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Abstract: We describe the left Noetherian semiperfect rings whose all proper
ideals possess the only trivial derivations and the Noetherian semiperfect rings
whose all proper quotient rings possess the only trivial derivations.

1. Let R be an associative ring. A map d : R — R is called a

derivation of R if

d(a + b) = d(a) + d(b) and d(ab) = d(a)b+ ad(b)
for all a,b € R. Rings having no non-zero derivations will be called
here differentially trivial (see [3]).

Note that the notion of differentially trivial ring is in some sense
dual to the notion of differentiably simple ring, i.e. ring without proper
non-trivial differential ideals, introduced by E.C. Posner (see [19]
and [5]).

Earlier, different authors made similar investigations devoted to
the rigid rings, i.e. the rings with only identity and zero ring endomor-

E-mail address: artemovych@franko.lviv.ua




208 O.D. Artemouvych

phisms. C.J. Maxson [14] and K.R. McLean [15] have described the
rigid Artinian rings. M.A. Suppa [17-18], M.D. Friger [11-12] and the
author [1-2] have studied I-rigid and ¢-rigid rings, i.e. rings all proper
ideals (respectively all proper quotient rings) of which are rigid.

In this paper we study the differentially i-trivial (respectively differ-
entially g-trivial) rings, i.e. the rings R in which every proper two-sided
ideal (respectively every quotient ring R/I, where I is a non-zero ideal
of R) is differentially trivial. The main results are the characterizations
of differentially i-trivial left Noetherian semiperfect rings and differen-
tially g-trivial Noetherian semiperfect rings.

For convenience of the reader we recall some notation and termi-
nology. :
J(R) will always denote the Jacobson radical of a ring R, Nil(R)
the set of all nilpotent elements of R, char(R) the characteristic of
R, Z(R) the centre of R, H(R) the heart of R and Q(A) the field of
quotients of a commutative domain A. Throughout the paper p is a
prime. In the sequal we will use the following notation:

Zyt is the ring of integers modulo a prime power p;

Ann(I) = {r € R | rI = 0} is the left annihilator of an ideal I
in R.

Let us recall that a ring R is called semiperfect if the quotient
R/J(R) is left Artinian and all idempotents of R/J(R) can be lifted
modulo J(R) to idempotents of R. A ring R with an identity element
is said to be a local ring if R/ J(R) is a skew field.

We also need the following results.

Proposition 1.1. [3]. Let A be a commutative domain with an identity
element.
(1) If char(A) = p, then A is differentially trivial if and only if
A = AP, where AP = {zP | z € A}.
(2) Ifchar(A) =0, then A is differentially trivial if and only if Q(A)
is an algebraic extension of P, where P is the prime subfield of
Q(A).

As defined in I.S. Cohen [7], v-ring V is a commutative unramified
complete (in the J(V')-adic topology) regular local rank one domain of
characteristic zero with the residue field of characteristic p.
Proposition 1.2. [3]. Let R be a differentially trivial complete (in the
J(R)-adic topology) local left Noetherian ring.

(1) If char(R) = char(R/J(R)), then R is a field.



Differentially trivial Noetherian semiperfect rings 209

(2) If char(R) =p°® (s> 2), then R = Zyps.
(3) If char(R) =0 and char(R/J(R)) = p, then R is a v-ring such
that
R/p™R = Zpm (m € Z).
We will also use some other terminology from [4], [8] and [20].

2. In this part we characterize the differentially i-trivial left Noe-
therian semiperfect rings. It is obvious that every differentially trivial
ring is commutative.

Lemma 2.1. A nilpotent ring N is differentially trivial if and only if
N = {0}.

Proof. Suppose that NV is a non-zero differentially trivial nilpotent ring.
Let ¢ be the nilpotency index of N. Then the rule

br, where b is a fixed non-zero
dr = element of N*=2\ Ann (N), if t > 2,
r, ift=2,

determines a non-zero derivation d : N — N of N, a contradiction.
The lemma is proved. ¢

Lemma 2.2. If R is a non-simple differentially i-trivial ring with the
identity element 1, then Nil(R) = {0}.

Proof. Let ¢ be a nilpotent element of R and M a non-zero proper
ideal of R. Since M is differentially trivial and the rule 9;(a) = ia — ai
(a € M) determines a derivation d; of M, ai = ia for all elements a in
M. Therefore ¢M is a nilpotent ideal and, by Lemma 2.1, M = {0}.
In the same manner we can prove that ¢ - Aun(M) = {0}. Since the
ideal M N Ann(M) is nilpotent, in view of Lemma 2.1, we obtain that
M N Ann(M) = {0}. If M is a maximal ideal of R, then R = M &
@ Ann(M) and, consequently, 7 - R = {0}, which implies 4 = 0 because
1 € R. The lemma is proved. ¢

Theorem 2.3. Let R be a non-simple ring with an identity element.
If R is a differentially i-trivial ring, then it is differentially trivial.
Proof. Suppose this is not true and d is a non-zero derivation of R.
Since I N Ann(I) = {0} for any ideal I of R, we see that Ja = {0} for
every a € Ann(l) and therefore Ann(J) is contained in the two-sided
annihilator of I. If Ib = {0} for some b € R, then (bI)? = b(Ib)I = {0}
and so bl = {0}. This implies that Ann(7) is the two-sided annihilator
of I in R.
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1) Assume that there exists a proper ideal I of R such that d(I) #
# {0}. Since R does not contain a non-zero nilpotent element and I is
commutative, we obtain that Id(I) = d(I)I = {0}. If I & Ann(I) = R,
then 1 = e + f for some idempotents e € I, f € Ann(J) and ei = i
for any ¢ € I. Then d(i) = d(e)i + ed(i) = 0, a contradiction. Hence
I ® Ann(I) # R. But then jd is a derivation of I @ Ann(I) for every
J € I®Ann(I) and so jd(s) = 0 for all s € I@®Ann(]), which gives that
I ® Ann(T) is a d-invariant non-zero proper ideal of R, a contradiction.

2) Now, assume that d(I) = {0} for any proper ideal I of R.
Then, in view of our assumption, it is clear that R contains only unique
maximal ideal M and there is an element z of R such that d(z) # 0.
Then 0 = d(mz) = md(z) for every m in M and so d(z) € Ann(M).
Hence R = M & Ann(M), a contradiction.

Thus, from the previous remark it follows that R has the only
trivial derivations. The result is proved. ¢
Proposition 2.4. Let A be a commutative domain with an identity
element. If A is not a field, then the following statements are equivalent:

(1) A is a differentially i-trivial ring;

(2) A is a differentially trivial ring;

(3) A is a commutative ring such that A = AP if char(A) = p
and Q(A) is an algebraic extension of its prime subfield P if
char(A) = 0.

Proof. (1) = (2) follows from Th. 2.3. (2) = (3) follows from Prop.
1.1.

(3) = (1). If char(A) = p, then the Proposition is easily shown.
We suppose, therefore, that char(A) = 0. Let I be a non-trivial proper
ideal of A and I has a non-zero derivation d. Then the map D : Q(A) —
— Q(A) given by the rule

D(r) =17(d(j) — d(i)r) (r € A,4,j € ),

where ir = j, determines a non-zero derivation D of Q(A). Therefore
the extension P C Q(A), where P is the prime subfield of Q(A), is not
algebraic [6, Chapter V, §9, Cor. 2], a contradiction, which completes
the proof. ¢
Lemma 2.5. Let R be a differentially trivial domain of characteristic
zero with an identity element. If R contains a subfield, then J(R) is
trivial.
Proof. Since R contains a subfield, its prime subfield P is isomorphic
to the rational number field Q. Then, by Prop. 1.1, for every element
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j of J(R) there exists a non-zero polynomial
k23

f(@) =) aiz""* € P[z]
i=0
such that f(j) = 0. Hence

n—1
an=—) a;j" € PNJ(R),
i=0
and this yields that

n—k
jk . (Z aijn—z——k.) — O,
=0

where an_p # 0 and a; = 0 for 4 > n — k. Then j¥ = 0 because
Z?:_Ok a;j" %% is an invertible element in R, and we have a contradic-
tion. The lemma is proved. ¢

Corollary 2.6. If a local Noetherian ring R is differentially i-trivial,
then it is a domain.

Proof. Let us assume that the result is false and R is not a domain.
Then, by Th. 2.3, R is a commutative ring and, by Cor. 1 of [6, Chapter
IV, §1, no. 1], there exists a prime ideal P = Ann(z) for some non-zero
element x of R. If d is a non-zero derivation of R/P and d(r + P) =
= h+ P, with 7, h € R, then the rule D(r) = zh determines a non-zero
derivation D of R. From this, in view of Th. 2.3, it follows that R/P
is a differentially trivial ring.

If char(R/P) = 0, then, in view of Lemma 4.5.1 from [10], R/P
contains a subfield and then, by Lemma 2.5, P = J(R). If
char(R/P) = p for some prime p, then, by Prop. 1.1, (R/P)?=R/P.
Hence (J(R/P))» = J(R/P) and, in view of Prop. 8.6 of [4],
P = J(R).

Thus, in both cases z € J(R)N Ann(J(R)) and so z% = 0, which
leads to a contradiction with Lemma 2.2. The result follows. ¢
Corollary 2.7. Let R be a differentially i-trivial local Noetherian ring.

1) If char(R) = char(R/J(R)), then R is a skew field.

2) If char(R) # char(R/J(R)), then R is a differentially trivial do-
main of characteristic 0 and char(R/J(R)) = p for some prime p.
Proof. By Cor. 2.6, R is a domain. Suppose that J(R) # {0}. Then,
by Th. 2.3, R is differentially trivial and, consequently, commutative.

1) Let char(R) = char(R/J(R)). If char(R) = 0, then, by Lemma
4.5.1 of [10], R contains a subfield and so, by Lemma 2.5, J(R) = {0},
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a contradiction. Assume that char(R) = p for some prime p. Then, in
view of Cor. 2.6 and Prop. 1.1, J(R)? = J(R) and therefore, by Krull
Theorem, J(R) = {0}, a contradiction. Thus, if char(R) = char(R/
/J(R)), then J(R) = {0}.

2) Now, let char(R) # char(R/J(R)). Then, in view of Lemma
2.2, char(R) = 0 and char(R/J(R)) = p for some prime p. Finally, by
Th. 2.3, R is a differentially trivial ring. The corollary is proved. ¢
Theorem 2.8. Let R be a left Noetherian semiperfect ring. Then R is
a differentially i-trivial ring if and only if it is of one of the following
types:

(1) R is a skew field;
(2) R is a differentially trivial local Noetherian domain of charac-
teristic 0 and char(R/J(R)) = p for some prime p;
B R=R®... 0 R, (m > 2)isa finite ring direct sum of
Rq,..., R, and each R; is either a differentially trivial field,
or a ring of type (2).
Proof. (<) is obvious.

(=). If R is a local ring, then, by Cor. 2.6, it is a ring of type (1)
or (2). Therefore we assume that R is not local and so, by Th. 2.3, it
is a commutative ring. Since every commutative semiperfect ring is a
finite ring direct sum of local rings (see e.g. [9, Ex. 22.27]), the claim
follows from Th. 2.3, Prop. 2.4 and Cor. 2.7. ¢

3. In this section our object is to study the differentially g-trivial
Noetherian semiperfect rings.

It is clear that every simple ring is differentially g-trivial. Recall
that the heart H(R) of a ring R (if it exists) is the smallest non-zero
ideal of R.

Lemma 3.1. Let R be a non-simple ring. If R is differentially q-trivial,
then R is either commutative or contains the heart H(R).

Proof. In fact, since R/I is differentially trivial by definition, [R, R] C
C I for every non-zero ideal I of R, where [R, R] = {zy—yz | z,y € R},
and, consequently, either R is a commutative ring or {0} # [R, R] <
< H(R) =n{I | I is an ideal of R}. The lemma is proved. ¢

Let R be an associative ring with two operations “+” and “-”.
Recall that a ring R is called radical (or equivalently, quasiregular) if
the set of all elements from R forms a group with the identity element
0 € R under the circle operation “o”, defined by the rule aob =a +
+b+a-b for all elements a and b in R. As it follows from [16], a
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homomorphic image of the ring Q[[X, Y]] of formal power series in two
noncommuting indeterminates X and Y over the rational number field
Q contains a minimal ideal 2, which is a simple radical ring. Moreover,
it is easy to see that the additive group AT is divisible.

Lemma 3.2. Let R be a local Noetherian ring. Then R is differentially
g-trivial if and only if it is of one of the following types:

(1) R=2Zyn (neN);

(2) R = Blz]/(z?), where B[z] is a commutative ring in an inde-
terminate T over a differentially trivial field B;

(3) R is a non-commutative Artinian ring with J(R) = H(R) and
the differentially trivial residue field R/ J(R);

(4) R is a v-ring such that R/p™R = Zym (m € N);

(5) R is a skew field;

(6) R =V + H(R) is a group direct sum of a differentially trivial
v-ring V and the heart H(R), which is a simple Noetherian
radical ring with the divisible additive group H(R)™, J(R) =
=pV + H(R) and V < Z(R).

Proof. Let R be a differentially ¢-trivial local Noetherian ring, W the
subring of R generated by its identity element. Then W < Z(R) and
so WNH(R) = {0}.

1) Assume that the Jacobson radical J(R) is nilpotent of the
nilpotency index n > 2 and, consequently, R is complete (in the J(R)-
adic topology) (see e.g. [7]).

Ifn > 3, then B = R/J(R)" ! is not a field. In view of Prop. 1.2,
char(B) # 0 and, consequently, B & Zyn-1. Thus R = W + J(R)" ",
If W = R, then R = Zy,». Therefore we assume that W # R. Then,
as a consequence of Prop. 1.2(2), the quotient ring R/(W N J(R)"™ )
has a non-zero derivation, a contradiction.

Now, let n = 2.

a) Assume that R is a commutative ring. Then, by results of
I.S. Cohen [7, Ths. 9 and 11], R = D+ J(R), where D is some subring
of R (in [7] and [20] D is called a coefficient ring of R).

a1) If char(R) = char(R/J(R)), then D is a field (see [7, Th. 9]
or [20, Chapter VIII, §12, Th. 27]) and the quotient ring R/iR = D +
+ J(R) is differentially trivial for every non-zero i € J(R). By Prop.
1.2(1), R/iR is a field and hence J(R) = iR = 1D. Thus we have

R =D +iD = D[z]/(z?),
where D is a differentially trivial field, i.e. R is a ring of type (2).
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ay) If char(R) # char(R/J(R)), then R is a ring of prime power
characteristic p?>. Then D = V/p2?V for some v-ring V (7, Th. 11}.
Since D/pD = V/pV is differentially trivial, D = Zp> (see Prop. 1.2).
Consequently, D N J(R) # {0}, the quotient ring

R=R/(DNJ(R)) =D+ J(R)

is differentially trivial by our hypothesis, and therefore, by Prop. 1.2(1),
J(R) = {0}. This means that R = D is a ring of type (1).

b) Now, assume that the ring R is non-commutative. By Lemma
3.1, R has the heart H(R), and then, by our hypothesis, the quotient
ring R/ H (R) is differentially trivial. Since R is a non-commutative ring
and J(R) is a nilpotent ideal, we conclude that R/H(R) is a field or
R/H(R) is isomorphic to some Zy (¢t > 2). If R/H(R) = Zp:, then
pH(R) = {0} and pW is a proper non-zero ideal of R, which leads to
a contradiction. Hence R/H(R) is a field and so H(R) = J(R). From
rH(R) = H(R)r = H(R) for all r € R\ H(R), we obtain, by Robson
Theorem [9, Th. 20.35], that R is an Artinian ring of type (3).

2) Now, let J(R) be a non-nilpotent ideal.

¢) If R is a commutative ring, then, by Krull Theorem,

M 7@®)" = {0}

This implies that R/ J(R)" is commutative and complete (in the J(R)-
adic topology) (see e.g. [7]) and, by Prop. 1.2, R/J(R)" & Z,». There-
fore we conclude that R is a differentially trivial v-ring, i.e. it is a ring
of type (4).

d) If R is a non-commutative ring, then, by Lemma 3.1, there is
the heart H(R) and so the quotient ring R = R/H(R) is differentially
trivial. If char(R) # 0, then, by Th. 4.5.3 of [10], char(R) = p™ for
some prime p and integer m. Therefore W & Z,m and pH(R) = {0} =
= pW H(R), which leads to a contradiction. Hence char(R) = 0 and, as
in the part ¢), R = W is a differentially trivial v-ring. If H(R)? = {0},
then H(R) is the Wedderburn radical of R and jH(R) = H(R)j =
= H(R) for all j € R\ H(R). Robson Theorem [9, Th. 20.35] now
easily yields that H(R) = {0}, a contradiction. Hence H(R) = H(R)?
is a simple Noetherian radical ring and therefore R is a ring of type (6).

The converse is obvious and the lemma is proved. ¢
Remark 3.3. Let F = GF(p™) be a finite field (n > 2), o the Frobenius
map of F' and F[z;0] a skew polynomial ring, i.e. za = a’z for every
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a € F. Then the quotient ring F|z;0]/(z?) is differentially g-trivial,
but it is not differentially trivial (see Lemma 3.2(3)).

Theorem 3.4. Let R be a Noetherian semiperfect ring. Then R s
a differentially q-trivial ring if and only if it is of one of the following
types:

R is a skew field;

R an (n € N),

R is a v-ring such that R/p™R = Zym (m € N);

R = B[z]/(z?), where Blz] is a commutative ring in an inde-
terminate x over a differentially trivial field B;

(5) R is a non-commutative Artinian local ring with the J(R) =
= H(R) and the differentially trivial residue field R/ J(R);

(6) R =V + H(R) is a group direct sum of a differentially trivial
v-ring V' and the heart H(R), which is a simple Noetherian
radical Ting with the divisible additive group H(R)', J(R) =
=pV + H(R) and V < Z(R);

(7) R=R1®...®R,, (m>2)isaring direct sum of R1,..., Ry,
and each R; is either a differentially trivial field, or differentially
trivial v-ring, or isomorphic to some Zy:;

(8) R is a mon-commutative ring, which contains the heart H(R)
and R/H(R) is a ring of type (7).

Proof. (<) is obvious.

(=): If R is a local ring, then, by Lemma 3.2, it has one of types
(1)—(6). Therefore we assume that R is not local. If R is commutative,
then, as a consequence, it is a ring direct sum of differentially trivial
local Noetherian rings and, in view of Lemma 3.2, R is a ring of type
(7). Assume that R is a non-commutative ring and Iy its smallest ideal.
Then {0} # H(R) = J(R) and R/H(R) is a differentially trivial ring
of type (7). The proof is finished. ¢
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