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Abstract: The paper establishes characterization of coercivity of set-valued
mappings on metric spaces versus the Palais-Smale condition, introducing
the notion of the slope. Comparisons with other Palais-Smale conditions are

proved also.

1. Introduction

The relation between the coercivity and the suitable Palais-Smale
condition was treated in many papers, see [8], [2], [4], [6], [9], [3], [5]
and the references therein. The basic result is the following:

Let (X,]|-||) be a Banach space and f : X — R be bounded bellow,
differentiable function which satisfies the Palais-Smale condition. Then
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[ is coercive, that is, f(x) goes to infinity as ||z|| goes to infinity.

The above cited works are extensions of this result. The main
object of this paper is to obtain a set-valued version of the above result
in metric spaces. Here, we introduce the notion of slope of a set-valued
mapping. The main tool in the proof is the well-known Ekeland’s vari-
ational principle.

The paper is organized as follows. In Section 2 we introduce the
slope of a set-valued mapping on a metric space and we compare it with
the contingent derivative, see [1]. According to this new notion, we can
define the corresponding Palais-Smale condition. Here, we treat also
the relations between different Palais-Smale conditions. In Section 3
we establish the main result of this note, which states the equivalence
between our Palais-Smale condition and coercivity. Of course, this re-
sult contains the above basic result and a special form of coercivity
results from [8], [6] and [3].

2. Palais-Smale conditions

First, we recall some definitions.
Definition 2.1. Let X be a Banach space and f : X — R be a contin-
uous differentiable function. We say that f satisfies condition (PSB)
(resp., condition (PS)), if whenever {u,} C X is a sequence such that
{f(un)} is bounded and ||f (u,)||x- — O, then {u,} is bounded (resp.,
{un} contains a convergent subsequence.)

The following class of functionals is introduced in [10] by A. Szul-
kin.

Let X be a normed space and I : X — (—o0, +00] be a functional
satisfying the following structural condition:

(H) I = f++, with f : X - Rof class C* and 9 : X —
— (=00, +00] proper, convex and lower semicontinuous.
Definition 2.2. The functional I : X — (—o0,+oc0] in (H) satisfies
condition (Sz — PSB) (resp., (Sz — PS)), if whenever {u,} C X is a
sequence such that {I(u,)} is bounded and

fl(un)(v - 'U,n) + ’l,b(’v) - ¢(Un) z '“En”'u - un”a (V) v e X,
for a sequence {e,} C R} with li_)m en = 0, then {u,} is bounded

(resp., {un} contains a convergent subsequence).
Our aim is to give a set-valued version of the above Palais-Smale
conditions on metric spaces and to treat the connection between these
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notions. First of all, we need some notions and definitions from the

set-valued analysis.
Let (M, d) be a metric space and F' : M ~+ R be a set-valued map

with nonempty values. The graph of the map F' is defined by
Graph(F) ={ (u,c) e M xR | c€ F(u) }.
Definition 2.3 (see [1, Def. 1.4.6]). We say that
Limsup F(z') := {’y €R | liminfdist(y, F(z')) = o}

' >z =T
is the upper limit of F(z') when 2’ — .
Definition 2.4. Let X be a normed vector space, K a subset of X
and z € K ( K being the closure of K). The contingent cone Tk (z) is
defined by

Tx(z) = {v € X| liminfdist(z + hv, K)/h = 0}.

h—0t

Definition 2.5 [1, pp. 181]. Let X be a normed space, F : X ~» R be
a set-valued map and y € F(z). The contingent derivative DF (z,y) is
defined by

Graph(DF(cc, y)) = TGraph(F) (.’13, y)-
Definition 2.6. Let (M, d) be a metric space.

(i) F': M ~ R is Lipschitz around x € M if there exist a positive
constant L and a neighborhood U of z such that

V z1,22 € U, F(z1) C F(zq) + Ld(z1,z2)[—1,1].

(ii) F : M ~ R is upper semicontinuous at z if for any neighbor-
hood U of F(z), 3 1 > 0 such that for every z’ € By (z,n) ={y € M :
. d(z,y) < n} we have F(z') C U.

(iii) F is locally Lipschitz (resp., upper semicontinuous) if it is
Lipschitz around all z € M (resp., upper semicontinuous in all z € M).

Clearly, if F' is Lipschitz around z with compact values, then it is
also upper semicontinuous at z, see [7].

Remark 2.1. Let X be a normed space. Using the above definitions
and providing that F' is Lipschitz around z € X, it is possible to char-
acterize the contingent derivative by

F hu) —
DF(z,y)(u) = Limsup (z + hu) y’
h—0+ h

see [1, Prop. 5.1.4].
Definition 2.7. Let (M, d) be a metric space and F' : M ~» R be a

set-valued map with non-empty values. Let (z,y) € Graph(F). The
slope |VF|(z,y) is defined by
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|IVF|(z,y) := Limsup Flw)—y

woz  d(z,w)
Now, we compare the slope and the contingent derivative.
Proposition 2.1. Let X be a normed space and F : X ~~ R be Lip-
schitz around x € X. Then, for all w € X \ {0} and y € F(z) we

have
DF(z,y)(u) C [VF|(z,y) - [lu].

Proof. Let u # 0 be fixed and v € DF(z,y)(u). From the Remark

2.1., we have liminf dist (’u, W) = 0. This is equivalent by
h—0+

lim inf dist (L, Mﬁ) = 0. Let wy := = + hu, h > 0. Clearly,

im i Tul? — ATl

s e (v Flun)-y) _
h — 07 iff wp, — z. Therefore, 111urhn_1>rifdlst (”;‘2”, d(w’,‘“m) ) = 0. From

this, we obtain that lim inf dist ( ﬂ%ﬂ’ I;((Z);)y) = 0. Therefore, we get

w-—rT

1o € [VF|(z,y). O
Definition 2.8. Let (M,d) be a metric space and g : M — R be a
function. A subset My of M is g-bounded if there exists K > 0 such
that |g(z)| < K,Vz € Mp.

Now, we introduce the suitable Palais-Smale conditions to the
contingent derivative resp., to the slope.
Definition 2.9. Let X be a normed space, F': X ~» R be a set-valued
function with non-empty values and g : X — R be a function. F
satisfies the condition (D — PSB — g) (resp. (D — PS)), if whenever
{Un,vn} C Graph(F) is a sequence such that

DF (un,vn)(u—up) +epflu —un|| CRy, Vue X

for a sequence {e,} C Ry with nli_)xgo gn = 0, and {v,} is bounded, then
{uy} is g-bounded (resp., {u,} contains a convergent subsequence).
Definition 2.10. Let (M, d) be a metric space, F' : M ~+ R be a set-
valued function with non-empty values and g : M — R be a function.
F satisfies the condition (V — PSB — g) (resp. (V — PS)), if whenever
{tn,vn} C Graph(F') is a sequence such that

|VF|(una'Un) +e, C Ry
for a sequence {e,} C Ry with li_1>n en =0, and {v,} is bounded, then
T oo
{u,} is g-bounded (resp., {u,} contains a convergent subsequence).

Remark 2.2. Let (X, || - || be a normed space, and F(z) = {f(z)} is
single-valued, f being of class C1.
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(I) The contingent derivative reduces to the classical differential,

ie.

DF(z, f(z))(u) = f (2)(u),Yu € X
see [1, Prop. 5.1.2]. Therefore the condition (D — PSB — || - ||) (resp.,
(D — PS)) is exactly the (Sz — PSB) (resp., (Sz — PS)) with ¢ = 0.

(II) Moreover, (PSB) (resp., (PS)) implies (V — PSB — || - ||)
(resp., (V — PS)). Indeed, since F = f is of class C!, then it is locally
Lipschitz, therefore from Prop. 2.1. we have

(2.1) f'(z)(u) € |VF|(z, f(@)) - v, Yu, 5 € X

(u can be 0 also). Now, let a sequence {uy, } such that |VF|(ty, f(un))+
+ e, C Ry for a sequence {&,} C Ry with nlgr;o en = 0 and {f(u,)} is
bounded. Multiplying the above inclusion by ||« — u,|| and using the
(2.1) we obtain that f (un)(u — un) + enllu — un|| € Ry, Vu € X, ie.

£ (un)(u) +enllull > 0,Yu € X. From this, we get IF (un)]
Since €, — 0, we obtain the desired relations.

X* S En-

3. Coercivity result

In the sequel, we use the Ekeland variational principle to establish
the main result of this paper. In its strong form, Ekelands’s principle
can be stated as follows:

Let (M, d) be a complete metric space and ® : M — R be a lower
semicontinuous function which is bounded below, say a = infy;®. Let
€ > 0 be given and u € M be such that ®(u) < a+e.

Then, for any A > 0, there exists v € M such that

(i) O(v) < B(u),

(ii) d(v,u) < A,

(iii) @(v) < ®(w) + (¢/N)d(v, w), Yw # v.

Lemma 3.1. Let (M,d) be a complete metric space, F' : M ~~ R be an
upper semicontinuous set-valued mapping with compact and non-empty
values, such that inf F(M) > —oo and a Lipschitz continuous function
g: M — R. Definec= liminf minF'(u). Then, if c € R, there ezists

lg(u)|—o0
a sequence {vn} C M such that:
(1) lg(vn)| = +o0,
(i1) min F(v,) — ¢,
(iii) |V F|(vp, min F(v,)) + &, C Ry, where e, — 0T
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Proof. From the definition of ¢, there exists a sequence {u,} C M such
that

(3.1) min F(u,) < c+ %
and
(3.2) lg(un)| = (L + 1),

where L > 0 is the Lipschitz constant of g. The function @ : M — R,

defined by ®(u) = min F(u), u € M is lower semicontinuous, (see [1,

Th. 1.4.16] for f : Graph(F) — R, f(z,y) = —y). Now, we apply the
1

Ekeland’s principle for ®, e/, = ¢+ - = inf F(M), u := u, and X :=n.

Therefore, there exists v, € M such that

(3.3) min F'(v,) < min F(uy)

(34) d('Una'U'n) <n

(3.5) min F(v,) < min F(w) + (e, /A)d(vn, w), Yw # vy.

From (3.4) and (3.2), we have |g(va)| > |g(un)| — Ld(vn,un) 2
> (L +1)n— Ln = n, ie. |g9(vy)] — oo, which represents exactly

i).

From (3.3) and (3.1) we have min F(v,) < ¢+ . From the
definition of ¢, we have min F'(v,) — ¢, exactly the (ii).

From (3.5), we have that F(w) — min F(v,) + end(w,v) C Ry,

/

YVwe M\ {v,}, where g, = En  Clearly e, — 0. Dividing by
n

~~

d(w,vy,) > 0 the above inclusion, we get

Fu) - malie) s, Ry Ve M\ fon),
Taking the upper limit of the above inclusion when w — vn, we get
|V F|(vn, min F(v,,)) + £, € Ry, which is exactly the (iii). Thus the
proof of lemma, is complete. ¢
Definition 3.1. The set-valued function F : M ~ R is g-coercive, if
min F(u) — oo as |g(u)| — oo.

The main result of this paper

Theorem 3.1. Let (M,d) be a complete metric space, F' : M ~» R
be an upper semicontinuous set-valued mapping with compact and non-
empty values, such that inf F'(M) > —oo and a Lipschitz continuous
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function g : M — R. F satisfies condition (V — PSB — g) if and only
if F' is g-coercive.

Proof. Suppose that F' is not g-coercive, i.e. let ¢ = liminf min F'(u)
: lg(u)|—+o0

finite. Then by Lemma 3.1., there exists a sequence {v,} such that

(i) lg(vn)| — oo,

(ii) min F'(v,) — ¢,

(i) VF (v, min F(vy,)) + &n C Ry, with &, — 0F.

From (ii) and (iii), using the condition (V — PSB — g), we obtain
that the sequence {v,} is g-bounded which contradicts (i).

Conversely, let us suppose that condition (V—PSB—g) not holds.
Therefore, there exists a sequence {u,} C M such that VF(un,v,) +
+en C Ry, with g, = 0, v, € F(us), {vn} bounded and {u,} is
not g-bounded, i.e. |g(u,)] — oco. Using the g-coercivity of F, we
obtain that min F'(u,) — oo, therefore {v,} is unbounded which is a
contradiction. ¢

In a similar way it is possible to state the following
Theorem 3.2. Let (X, ||-]|) be a Banach space, F' : X ~ R be a locally
Lipschitz set-valued mapping with compact and non-empty values, such
that inf F(X) > —oco and a Lipschitz continuous function g : X — R.
F satisfies condition (D — PSB — g) if and only if F' is g-coercive.
Corollary 3.1. Under the assumptions from Th. 3.2, we can state that
conditions (V — PSB — g) and (D — PSB — g) are equivalent.
Remark 3.1. Similar result as Th. 3.2. was obtained by authors in [7].
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