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Abstract: The purpose of this paper is to transform a stochastic equation of
Navier-Stokes type with multiplicative noise into a random partial differential
equation, which can be solved pathwise. We also derive the existence of a

stochastic flow and of the perfect cocycle for the considered equation.

1. Introduction

In the present paper we consider a stochastic Navier-Stokes equa-
tion of the type
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t

Xs,t =Y +/( - -AXs,'r + B(Xs,r’Xs,r) + F(Xs,r))dr+
(1) ©
+Z/C¥Xs,rodW,?, 0<s<t,
i=1%

where the stochastic integral is in the sense of Stratonovich. We trans-
“form (1) into a random partial differential equation of the form

t
(2) Voi=y+ / Gor (U,,)dr, 5<t

by using a bijective process A, ;. We will prove that equation (1) gen-

erates a perfect stochastic flow (@S,t> < which is given by
s<t

(3) és,t(Sa ) = As,t(ga ) © \I’O,t—s(es Sy ) for all 0 <s < t) w e Qa
where ¥, ; is the solution of the random equation (2). Moreover, we
derive that (<I>07t)0< is a perfect cocycle for (1).

t

The transformation of (1) into (2) can also be done by using a
stationary coordinate change Ay, i.e. the cocycle of (1) is given by the
following conjugation relation

o +(w, ) = Ao(fw, ) 0 ¥g 1 (w,-) o Aal(w, ) forallt>0,weq,
as presented in [9]. The method of stationary coordinate changes is
useful when one wants to obtain for stochastic differential equations
results which involve aspects of ergodic theory, because it is much easier
to study them in the framework of random differential equations, which
describe the motion along a stationary vector field (see [12], [11], [15]
etc).

The problem of existence of stochastic flows and cocycles for sto-
chastic partial differential equations was solved just in some special
cases, for example in [8] for linear equations, in [9] for nonlinear para-
bolic equations, in [3] for the stochastic Navier-Stokes equation (on the
torus). The method presented in this paper is much easier than the
nonstandard analysis method for the stochastic Navier-Stokes equation
from [3]. Tt is applicable to the two dimensional Navier-Stokes equation
on R? and it can be easily adapted for the same equation considered
on the torus.
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Nonstationary transformations of linear and semilinear stochastic
partial differential equations are the subjects of the papers of Da Prato,
Iannelli and Tubaro [6] and Da Prato and Tubaro [7], but without

investigating flow or cocycle properties.

Only in special cases the transformation of stochastic partial dif-
ferential equations into random ones has been performed, in order to
prove existence of random attractors, as in [5] (for reaction diffusion
equations with additive noise, and for stochastic Navier-Stokes equa-
tion with additive and with multiplicative noise), Crauel, Debussche
and Flandoli [4] (for the stochastic Navier-Stokes equation with addi-
tive noise, the white noise driven Burgers equation and the stochastic
nonlinear wave equation), Keller and Schmalfuf} [13] (for stochastic hy-
perbolic equations).

To prove the existence of the stochastic flows, perfect cocycles and
of random global attractors one does not need the stationary transfor-
mation, a nonstationary transformation is also helpful. In the present
paper we give the proof for the first two aspects, the existence of the
random attractor will be the subject for a future paper. The present
paper has the following structure: in Section 2 there are given the as-
sumptions for the equation, some definitions and preliminaries. Section
3 contains the main results of the paper, i.e. in Th. 3.2 the transforma-
tion of (1) into a random equation (2), which can be solved pathwise,

while the perfect flow and cocycle properties for <<I>s’t> . are proved
s<t
in Th. 3.4. -

2. Assumptions and preliminaries

Notations: We will use the same spaces as mentioned in the
book [temam] of R. Temam. Let D(R?) be the space of all C* vector
functions from R? to R? with compact support contained in R?. We
consider also

V:={ueDR?) : div u=0}, V :=the closure of V in H'(R%),
H := the closure of V in [?(R%).

The norm in V is
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2 2 dv(z) |2 2
ot = [, [0 |, + PiiE]as
and in H )

Il = [ Iha)lidz,
RrRd

where | - |4 is the Euclidian norm in R?. Let V* be the dual of V. We
denote the dual pairing between ., > We identify H with its dual space

H*, so we have the continuous dense embeddings

Ve H<—V*

We also have <m,y> = (x,y)H and |ly||lg < ||lyllv for all z € H and

yeV.

Now we state the assumptions about the equation that will be
investigated:

(Hy)

(Ha)

(Hs)

(Wt) = (th, e ,th) is a m-dimensional Brownian
0<t o<t
motion on the completed Wiener space (2, F, P), (6¢)o<: is the
Wiener shift

bw=w(-+1t) —w(t)
and the filtration F; := o {W,: 0 < s <t},0 <t is assumed to
be completed by the P-completion of F.
A :V — V* is a linear, continuous and (weakly) coercive op-
erator such that for every v € V and for some constants u,v >
> 0, X € R we have

| ol < allellv and (Av,0) > o]} - Aol

B:V xV — V*is a bilinear operator such that <B(u, v), v> =0
and there exists a positive constant 8 such that

2

|(Blw,v),2)| < Bllall lullvlfullzollvllelle for all u,v,z € V.

F : H — H is a continuous mapping such that for all u,v € H
|1F(w) = F)llaz < vllu—vll&,

with ~y positive constant. _

for each j € {1,...,m},t > 0 the mappings C{ : V — H are

given by
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Clu(z) -i—th’J UD) forall weV,

Z;
where (bg ) - is a real-valued F;-adapted stochastic process
0<t

and (cz )0< is a R%-valued F;-adapted stochastic process with
<t
the stationarity property
bg+s(—<—):bg(93 S)a Ci—l-s(é):CZ(eS S); s,tGR.;.,wEQ

and
oo oo
E/ibglzdt < 00, E/[c{]ﬁdt< 0.
0

We investigate the stochastic evolution equation

(4) t )

(Xs7t,v>H: (h,v)H—/<AXS,T,v>dr+/<B(XS,T,XS,T),v>dr+

s s
t

/(F(X” v dr—i—Z/ (ciXr,v) odw]
s
forallt >s>0,veV,he Hyae wecE Q. The stochastic integral is in
the sense of Stratonovich.
Typical example is the two dimensional Navier-Stokes equation

du(t,z) =

2. 8%u(t,x 2 u(t, T
= (1/ B_a_;t_z’_) - Zui(t,m)a 8(:1 ) + f(t,z) - Vp(t,a:))dt-l—

i=1 i=1

+Z(b’u(tx +Zc” ) o dWy,

divu =0, u(O,r) = h(z), z € R?,

where u is the velocity field, v > 0 is the viscosity, f is an external force
and p is the pressure. After projection on divergence free fields (i.e. on
H) the pressure term p disappears and the other terms may be written
in the form described in the abstract assumptions and the equation can
be written as a stochastic evolution equation like (4).
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Remark 2.1. (1) The operators C/ are linear and continuous from V
to H, but they can uniquely be extended to mappings from H to V*
by considering

(5) <cg'h,v> = —(h,dVo)g + b (h,v)g forall he HueV.

(2) The operator C : V — H admits an adjoint (C})* : H — V*
given by

Jy* — J
<(ct) h,v> = (h,Ctv)H, heHueV.
(3) From the assumption on F' it follows that for all u € H
IE)le < IF )z + 7wl
Without loss of generality we can assume that F' satisfies (H,) and
IF(u)|ler < v+ ||u|lg) for all uwe H.
Definition 2.2. We say that equation (4) generates a perfect stochastic

flow, if there exists a process (Cbs,t) - such that forall 0 < s < u <
s<t

< t,w € Q the operator ®; ;(w,-) : H — H is continuous and satisfies
the properties
(6) (I)s,t = C:Du,t o @s,'xu
®, ; is the identity map on H and
P 1(w, h) = X5 1(w) forae weq,

where X, ; denotes the solution of (4) at time ¢ with initial value h at
time s.

The semiflow ((DO,,:) Py is a perfect cocycle over 6 if for all w €

0<t
€ Q,t > 0 the map ®¢.(<,-) : H — H is continuous, $ (<, ) is the
identity on H and
@O,S-i-t(S) ) = @O,t(es §7 ) © @0,3(37 ) for all 0 < s, 1.

The aim of our paper is to prove that equation (4) admits a perfect
stochastic flow and a perfect cocycle. This will be done by transforming
(4) into a random equation of type (2), solving this equation pathwise
and then obtain the flow for (4).

3. The transformation

First we investigate auxilliary processes closely related to the dif-
fusion part of equation (4).
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We consider the following R%-valued process
m b
(7) fs,t(iﬂ):zv—l—Z/c,’;ochﬂ', reR0<s<t,
=17

and the linear equation in R

t
m
(8) ns,t=1+Z/bZns,rodWﬂ' 0<s<t.
Jj=1
We can find modifications of these processes such that for all 0 < s <

<t wed
() £s,6(Ss0) = 0,505 <,4)y Eo,t = &5t 0 &o,s,
N5,6(<) = N0,—s(0s <,%)s Mot = Ts,t * Mo,s-

For each 0 < 5 < t,w € ) we define

(10) Asi:H—H by Agih:=h(&)ns:

This operator is correctly defined, because

oEs
i

52 =0 forheV

. o
div Ageh=1n5e > Ty Eoi)

i,k=1
and V is dense in H. Obviously A, ; is a linear and continuous mapping.
Its adjoint AS, : H — H is given by
(11) A5 th = h(fs_,tl)ns,t )
since

(h, A*s,tz)H - (As,th, z)H - /R (6o (@)@ o =
= /Rd h(y)l(fs,t(y))ﬂs,tdy

with h,l € H (we used that the determinant of the differential of &; ; is

equal to 1).
Theorem 3.1. (i) For fized 0 < s < t,w € Q the operator As; is
bijective and the inverse of the adjoint is given by

h(&s
(12) (A*s 1) th = MEsit) forallh € H.
s,t
(ii) For fized t € Ryw € Q the restrictions As’t‘v’A*s’tlv are

continuous and bijective operators from'V to V. If s,t € [0,T] (T' > 0
is fized), then
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(13) [Asthller < Krllhllz,  [Aspvllv < Krlvllv

and

(14) I(A*e) Rl < Krlbllm,  [[(A%s)  ollv < Krllvlly

forallh € Hyv €V, where Kp = sup 72, and Kp = sup —.
s,t€[0,T] s,tef0,T] "5t

(i) For all0 < s<u<t,r€ Ry, w € it holds
(15) As,t = A'u,,t o As,u and As—i—r,t—l—r(Sa ) == As,t(er S: )

(iv) Let h € H. The process (As,t) < satisfies

s—

t
(16) Asth=h+ /c,z'As,rh odWi, 0<s<t,
and (A*S,t> - satisfies
s<t
¢
(17) A'sith=h+ /A*S,T(C,’_')*h o der, 0<s<t.

Proof. (i) By calculation it is easily verifyed that (A*s;)~! given in
(12) the inverse operator of A*;; from (11) is.
(ii) For all h € H we have by (10)

(18) 8itlly = [ )iy

For v € V we write

d 2
9 2
(19) ||As 0|3 = /Rd (; oz [As’tv(m)] , + As7tv(z)'d> dz <
a1 ay 2
< K [ (3| 2o Euslo)| +10(o)3)do = Kl
. Tk d
R =1
where K7 = sup 0?2, . By using (7) we have
s,t€[0,T]
d k
. 8’1)7; 8gs,t .
div A v = 1 ,-%z:l éx—k(fs,t) Bz, 0.

But V is dense in V, which imply together with (19) that A, is also
an operator from V to V. From the similarity of the expressions of A, ;
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and (A*s4)~! it follows that the properties (14) hold, where Kp =
;= sup —.
s,t€[0,T] ot

(iii) The properties follow by (10) and (9).

(iv) For (16) with h € V one uses the so-called characteristics
method (see [14] p. 297 or [10] Prop. 3.2) and the density of V in H
together with the continuity property proved in (ii). For (17) one uses
(16), the definition of an adjoint operator and also Remark 2.1. ¢

We define for all w € Q, ¢ > 0 the random operator G; : V — V*

by

(20) Gsp = —A;,} oAoAs;+ As"t1 oBoAgu, s+ A;g oFolAg;.
We want to point out that AS_% appearing in the terms containing the
operator A and respective B is As_’% : V* — V* given by <A;%v*, v> =

= <v*,A*S,t)‘1v>, where we use that (A*;;)~' is the inverse of the
adjoint of A, ; restricted to the space V.
Let w € Q and T > 0 arbitrary. We consider the random (path-
wise) evolution equation
¢

(21) (\Ijs’t(y)7U>H - (y’v)H +/<gs,r(\ps,7'(y))av>d7'a

s
veV,ye H0<s<t<T.

Theorem 3.2. (i) Fquation (21) has a unique solution W,. €
€ L2([s,T); V). Moreover ¥, . € C([s,T]; H).

(i) For all0 < s <t < T,w € Q the operator ¥s; : H — H s
continuous.
Proof. (i) For each fixed w € Q the evolution equation (21) can be
solved by using the classic deterministic theory for partial differential
equations of Navier-Stokes type (as in [16], Chapter III). The classic
method for such equations is the Galerkin method, which we will use

in the following.

For a more simple writing we will take s := 0 and use the notation
\I’t = \Ifo’t.

Step 1: We mention some properties for the operators A and B:
for a € R, u,v € V we have the properties

(22) (Aav, 2) 2 vlolly = Al

and
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(23) <B(au, av), §> =0
which follow by the assumptions on A and B. By (22), (23), (10), (12),
assumptions on F' (also Remark 2.1) and Th. 3.1 we get

(AE AN 0,0) = (ADgw, (A )7M0) =

:<A(ns,w(55’t)), ’Usfs t)

(24)
=) > vl — Mol

(25) (B, As0),2)| < BRI v ol ol
(26) <A;%B(As,tu, As 1v), v> :AO,
(27) |(ATiF(Aea),1) | < Alla(Ee + Bll),

(28)  |(ASHF(Mash) = ASPF(Aeal), h=1) | <ollh= 1%

for all s,t € [0,T], u,v,z € V,h,l € H.
Step 2: Let y € H be fixed. Since V is separable and V is dense
in V, there exists a basis in V of elements e1,...,em,... € V. Let

n
= E Cf’"ek
k=1

and let y, € span{es,...,e,} such that lim, o ||¥n — y|lz = 0. There
exists M > 0 such that for alln € N

(29) lynllzr < M.

We define the Galerkin equations corresponding to (21)
t

(Iﬁ?, 6j)H = Yn —/<AaiA(Ao,r¢g)7 ej>d’l"+

0

t
(30) + / (AGLB(Aos¥T, Mor?), 5 )drt
0

+ OiFAOTz/)) )Hdr, je{l,...,n}

o\

Hence for each j € {1,...,n} we have
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(31)
Z <6k763> dC:" Z< Ot'A(AO t€k), eJ>Ckn
k=1 k=1

+ Z < Aotek,Ao tel) 6_7>Ck nCln

k=1

_ k,
+ (Ao,%F(’; Cy" Ao tex), ej)H,
with the initial condition

3 (o) 05" = (e,

k=1
Since ey, ..., e, are linearly independent, we get
det((ek,ej) ) #0
H/ k.

and the system (31) can be solved with the unknown vector (C;™,...
Cy"™) as a system of ordinary differential equations (see [18],
Lemma 30.4, p. 776; Problem 30.2 p. 799).
Step 3: We multiply (30) by C?™ and add these equations for
j =1 to m. Taking into account (24), (26), and (27) we get

sup |7 15+
r€[0,t]

+ 2 / W73 dr < llyall% + 7Rt + 2y + vEr + 22) / 17 3dr

By the Gronwall Lemma and by (29) it follows that

(32) sup |9y HH (’YKTT + M)e(27+7KT+2,\)T
t€[0,T7]
and then
(33) /[|¢?]|%,dt < ’YKTzﬂe(ZWVKTH,\)T_
v

T —
We also have that { [ “d;/’tf th} is a bounded sequence in
0 *in

L2([0,T]; V*), since the properties of B, Ag ; imply
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T T
J IS o, Mot < 61CE sup [ [ 71t
0 ’ 0

Step 4: There exist ¥ € 1%([0,T]; V) and a subsequence (ng) of
(n) such that

(34) w— lim 4™ =¢ in 12([0,T);V) and in [?([0,T]; H),

where w — lim denotes the weak convergence.

Let j € {1,...,n} fixed and let G; := suppe;, which is a com-
pact subset of R?. We consider the evolution triple (H*(G;), I(G;),
H~(G;)), where the embedding H*(G;) — 1?(G;) is compact. We
use the estimates from Step 2 and apply a compactness criterion (see
[16], Th. 2.1, p. 271) by using that {wnk{G }k c 12(]0, T}; 12(G;)) and

J

dy; "
———Ei—ﬁi} C 12([0,T]; H~*(G})) are bounded sequences. We obtain
&
that {W‘k G }k is relatively compact in 1?([0, T']; 1?(G,)). Hence there
Tk

exist a subsequence of (ng), which we will also denote by (ng), and
¥ € 12([0,T);1%(G;)) such that

(35) lim 3™
k—o0

=4 i ([0, T]%(Gy)).
Gj
Then by (34) it follows
(36) Y, =1, for ae. rel0,T]

Now we prove that

dr =

T

Jim [ (A5 HB (092, R 02) K52 B (A0 by, Aot ), e3) ()
0

(37) —0

for all f € 1°°([0, T]; R), this is a dense subspace of [2([0, T; R).
By using the properties of B
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T

[ K(ASHB (022, Ro %) — AGHB(ho s Ao i), e ) )i <
0
T

< V20Krleslly s |f (T)’(/ |

0

2

_ AT d
Gj ¥ 12(Gy) "

(e
T

T
[l = lfar) / 21 + 1)
0

Then by (35), (33) follow (37).

Now we pass to the limit in (30) in the space 12([0, T]; R) use (34),
(37) to get

(38) ('zpt, ej) y,e] A (Ao rtr), ej>dr+

H

o\ﬁ

i i
+ [ (AGEB (R0, R i), 5 )ar+ / AP (hoy),e;) dr
0 0

for a.e. t € [0,T] and all j € {1,...,n}.

But the right-hand side of (38) is continuous in ¢, so we can identify
¥ with a process ¥; continuous in ¢ such that (38) holds for all ¢ €
€ [0,T]. This process is the solution of (21).

Step 5: To prove the uniqueness of the solution we consider Wy
and U; to be two solutions for (21) starting in y € H at time 0. Then
by (21), (24), (25), (26), (28) we have

104 () = B () [+ 20 / 192 () =, ()2 dr <

t
14
37/ () =T () |2 dr+
0
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ﬁ2K4

/ 12 () IR 1 () B 12 () — i () i+

120y + A / 19, (y) — ()3

Using the Gronwall Lemma (see for example [1]) it follows

1T:(y) — T (@) |3 <0,

hence U,(y) = \i!t(y) foral0 <t <T.
(ii) To prove the continuous dependence on the initial data we
consider u,y € H. Then by (21), (24), (25), (28)

104 () — Ty (9) 1% + 20 / 12, () — (@) |3 dr < |Ju— ll+
/ 19, (u) = () [ dr+

132 K4

/II‘I’ M )T (u) — T ()l Frdr+

+2(r+ ) / 19, (0) = o o)

Using the Gronwall Lemma (e.g. [1]), (32) and (33) it follows
19e(w) = Tl < llu—yliFx
B2K}(yKrt + M)*
2u3

The above inequality shows the continuous dependence on the initial
data. ¢

Remark 3.3. If we try to consider more general cg’ , e.g. b{ , cé’j de-
pending on z, then the property A;; maps V into V from Th. 3.1 could
fail. Some nonlinear operators Cf lead to problems in defining G, ; (we
used the linearity of A;; and the possibility to define the inverse of its

x exp { (v + Nt + exp{2(2y +7Kr + 201} .
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adjoint) and also in proving that (21) admits a solution, because we
have to verify coercitivity and monotonicity conditions for G ;.

For for all 0 < s < t, w € Q we define the stochastic process

(‘I)s,t> o<t by

(39) Qs (<) == A o(<,7) 0 W p—s(0s <, ).

—

Theorem 3.4. (i) The process (@s,t> . is a perfect stochastic flow
s<t
associated to (4).
(ii) The process (Cbo,t) o< is a perfect cocycle.
t

Proof. (i) Let now 0 < s <t arbitrary. We take T' sufficiently large
such that s,t € [0,T]. Let y € H.

Let ¥, ; be the unique solution of

(40) V() =1y +/Qs,r(§,\I’S,T(y))dr.

The existence and uniqueness of such a process can be proved analo-
gously to the proof of (i) in Th. 3.2. By (21) we get

t—s
\IIO,t—s(as S: y) =Yy + / gO,r(gs S; ‘Ifo,r(9s S7 y))d"' =
0

t
=1 + /go,r—s(es S,‘I’O,r—s(gs S,y))dT

Then by (15) we have

t
(41) \IIO,t—s(es Sy ZJ) =Y + /gs,r(Sa ‘IJO,T—S(GS Sa y))dr
8

and by the uniqueness of the solution of (40) it follows that for all
0<s<t,we

(42) ‘I]s,t(g7 ) - \IIO,t—s(Qs S) )
We use (40), (10), (20) and apply the It6 formula to obtain
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t

(@S,t(y),A*s,tv)H = (y,v)H —/<.AAS,T\IIS,T(y),'U>dr+

E
t

[ (Bl e 0), Aur Ber ), 0)dr + [ (P(Aar Bar0)),0) dr+

m &
+ 30 [ (A0 o, Ve ) o V2
i=1%

for allv € V,t € [0,T] and a.e. w € Q. Then
¢

(As7t(‘lls,t(y)),v)H = (y,’u)H —/<AAS,T\IIS,T(y),v>dT+

E
i

+/<B(As,r\Ifs,r(y),As,r\Ils,r(y)),v>dr +/(F(As,r‘1’s,r(y)),v)Hdr+

S

+ i/t<C£As,r\Ijs,r (y)u 'U> o dW,;?
j=1%

for all v € V,t € [0,T] and a.e w € Q. But the equation above has al-
most surely unique solution (proved for example by Gronwall’s Lemma).
Hence by (39) and (42)

D, :(y) = Xse(y) ae. well

To prove that relation

(43) (:Ds,t = Qu,t o (I)s,u
holds for all s < u <t, w € ) is equivalent to show that
(44) As,u o \I}s,t = ‘I’u,t o As,u o \Ils,u:

because by (39), (42) and (15) we can write
O, =As10V,t=Ay10M50Ts,

and
@u,t © @s,u = Au,t o \I”u,,t o As,u © \I’.s,'u.-

From (40) we have
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(mu,t(As,u 0 W, .u(y)), v)H —

(45) ¢
— (ms,u(y),A*s,uv)H + / <gu,T(\Ifu,r(As,u o U, . (1)), 'v>dr

and
(As,u o ‘Ils’t(y), 'U)H = (‘I’s,t(y)v A*S;“U>H =

6) t
= (Vo) Ae0) |+ [ (G (W), A" 0

By (15) from Th. 3.1-(iii) we have
As,r - Au,r © As,u and (A*s,r)_l o A*s,u - (A*'u.,r)_l-
Then by (15) we have

(As,u o U, +(y), v)H = (‘I’s,u(y)’ A*S’U’U)H—'—

(47) t
" # [ (Gur (o W ), v

u

We use now (45) and (47), as soon as the uniqueness of the solution of
equation (40) to obtain (44).

(ii) Relations (15), (42), (43) imply imediatly the perfect cocycle
property. ¢
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