A NOTE ON THE TOLERANCE LAT-TICE OF ATOMISTIC ALGEBRAIC LATTICES

Sándor Radeleczki

Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary

Dedicated to Professor R. Wiegandt on his 70th birthday

Received: April 2001

MSC 2000: 06 B 10, 06 D 15

Keywords: Standard element, tolerance-trivial and pseudocomplemented lattice.

Abstract: We prove that any tolerance of an algebraic atomistic lattice L with a regular kernel is a congruence. Moreover the lattices TolL and ConL satisfy the same identities involving the pseudocomplementation.

1. Introduction

It is a known fact that the tolerance lattice (TolL) and the congruence lattice (ConL) of a finite atomistic lattice coincide. In general this assertion is not true in the infinite case, however we show that if L is an atomistic algebraic lattice then any tolerance of L, whose kernel is a principal ideal, is a congruence.

It is also well-known [1] that TolL and ConL are pseudocomplemented lattices. Let T^* (or θ^*) stands for the pseudocomplement of a

E-mail address: matradi@gold-unimiskolc.hu

Research partially supported by Hungarian National foundation for Scientific Research (Grant No. T029525 and No. T034137) and by János Bolyai Grant of Hungarian Academy of Science

 $T \in \operatorname{Tol} L$ (or of a $\theta \in \operatorname{Con} L$). Bounded pseudocomplemented lattices considered as universal algebras $(L, \wedge, \vee, *, 0, 1)$ satisfying the identity

$$(L_n:) \qquad (x_1 \wedge x_2 \wedge \ldots \wedge x_n)^* \vee \\ \vee (x_1^* \wedge x_2 \wedge \ldots \wedge x_n)^* \vee \ldots \vee (x_1 \wedge x_2 \wedge \ldots \wedge x_n^*)^* = 1$$

form an equational class for any $n \in \mathbb{N}$. Any equational class of distributive bounded pseudocomplemented lattices coincides with one of these classes (see [7]). Our principal result is the following:

Main Theorem. If L is an atomistic algebraic lattice, then Con L satisfies the identity (L_n) for some $n \in \mathbb{N}$ if and only if Tol L satisfies the same identity.

2. Preliminaries

The lattice L with 0 element is called atomistic if any $x \in L$ is the join of atoms below x. The set of all atoms of L is denoted by A(L) and for $x \in L$ let $A(x) = \{a \in A(L) \mid a \leq x\}$. Clearly, $A(x \wedge y) = A(x) \cap A(y)$ and $A(x) \cup A(y) \subseteq A(x \vee y)$ for all $x, y \in L$. Let $A(x) \in A(x)$ stand for the principal ideal generated by $A(x) \in A(x)$.

An element $a \in L$ is called standard if $x \wedge (a \vee y) = (x \wedge a) \vee (x \wedge y)$ holds for all $x, y \in L$. The standard elements of L form a sublattice denoted by S(L) (see [4]).

Remark 2.1. The following simple facts can be found e.g. in [4] or [5].

- (i) s is a standard element of L iff the relation $\theta(s) = \{(x,y) \in L^2 \mid x \vee y = (x \wedge y) \vee a, \text{ for some } a \leq s\}$ is a congruence of L.
- (ii) For any $s_1, s_2 \in S(L)$ we have $\theta(s_1 \vee s_2) = \theta(s_1) \vee \theta(s_2)$, $\theta(s_1 \wedge s_2) = \theta(s_1) \wedge \theta(s_2)$ and $\theta(s_1) \circ \theta(s_2) = \theta(s_2) \circ \theta(s_1)$.

Let T(a,b) stand for the principal tolerance generated by the pair $(a,b) \in L^2$, $a \neq b$. For the identical and the unit relations on L, we write Δ and ∇ , respectively. If $T \in \operatorname{Tol} L$, then for any $a,b \in L$ we have $(a,b) \in T \Leftrightarrow (a \wedge b, a \vee b) \in T$ and $(a,b) \in T$, $a \leq x \leq b \Rightarrow (a,x), (x,b) \in T$ (see [2]). Clearly, $\operatorname{Con} L \subseteq \operatorname{Tol} L$ and for any $\theta_1, \theta_2 \in \operatorname{Con} L$ their greatest lower bound in $\operatorname{Tol} L$ is the same as the "meet" $\theta_1 \wedge \theta_2 \in \operatorname{Con} L$. However this is not true for the "join" operation; denoting by $T_1 \sqcup T_2$ the least upper bound of $T_1, T_2 \in \operatorname{Tol} L$ in $\operatorname{Tol} L$, we have $\theta_1 \sqcup \theta_2 \subseteq \theta_1 \vee \theta_2$ for all $\theta_1, \theta_2 \in \operatorname{Con} L$. If $\operatorname{Tol} L = \operatorname{Con} L$, then L is called tolerance-trivial.

Lemma 2.2. Let L be a lattice with 0 and $s \in S(L)$. Then

- (i) $\theta(s) = T(0, s)$,
- (ii) For every $s_1, s_2 \in S(L)$ we have $\theta(s_1) \sqcup \theta(s_2) = \theta(s_1) \vee \theta(s_2)$.

Proof. (i) Obviously, $\theta(s) \in \text{Tol } L$ and $(0, s) \in \theta(s)$. Take any $T \in \text{Tol } L$ with $(0, s) \in T$. Then we have $(0, a) \in T$ for each $a \leq s$, whence we obtain $\theta(s) = \{(x, y) \in L^2 \mid x \vee y = (x \wedge y) \vee a$, for some $a \leq s\} \subseteq \{(x, y) \in L^2 \mid (x \wedge y, x \vee y) \in T\} = T$. Hence $\theta(s) = T(0, s)$.

(ii) In view of the above (i) we get $\theta(s_1) \vee \theta(s_2) = \theta(s_1 \vee s_2) = T(0, s_1 \vee s_2)$. On the other hand, $(0, s_1) \in \theta(s_1)$ and $(0, s_2) \in \theta(s_2)$ implies $(0, s_1 \vee s_2) \in \theta(s_1) \sqcup \theta(s_2)$, whence we obtain $T(0, s_1 \vee s_2) \subseteq G(s_1) \sqcup G(s_2) \subseteq G(s_2) \subseteq G(s_1) \sqcup G(s_2) \subseteq G(s_1) \sqcup G(s_2) \subseteq G(s_1) \sqcup G(s_2) \subseteq G(s_1) \sqcup G(s_2) \subseteq G(s_$

$$\theta(s_1) \sqcup \ldots \sqcup \theta(s_n) = \theta(s_1) \vee \ldots \vee \theta(s_n), \text{ for all } s_1, \ldots, s_n \in S(L).$$

Let \overline{T} denote the transitive closure of a $T \in \text{Tol } L$, it is well-known that $\overline{T} \in \text{Con } L$ and that $T(0) = \{x \in L \mid (0, x) \in L\}$ is an ideal of L (see [8]). For an atomistic algebraic lattice L we shall make use of the following notations: $A(T) = A(L) \cap T(0) = \{a \in A(L) \mid (0, a) \in T\}$ and $w_T = \bigvee \{a \mid a \in A(T)\}.$

Remark 2.4. It is easy to check that for any family $T_i \in \text{Tol } L$, $i \in I$, we have $A\left(\bigwedge_{i \in I} T_i\right) = \bigcap_{i \in I} A(T_i)$.

The following result will play an important role in our development:

Proposition A ([9], Prop. 1.11). For each $T \in \text{Tol } L$ we have $A(T) = A(w_T)$ and w_T is a standard element of L.

A lattice L with 0 is called a pseudocomplemented lattice if for each $x \in L$ there exists an $x^* \in L$ such that for any $y \in L$, $y \land x = 0 \Leftrightarrow x \Leftrightarrow y \leq x^*$. If $x^* \lor x^{**} = 1$ for all $x \in L$, then L is called a Stone lattice. A lattice L is said to be a 0-modular if, for any $a, b, c \in L$, $a \leq c$ and $b \land c = 0$ imply $(a \lor b) \land c = a$ (as given in [10]). According to [1], TolL is a pseudocomplemented 0-modular lattice for any lattice L.

3. Tolerances with a regular kernel

Definition 3.1. We say that a tolerance $T \in \text{Tol } L$ has a regular kernel if T(0) is a principal ideal of L.

Clearly, if L satisfies the ascending chain condition then any tolerance of it has a regular kernel. (Indeed, in this case any ideal of L is a

principal ideal [3].) It is also obvious that any congruence $\theta(s)$ induced by a standard element $s \in L$ is a tolerance with a regular kernel.

Proposition 3.2. If L is an atomistic algebraic lattice, then any tolerance T with a regular kernel is a congruence of L induced by a standard element of L.

Proof. Let $T \in \text{Tol } L$ be a tolerance with a regular kernel. As T(0) = (u] for some $u \in L$, Prop. A gives $A(w_T) = A(T) = A(u)$ implying $u = w_T$. Thus $(0, w_T) \in T$, whence by Lemma 2.2(i) we get $\theta(w_T) = T(0, w_T) \leq T$.

Conversely, take $(x,y) \in T$. Then $(x \wedge y, x \vee y) \in T$ and for each $a \in A(x \vee y) \setminus A(x \wedge y)$ we get that $(0,a) = ((x \wedge y) \wedge a, (x \vee y) \wedge a) \in T$, i.e. $a \in A(T)$. Since $A(T) = A(w_T)$, we have $a \leq w_T$. Hence we obtain $q = \bigvee \{a \mid a \in A(x \vee y) \setminus A(x \wedge y)\} \leq w_T$. Now the relations $(0,q) \in \theta(w_T)$ and $x \vee y = (x \wedge y) \vee q$ imply $(x \vee y, x \wedge y) \in \theta(w_T)$, that is $(x,y) \in \theta(w_T)$. Hence $T \leq \theta(w_T)$, and this proves $T = \theta(w_T)$. \Diamond

A tolerance (congruence) φ is called complete, if for any $(a_i, b_i) \in \varphi$, $i \in I$, we have

$$\left(\bigvee_{i\in I} a_i, \bigvee_{i\in I} b_i\right) \in \varphi \quad \text{and} \quad \left(\bigwedge_{i\in I} a_i, \bigwedge_{i\in I} b_i\right) \in \varphi$$

(see e.g., [11]).

Corollary 3.3. (i) Any atomistic lattice L satisfying the ascending chain condition is tolerance-trivial.

(ii) Any complete tolerance of an atomistic algebraic lattice L is a congruence induced by a standard element of L.

Proof. (i) As any lattice with 0 satisfying the ascending chain condition is an algebraic lattice (see e.g., [3]), L is an atomistic algebraic lattice. Since all $T \in \text{Tol } L$ now have regular kernels, we get $\text{Tol } L \subseteq \text{Con } L$, i.e. Tol L = Con L.

(ii) If $T \in \text{Tol } L$ is a complete tolerance, then $w_T = \bigvee \{a \in A(L) \mid (0, a) \in T\} \in T(0)$, whence $T(0) = (w_T]$. Therefore T has a regular kernel, and so Prop. 3.2 gives (ii). \Diamond

4. Pseudocomplements in the tolerance lattice

In what follows let L denote an atomistic algebraic lattice. On the set A(L) we define a relation R as follows: for $a, b \in A(L)$, $(a, b) \in R \Leftrightarrow \theta(0, a) \land \theta(0, b) \neq \Delta$. For any set $B \subseteq A(L)$ let $R(B) = \{x \in A(L) \mid (b, x) \in R \text{ for some } b \in B\}$. In [9] we proved the following:

Proposition B ([9], Prop. 3.2). For any $T \in \text{Tol } L$, T^* is a congruence and we have $T^* = \theta(s)$ for $s = \bigvee \{a \mid a \in A(T^*)\} \in S(L)$ and $A(T^*) = A(L) \setminus R(A(T))$.

Corollary 4.1. For arbitrary $T_1, T_2 \in \text{Tol } L$, $A(T_1) = A(T_2)$ implies $T_1^* = T_2^*$.

Proof. $A(T_1) = A(T_2)$ implies $R(A(T_1)) = R(A(T_2))$, whence in view of Prop. B we get $A(T_1^*) = A(T_2^*)$ and this gives $T_1^* = T_2^*$. \Diamond

For any pseudocomplemented lattice \mathcal{L} its Boolean part is defined as $B(\mathcal{L}) = \{x \in \mathcal{L} \mid x = x^{**}\}$. $(B(\mathcal{L}), \wedge, \vee)$ is a Boolean algebra, where $a \vee b$ is defined to be $(a^* \wedge b^*)^*$ (for more details, see [6]). Now we formulate the following

Corollary 4.2. B(Tol L) and B(Con L) are the same Boolean algebras.

Proof. Clearly, $B(\operatorname{Con} L) \subseteq B(\operatorname{Tol} L)$. Take any $T \in B(\operatorname{Tol} L)$. As $T = (T^*)^*$, Prop. B gives $T \in \operatorname{Con} L$ and $T = T^{**}$ implies $T \in B(\operatorname{Con} L)$. Hence we get $B(\operatorname{Tol} L) = B(\operatorname{Con} L)$ and obviously the corresponding Boolean algebras are the same. \Diamond

Proposition 4.3. Let L be an atomistic algebraic lattice. If $\operatorname{Tol} L$ is a complemented lattice, then L is tolerance-trivial, $\operatorname{Con} L$ is a Boolean lattice and any $\varphi \in \operatorname{Con} L$ is a factor congruence of L.

Proof. Take any $T \in \operatorname{Tol} L$. Denoting the complement of T by T', first we prove that $(T')^* = T$. Since $T \wedge T' = \Delta$ implies $T \leq (T')^*$ and since $\operatorname{Tol} L$ is 0-modular, we obtain $(T')^* = (T \sqcup T') \wedge (T')^* = T$. Now Prop. B gives $T = \theta(s) \in \operatorname{Con} L$ for some $s \in S(L)$, i.e. we get that $\operatorname{Tol} L = \operatorname{Con} L$. Since $\operatorname{Con} L$ is distributive and complemented, it is Boolean. Let $\varphi \in \operatorname{Con} L$, then φ has a complement φ' , moreover $\varphi = \theta(s_1)$ and $\varphi' = \theta(s_2)$ for some $s_1, s_2 \in S(L)$. As in view of Remark 2.1(ii) we have $\theta(s_1) \circ \theta(s_2) = \theta(s_2) \circ \theta(s_1)$, φ and φ' permute, therefore they are factor congruences of L. \Diamond

5. The proof of the main result

To prove our Main Theorem we need the following **Lemma 5.1.** ([9], Lemma 1.12). (i) For each $T \in \text{Tol } L$, $A(\overline{T}) = A(T)$.

(ii) For any $\alpha_i \in \operatorname{Con} L$, $i \in I$ we have

$$A\left(\bigwedge_{i\in I}\alpha_i\right)=\bigcap_{i\in I}A(\alpha_i)\ \ and\ A\left(\bigvee_{i\in I}\alpha_i\right)=\bigcup_{i\in I}A(\alpha_i).$$

Corollary 5.2. For any $T \in \text{Tol } L$ we have $(\overline{T})^* = T^*$.

Proof. As the above (i) gives $A(\overline{T}) = A(T)$, by applying Cor. 4.1 we deduce $(\overline{T})^* = T^*$. \Diamond

Proof of Main Theorem. First, assume that $\operatorname{Tol} L$ satisfies the identity (L_n) and consider $\theta_1, \theta_2, \ldots, \theta_n \in \operatorname{Con} L$. As $(\operatorname{Con} L, \wedge, ^*)$ is a subalgebra of $(\operatorname{Tol} L, \wedge, ^*)$, we can write

$$(\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n)^* \vee (\theta_1^* \wedge \theta_2 \wedge \ldots \wedge \theta_n)^* \vee \ldots \vee (\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n)^* \geqq$$

 $(\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n)^* \sqcup (\theta_1^* \wedge \theta_2 \wedge \ldots \wedge \theta_n)^* \sqcup \ldots \sqcup (\theta_1 \wedge \theta_2 \wedge \ldots \wedge \theta_n^*)^* = \nabla$, and this proves that Con*L* satisfies the identity (L_n) .

Conversely, assume that $\operatorname{Con} L$ satisfies (L_n) and consider T_1 , $T_2, \ldots, T_n \in \operatorname{Tol} L$. As $\overline{T}_i \in \operatorname{Con} L$, $1 \leq i \leq n$, we have:

$$(\overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n)^* \vee$$

$$\vee ((\overline{T}_1)^* \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n)^* \vee \ldots \vee (\overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge (\overline{T}_n)^*)^* = \nabla.$$

Let us introduce the notations: $\beta_0 = \overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n$, $\beta_1 = (\overline{T}_1)^* \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n$, $\beta_n = \overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge (\overline{T}_n)^*$. Since by Cor. 5.2 we have $T_1^* = (\overline{T}_1)^*$, $T_2^* = (\overline{T}_2)^*$, ..., $T_n^* = (\overline{T}_n)^*$, in view of Remark 2.4 and applying Lemma 5.1 we obtain

$$A(T_1 \wedge T_2 \wedge \ldots \wedge T_n) = \bigcap_{i=1}^n A(T_i) =$$

$$= \bigcap_{i=1}^n A(\overline{T}_i) = A(\overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n) = A(\beta_0),$$

$$A(T_1^* \wedge T_2 \wedge \ldots \wedge T_n) = A(T_1^*) \cap A(T_2) \cap \ldots \cap A(T_n) =$$

$$= A((\overline{T}_1)^*) \cap A(\overline{T}_2) \cap \ldots \cap A(\overline{T}_n) = A((\overline{T}_1)^* \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n) = A(\beta_1),$$

$$A(T_1 \wedge T_2 \wedge \ldots \wedge T_n^*) = A(\overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge (\overline{T}_n)^*) = A(\beta_n).$$

Now, Cor. 4.1 gives that $(T_1 \wedge T_2 \wedge \ldots \wedge T_n)^* = \beta_0^*$, $(T_1^* \wedge T_2 \wedge \ldots \wedge T_n)^* = \beta_1, \ldots, (T_1 \wedge T_2 \wedge \ldots \wedge T_n^*)^* = \beta_n^*$. Since in view of Prop. B there exist $s_0, s_1, \ldots s_n \in S(L)$ such that $\beta_0^* = \theta(s_0), \beta_1^* = \theta(s_1), \ldots, \beta_n^* = \theta(s_n)$, by Remark 2.3 we have $\beta_0^* \sqcup \beta_1^* \sqcup \ldots \sqcup \beta_n^* = \beta_0^* \vee \beta_1^* \vee \ldots \vee \beta_n^*$. Summarizing the above results we can write:

$$(T_1 \wedge T_2 \wedge \ldots \wedge T_n)^* \sqcup$$

$$\sqcup (T_1^* \wedge T_2 \wedge \ldots \wedge T_n)^* \sqcup \ldots \sqcup (T_1 \wedge T_2 \wedge \ldots \wedge T_n^*)^* =$$

$$= \beta_0^* \sqcup \beta_1^* \sqcup \ldots \sqcup \beta_n^* = \beta_0^* \vee \beta_1^* \vee \ldots \vee \beta_n^* =$$

$$= (\overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n)^* \vee$$

$$\vee ((\overline{T}_1)^* \wedge \overline{T}_2 \wedge \ldots \wedge \overline{T}_n)^* \vee \ldots \vee (\overline{T}_1 \wedge \overline{T}_2 \wedge \ldots \wedge (\overline{T}_n)^*)^* = \nabla,$$
thus Tol L satisfies the identity (L_n) . \Diamond

Corollary 5.3. Let L be an atomistic algebraic lattice. Then $\operatorname{Tol} L$ is a (not necessarily distributive) Stone lattice if and only if $\operatorname{Con} L$ is a Stone lattice.

Proof. Substituting n=1 in (L_n) we obtain the Stonean identity $x^* \vee x^{**} = 1$. \Diamond

Corollary 5.4. If L is a weakly modular atomistic algebraic lattice, then Tol L is a (not necessarily distributive) Stone lattice.

Proof. Since the congruence lattice of a weakly modular atomistic algebraic lattice is a Stone lattice (as noted by [9]), our assertion is an immediate consequence of Cor. 5.3. \Diamond

Problems. Let L denote an atomistic algebraic lattice.

- 1) Under what conditions TolL is distributive?
- 2) Under what conditions we have $Con(TolL) \cong Con(ConL)$?

References

- [1] BANDELT, H.-J.: Tolerance relations on lattices, Bull. Austral. Math. Soc., 23 (1981), 367–381.
- [2] CHAJDA, I.: Algebraic Theory of Tolerance Relations, Univ. Palackého (Olomouc), 1991.
- [3] CRAWLEY, P., DILWORTH, R. P.: Algebraic Theory of Lattices ,Prentice-Hall Inc. (New Jersey), 1973.
- [4] GRÄTZER, G.: General Lattice Theory, Birkhäuser-Verlag (Basel-Stuttgart), 1978.
- [5] GRÄTZER, G., SCHMIDT, E. T.: Standard ideals in lattices, Acta Math. Acad. Sci. Hungar., 12 (1961), 17-86.
- [6] KATRIŇÁK, T., EL-ASSAR, S.: p-algebras with Stone congruence lattices, Acta Sci. Math. 51/3-4 (1987), 371-386.
- [7] LEE, K.B.: Equational classes of distributive pseudo-complemented lattices, Canad. J. Math. 22 (1970), 881-891.

- [8] MAURER, I. GY., PURDEA, I., VIRÁG, I.: Tolerances on algebras. Babeş-Bolyai Univ. Fac. Mat. Research Sem. Algebra 2 (1982), 39-75.
- [9] RADELECZKI, S.: Some structure theorems for atomistic algebraic lattices, *Acta Math. Hungar.* 86/1-2 (2000), 1–15.
- [10] STERN, M.: Semimodular Lattices, Theory and Applications, Cambridge University Press (Cambridge, New-York, Melbourne), 1999.
- [11] WILLE, R.: Complete tolerance relations of concept lattices, *Preprint No.* **794** *Techn. Hochschule Darmstadt* (1983) 1–23.