Mathematica Pannonica
12/2 (2002), 191-199

THE RADICALNESS OF POLY-
NOMIAL RINGS OVER NIL RINGS

S. Tumurbat

University of Mongolia, P.O. Boxz 75, Ulaanbaatar 20 Mongolia,
Currently at A. Rényi Institute of Mathematics, Hungarian Acad-
emy of Sciences, P.0.Box 127 H-1364 Budapest, Hungary

Dedicated to my teacher Professor R. Wiegandt on his 70-th birth-
day

Received: November 2001
MSC 2000: 16 N 80
Keywords: Nil ring, polynomial ring, radicals of a ring, normal radical.

Abstract: The main purpose of this note is to give the exact upper bound of
approximating Kéthe’s Problem by radicals. We construct and characterize
the smallest radical £ such that Az] € ¢ for every nil ring A and show that

this improves the approximation given in [1].

1. In this note associative rings and Kurosh—Amitsur radicals will be
considered. As usual, I <A and L <y A denote that I is an ideal and L
is a left ideal in A, respectively.

A class M of rings is said to be regular, if every nonzero ideal of
a ring in M has a nonzero homomorphic image in M. Starting from
a regular (in particular, hereditary) class M of rings the upper radical
operator U yields a radical class:
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UM = {A| A has no nonzero homomorphic image in M}.

For a radical class v the semisimple operator & gives its semisimple
class:
Sy = {A | A has no nonzero ideal in v}.

Kothe’s Problem: Is the sum of two nil left ideals nil?

It has been posed in 1930 at the genesis of radical theory [6]. This
problem has many equivalent formulations. One of the most interesting
one, which stimulated many further studies, is the following due to
Krempa [7].

Does A € N imply that the polynomial ring A[z] in indeterminate
z over A is in J, where N and J denote the classes of nil rings and
Jacobson radical rings, respectively?

In [9] it has been proved that A € N implies A[z] € G, where G
stands for the Brown—-McCoy radical.

We consider two natural radicals:

e The antireqular radical Uv. This is the upper radical determined
by the class v of all von Neumann regular rings.

e The uniformly strongly prime radical u. A ring A is said to be
uniformly strongly prime, if there exists a finite subset F' of A, called
a uniform insulator, such that tFy # 0 whenever 0 # z, y € A. The
uniformly stongly prime radical is the upper radical determined by the
class of uniformly strongly prime rings [8].

In [2] it has been proved that A € A implies Alz] € Uv NG Nu
(see [2, Cor. 3.5]).

We recall also some statements we shall need in the sequel.

The upper radical N, determined by the class of rings which con-
tain no nonzero nil left ideals or, equivalently, no nonzero nil right ideals
is called the lower strong radical determined by N (see [1] and [2]).

The Behrens radical B is the upper radical determined by the class
of all subdirectly irreducible rings having a nonzero idempotent in their
heart.

Recently, in [1] the following has been proved.

Proposition 1.1. A € N, implies Alz] € B.
Proposition 1.2 [2, Th. 3.4]. N; Cu.

We say that a ring A has bounded indez of nilpotency if there is

a positive integer m such that a™ = 0 for each nilpotent element a of

A 4.
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Proposition 1.3 [5, Th. 10.8.2]. Let A be PI algebra of degree d.Let
A(1) be the sum of the nilpotent ideals of A, and B any nil subalgebra
of A. Then B™ C A(1) where m = [d/2].

Proposition 1.4 [3, Th. 6.53]. If in a ring A there ezists a fized
positive integer n such that z™ = 0 for every z € A, then A is locally
nilpotent.

The Baer radical § is the upper radical determined by the class
of prime rings. A prime ring A is said to be x-ring if its every proper
homomorphic image A’ is in 8. We denote by M (A) the infinite matrix
ring which has only finitely many nonzero entries from A.
Proposition 1.5 [12, Lemma 7]. If A is a *-ring, then M(A) is a
*x-ring with trivial center.

A class M of rings is said to be principally left hereditary if a €
€ A e M, then Aa € M.

Proposition 1.6 [13, Th. 5.1]. The Behrens radical B is the largest
principally left hereditary subclass of the Brown—McCoy radical class G
in fact, MG = B where

MG ={ A|Aa € G for everya € A}.

2. We set
m=1a A has no nonzero locally nilpotent ideals and
- every nil subring S of A is locally nilpotent ’
_ 4 A has no nonzero nil ideals and
Mo = all nilpotent elements form a subring in A (-

Lemma 2.1. M and Mg are

a) hereditary classes of rings;

b) both consist of semiprime rings;

c) both contain no nonzero nilrings.
Proof. Trivial. ¢

Recall that a radical o is said to be left strong if o(L) = Lz A
implies L C o(A). Right strong radical is defined correspondingly.
Proposition 2.2. v = UM and § = UMy are left and right strong
and so is YN 4.
Proof. Let v(L) = L<g A, and L € y(A). Then we have
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L+’y(A)>_L+’y(A) A
o+ (208 1) )
Hence, we can choose y(A) =0 and so B = L + LA € Svy. Therefore
B has a nonzero homomorphic image B/I in M. Let (I) be the ideal
of A, generated by I. By Andrunakievich Lemma (I}® C I C (I) and
so by Lemma 2.1 a) and b) (I) = I. Thus it follows that I <A. Hence
L ¢ I. Again we can choose B € M. By Lemma 2.1 ¢) N C « and
so also the locally nilpotent radical £ is contained in . Since L is left
strong, we have L(L) # L and so 0 # L/L(L) € . Hence L/L(L) has
a non-locally nilpotent and nil subring S. Let S/£(L) = S ,then S is
a nil subring of B which is not locally nilpotent, contradicting B € M.
For ¢ the proof is similar. ¢
Corollary 2.3. N, CynénBnu.
Proof. N, C Bnu follows from Props. 1.1 and 1.2. Since N C yNJ,
by Prop. 2.2 we get Vs, CyNé. O
Lemma 2.4. If for a ring A the factor ring Alz]/I is a prime (semi-
prime) ring, then there exist a prime (semiprime) ring B and an ideal
J of B[z] such that Alz]/I = Blz]/J and BNJ = 0.
Proof. Let H = ANI<A. Since H?[z] = (ANI)?[z] C I and (H[z])?> C
C H?%[z] C I. We claim that H[z] C I. Suppose that H[z] € I. Then
I C H[z]+ I and H?[z]) C (H[z]+ )2 C I by H?[z] C I. Since I is a
semiprime ideal, we conclude H[z] C I. So
]

€ Sy.

I A[:L‘]
Hls] “Hlz]
where f is an isomorphism of (A[z])/(H|z]) onto (A/H)[z] such that

(Zazx + Hlz ) zn:az+H i for a; € A.
i=0

Choose B = A/H and J = f(I/H[z]). Then we have
Blz] ., Alz]/Hlz] , Alz]
J ~ I/H[z] I’
and we claim that BNJ = 0. f BNJ # 0 then 0 # BNJ =
= Hy/H,and H C H1<A. Let 0% h € H; \ H. Since H[z] C I and
h+H[z)= f~Y(h+H)e f~Y(J)=I+H[z] =1 Wegethelandso
H;, + H|[z] C I. Thus H; C I, contradicting ANI = H.
Now, we shall show that B is semiprime. If B is not semiprime
then there exists an ideal H; of B such that H C H; and le C H.

= (A/H)lz],
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Hence HZ[z] C H[z]. So H?[z] C I, and as above we have Hy[z] C I.
Hence it follows I; C I, and so H; C IN A = H implying H, = H, a
contradiction.

Let A[z]/I be a prime ring. If H C H; <A and H C Hy<A and
H,H, C H, then (Hy N Hy)? C HHy, C H. It follows again that
HiNHy CI,andso HHNHy, C H.

Put Hy = H;/H and H, = Hy/H, then H, N Hy = 0. We have

H]_ [.’E]

= (Hy/H)[z] = H:[z] <B[z]

and
H2 [ZL‘] H2 [iL‘]

and also H;[z] N Hy[z] = 0.

Since I is a prime ideal of A[z] and

H,[z]Hs[z] C Hq[z] N Hs[z] C I,

we conclude that either Hi[z] C I or Hp[z] C I, and so either H;[z] C
C Hiz] or Hy[z] C Hl[z]. Hence either H; C H or H, C H, a contra-
diction. ¢ :
Corollary 2.5. Let A and B be rings as in Lemma 2.4. If A is nil
ring, then B is nil ring. ¢

A ring A is said to be an n-ring if A is not a homomorphic image
of the polynomial ring B[z] for any nil subring B of A.

Put n(z) = {A | A has no nonzero accessible subring B which is
n-ring}. Denote by £ the lower radical generated by the class {A[z] | A
is a nil ring}.

Theorem 2.6. Un(z) ={.

Proof. Un(z) C £: Let A € Un(xz). then every homomorphic image A’
has a nil subring B C A’, such that B[z]/I = I, <a--- <A’. Therefore
I, € £. Hence £(A’) # 0. If Un(z) € £, then there exists a nonzero ring
A € Un(z) N SL. As above £(A) # 0, a contradiction.

£ C Un(z): Let A € £\Un(z). Then A has a nonzero homomorphic
image A’ in n(z). Since A’ € {, there exists an accessible subring
I,<--- <«A’, which is a homomorphic image of B[z], where B is a nil
ring. Suppose I, & B[z]/I. By Lemma 2.1 I,, = B[z]/I is semiprime
ring.

By Cor. 2.5, there exists a nil ring B’ such that

= H,[z]<Blz].
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Blz]/I = B'[z]/J and B'NJ =0.

Since B’'NJ = 0, we have
B" B +J c B'lz] _, Blz]
BnJ  J - J I
So I, contains a nil subring S which is isomorphic to B’ and so S[z]=
= B'[z]. Hence I, is a homomorphic image of S[z]. Therefore I,, & n(z)
and so A’ ¢ n(z), a contradiction. ¢
Corollary 2.7. Let o be a radical. If A € N imply Alz] € o then
£Co.
Lemma 2.8. Let A be a semiprime commutative ring. Then every nil
subring S of M(A) is locally nilpotent.
Proof. Since A is commutative, for any natural number n the stan-
dard polynomial Ss, actually is an identity of matrix ring M, (A) (see
[10,6.1.17]). By Prop. 1.3, M,,(A) has bounded index. Let m be the
smallest among these indices.
Put

IR

B/

1%

= I,.

nM(A) = {(a;;) | aij € A and a;; =0 for j > n}
and
V={Be,M(A)|a;; =0fori,j<n}

Clearly V <,M(A) and ,M(A)/V = M,(A). Let B € ,M(A) be a
nilpotent element, then B™ € V. Since V2 = 0, also B?>™ = 0. Hence
nM(A) is of bounded index. For any s € S, there exists natural number
n, such that s € ,M(A). Since ,M(A) is a left ideal of M(A), also
2wM(A)NS <y S. Therefore ,M(A)NS is of bounded index nil ring. By
Prop. 1.4, ,M(A) N S is locally nilpotent. Since the locally nilpotent
radical is left strong, S has a locally nilpotent ideal I; of Swhich is
s € I, and so S is locally nilpotent. ¢
Theorem 2.9. £L=Un(z) CBNuNnyNdC BNuns.
Proof. By Prop. 1.1 and Cor. 2.7, we get Un(z) € BNu. Let A €
€ Un(z) \ 7. Then there exists a nonzero homomorphic image A’ of A
in M. Since A’ € Un(z), A’ has a nonzero accessible subring I such
that I = B[z]/J and for a nil subring B of I by Lemma 2.4. Since
M is hereditary, I € M. Hence B is locally nilpotent and so B[z]/J.
Therefore I is locally nilpotent, a contradiction. It follows Un(z) C +.

Let A € Un(z) \ §. As above, we get an accessible subring I of
A" € Mg and so I € My and I = B[z]/J. Since B is nil, for the
semigroup {az™ | a € B,0 < n € Z} every element is nilpotent. The
subring B’ of B[z]/J generated by the set {az™ + J} is isomorpic to I,
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because {az™ + J} are generators of Bz]/J. Hence I is nil ring. Again
a contradiction. Thus, it follows Un(z) C vy N 4. Let us consider the
ring

2z
A= {2y+1 |z,y € Z,(2z,2y+ 1) = 1}.
We know that A is a commutative #-ring (see [12]). We consider
the ring M(A). Since M, (A) is a Jacobson radical ring, one can easily
check that also M(A) is a quasi-regular ring. Hence M(A) € B. Let
ai,...,as € M(A). Then there exists n € N, such that a1,...,as €
€ My, (A). Let V be as in the proof of Lemma 2.8, then M,(A)-V =0
and V # 0. Hence M(A) has no finite subset F, such that zFy #
#0Vr,y #0, z,y € M(A). By Prop. 1.4 M(A) is a *ring. Hence
M(A) € u. Since M(A) is not nil, M(A) has no nonzero nil ideal.

z ifi=kandj=1¢
Put (z)ij = (wxe) = { 0 otherwise '

Clearly (z)21 and (y)12 are nilpotent for any z,y € A. If z #£ 0 #
# y, then (z)21(y12) is not nilpotent. Therefore, since M (A) is a x-ring,
M(A) € 4. It follows M(A) € BN uN{. By Lemma 2.8 any nil subring
S of M(A) is locally nilpotent and so M(A4) ¢ v. ¢

Corollary 2.10. The radical £ gives the best approzimation of Kothe’s
Problem from above:

AeN = Azl
and this improves the approzimation

AeN = Alz] e Bnu.

Proof. The first statement follows from Th. 2.6, the second one follows
from Th. 2.9. ¢

Remark. Obviously N' C N, and N C £. If Kothe’s Problem has a
positive solution, then N' = A, and N, C £. However, N, ¢ ¢ would
mean that there exists a nil semisimple ring having a nonzero one-sided
nil ideal, that is, Kothe’s Problem has a negative solution.

We denote by o, the upper radical generated by the class

{4

all nilpotent elements have bounded nilpotency index.

A has no nonzero locally nilpotent ideals and }
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o
UuﬂGﬂu 5 5

}/Bn\ /

u Bnun~na

Proposition 2.11. 1) LCNcCcJnNLC{lCo.

2) If R € 0 is a PI ring, then R is locally nilpotent.
Proof. 1) Since M(A) is not of bounded nilpotency index M(A) € o
and M(A) ¢ £ by Th. 2.9, and N C J N ¢ follows from [11, Th. 8].

2) If R is not locally nilpotent, then R/L(R) # 0, where L(R) is
locally nilpotent radical of R. Since R is a Pl-ring, we get that R/
J/L(R) is a PI-ring and qemlpumc By Prop. 1.3 R/L(R) is of bounded
nilpotency index. Hence R/L(R) € 0 N So = 0, a contradiction. ¢

A normal radical v may be defined as left strong and principally
left hereditary radical. In [13] it has been proved that here left strong-
ness can be replaced by the weaker condition of principally left strong-
ness (that is (L) = L<, A and for any a € L, La € v = L C r(A)).
An N-radical r may be defined as a normal radical containing the Baer
radical 3.

Set

*={Ael|Aaecl, for any a € A}.

Proposition 2.12. N C /° C BNUNYNE, where yN§ is largest

N-radical in vyN 4.

Proof. Clearly N C £°, since N is left hereditary. Let A € #°, then

Aa € £, for any a € A. By Prop. 1.6 A € B. Since yN ¢ is left-strong,

L<y A implies L € £ and so L € yN 4. By [14, Th. 15], Ae yN4.
Finally we give the position of the radicals considered in this note.
It Kothe’s Problem has a positive solution, then
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N=N;CeLcJ.
Moreover, 7  BNunNyNJ, but if BNnunyNé S J then N = N,
and Kothe’s Problem has a positive solution. Kothe’s Problem has a
positive solution if and only if £(A[z]) = J(A[z]), for any ring A.
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