/t; a(s)ds) dt — /:_T a(t) (/:JFT a(s)ds) dt >
> /ZOT (/:T a(s‘)ds> a(t)dt — /ZOT a(t) /t; a(s)dsdt

and therefore, from (13) and (14), it follows that

/Tf: a(t) (/:T a(S)ds) dt > /ZOT a(t) In (e /t; a(s)ds> dt.

Taking “limsup” on both sides of this inequality, we have
] t s
M - lim sup/ a(s)ds > lim sup/ a(s) </ a(u)du) ds >
t— oo t—r t—+o0 t—T S—T

t s
> limsup/ a(s)In (e/ a(u)du) ds,
t—+oo Jig s—T

where M = limsup ft a(s)ds. Since af(t) = a(t)W(t) = ZE:;, in-
t—+o00

equality (15) gives

: y(t—7) _ .. t ’
M -limsupIn > limsup | a(s)ln|e a(u)du | ds.
t——+o0 y(t) t—r+o0 S s—T

Using Lemma 2.4 (M is finite) and hypothesis (H5), we deduce that

(14)

(15)

lim su
t—)+oop y(t)

In view of Lemma 2.5, we have a contradiction. Thus the result of
Th. 2.1 holds. ¢

Acknowledgement. The author wishes to thank the anonymous ref-
eree for his helpful suggestions.
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