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Abstract: Let d,n be positive integers and S be an arbitrary set of positive
integers. We say that d is an S-divisor of n if d|n and gcd{(d,n/d) € S.
Consider the S-convolution of arithmetical functions given by (1.1), where
the sum is extended over the S-divisors of n.

We determine the sets S such that the S-convolution is associative and

preserves the multiplicativity of functions, respectively, and discuss other ba-

sic properties of it. We give asymptotic formulae with error terms for the func-

tions og(n) and 75(n), representing the sum and the number of S-divisors of

n, respectively, for an arbitrary S. We improve the remainder terms of these

formulae and find the maximal orders of og(n) and T5(n) assuming additional

properties of S. These results generalize, unify and sharpen previous ones.
We also pose some problems concerning these topics.

1. Introduction

Let N denote the set of positive integers and let S be an arbitrary
subset of N. For n,d € N we say that d is an S-divisor of n if d|n
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and ged(d,n/d) € S, notation d|gn. Consider the S-convolution of
arithmetical functions f and g defined by

(L) (f*s9)(n) =D f(dg(n/d) = ps((d,n/d))f(d)g(n/d),

d|sn d|n

where pg stands for the characteristic function of S.

Let 7¢(n) and og(n) denote the number and the sum of S-divisors
of n, respectively.

For S = N we obtain the Dirichlet convolution and the familiar
functions 7(n) and o(n). For § = {1} we have the unitary convolution
and the functions 7*(n) and o*(n). These have been studied extensively
in the literature, see for example [3] and its bibliography.

Among other special cases we mention here the following ones.

Let P be an arbitrary subset of the primes p and S be the mul-
tiplicative semigroup generated by PU {1}, i. e. § = (P) = {1} U
U{n > 1:pln = pe P}. Then the (P)- convolution is the concept of
the cross-convolution, see [7], which is a special regular convolution of
Narkiewicz-type [4].

If S is the set of k-free integers, k > 2,i. e. S=Qr={1}U{n >
> 1: p|n = p* { n}, then the Qy-divisors are the k-ary divisors and
(1.1) is the k-ary convolution, see [5], [6].

Let Lj denote the set of k-full integers, i. e. Ly = {1} U {n >
> 1: p|ln = p¥|n}, where k& € N,k > 2. The Lg-convolution given
by

(1.2) (fr9)m) = > f(dg(n/d)
(d,n/;)lez,k

seems to not have been investigated till now.

The aim of this note is to study some basic properties of the S-
convolution, to give asymptotic formulae for the functions os(n) and
7s(n) and to investigate the maximal orders of these functions.

Assuming that 1 € S (then 1|sn and n|sn for every n € N), we
determine in Section 2 the subsets S such that the S-convolution is
associative and preserves the multiplicativity of functions, respectively.

The most interesting property is that of associativity. It turns out
that, for example, the (Qx-convolution Wlth k > 2 is not associative, but
the Li-convolution is associative.

The Lg-convolution has also other nice properties, which are anal-
ogous to those of the Dirichlet convolution and of the unitary convolu-
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tion. For example, the set of all complex valued arithmetical functions
f with f(1) # 0 forms a commutative group under the Lg-convolution
and the set of all nonzero multiplicative functions forms a subgroup of
this group.

Furthermore, let pur denote the inverse with respect the Lg- con-
volution of the constant 1 function. We call it ”k-full Mobius function”,
which is multiplicative and for every prime power p%, pg(p*) = —1 for
1<a< 2k and pgp(p®) = pr(p®™1) — px(p®%) for a > 2k.

Note that p; = p is the ordinary Mobius function. The function
uo takes the values —1,0,1.

We pose the following problems: Which are the values taken by
ur? Investigate asymptotic properties of p.

Note that the S-convolution is contained in the concept of the
K-convolution to be defined in Section 2. Although there exist charac-
terizations of basic properties of K-convolutions, see [2] and [3], Chapter
4, no study of (1.1) has been made in the literature.

Section 3 contains certain identities showing that for every S the
S-convolution of two completely multiplicative functions can be ex-
pressed with the aid of their Dirichlet convolution and their unitary
convolution, respectively.

Asymptotic formulae with error terms for the functions og(n)
and 75(n), involving arbitrary subsets S, are given in Section 4. We
show that the remainder terms can be sharpened assuming additional
properties of §.

In Section 5 we determine the maximal order of og(n) assuming
that S is multiplicative, i. e. 1 € S and pg is multitplicative, and give
the maximal order of 7g(n) for an arbitrary S with 1 € S.

What can be said on the maximal order of og(n) for an arbitrary
subset S§?7

The results of Sections 4 and 5 are obtained by elementary meth-
ods, they generalize, unify and improve the corresponding known results
concerning the functions o(n), 7(n), their unitary analogues o*(n), 7*
*(n), those involving k-ary divisors and the functions ga(n), Ta(n)
associated with cross- convolutions, see [3], [5], [6], [7], [8]-

2. Properties of the S-convolution

It is immediate that the S-convolution is commutative and dis-
tributive with respect ordinary addition for every S.
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Assume in this section that 1 € S. Then 1|sn and n|sn for every
n € N and denoting 6 = py1},i. e. 6(1) =1 and d(n) =0 for n > 1, we
have f % gd = f for every function f. This means that § is the identity
element for xg.

We say that S is multiplicative if 1 € S and its characteristic
function pg is multiplicative.

The K-convolution of arithmetical functions f and g is given by

(2.1) (fxxg)(n)=> K(n,d)f(d)g(n/d),

din

where K is a complex valued function defined on the set of all ordered
pairs (n,d) with n,d € N and d|n.

' For K(n,d) = ps((d,n/d)) (2.1) becomes (1.1), therefore the S-
convolution is a special K-convolution.

Theorem 2.1. The S-convolution preserves the multiplicativity of
functions if and only if S is multiplicative.

Proof. It is known ([3], Chapter 4) that the K- convolution preserves
the multiplicativity if and only if

K(mn,de) = K(m,d)K(n,e)
holds for every m,n,d, e € N such that (m,n) =1 and d|m, e|n.
Hence the S-convolution has this property if and only if

(2.2) ps((de, mn/de)) = ps((d,m/d))ps((e;n/e))

for every m,n,d,e € N with (m,n) = 1 and d|m, e|n.

If S is multiplicative, then for every m, n, d, e given as above (d, m/
/d) and (e,n/e) are relatively prime, (de,mn/de) = (d,m/d)(e,n/e)
and we obtain (2.2).

Conversely, if (2.2) holds and M,N € N, (M,N) = 1 are given
integers, then taking d = M, m = M?,e = N,n = N? we obtain

ps(MN) = ps(M)ps(N),

showing that S is multiplicative. ¢
Remark.It follows that all the convolutions mentioned in the Intro-
duction preserve the multiplicativity.
Theorem 2.2. The S-convolution is associative if and only if the
following conditions hold:

(1) S is multiplicative,

(2) for every prime p and for every j € N if p? € S, thenp® € S
for every £ > j.
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Remark.Condition (2) is equivalent with the following: for every prime
p one of the next statements is true:

(i) p? € S for every j €N,

(i) p? ¢ S for every j € N,

(iii) there exists e = e(p) € N depending on p such that p’ ¢ S
for every 1 < j < e and p/ € S for every j > e.
Proof. It is known ([3], Chapter 4) that the K- convolution is associa-
tive if and only if

K(n,d)K(d,e) = K(n,e)K(n/e,d/e)

holds for every n,d,e € N with d|n, e|d.

Therefore the S-convolution is associative if and only if

(2.3) ps((d,n/d))ps((e, d/e)) = ps((e,n/e))ps((d/e,n/d))
for every n,d,e € N with d|n, e|d. '

First we show that if *g is associative, then pg is multiplicative.
Suppose that (2.3) is satisfied, let M, N € N, (M,N) = 1 and take
n=M?N? d= MN,e= M. Then we have

ps((MN, MN))ps((M,N)) = ps((M, MN?))ps((N, MN)),
hence

ps(MN) = ps(M)ps(N).
Assume now that S is multiplicative. Then, taking n = p®,d = p®, e =
= p°, (2.3) is equivalent to

24)  ps((0®,0""")ps((0% ")) = ps((0%,0*)ps((#°~¢,2* "))
for every prime p and for every 0 < ¢ < b < a. Note that it is sufficient
to require (2.4) for every 0 < c < b < a.

Suppose that p’ € S, where j € N and let £ > j. We show that
pt € S.

Case 1. £ < 2j. Take a = £+ 2j,b = £+ j,c = £. From (2.4) we
obtain

ps (0", 07))ps (0%, 7)) = ps((®*, 0" ps((¥, 7)),

Ps(pj)PS(pj) = PS(PE)PS(Pj),

giving ps(p?) = 1.
Case 2. £ > 2j. Now let a = 2£,b = £,c = £ — j. From (2.4) we
have

ps(@%,29))ps (@7, 0%)) = ps((0*~7, ")) ps (¥, %)),
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ps(0%)ps(p?) = ps(p*)ps(®?),

thus
(2.5) ps(p) = ps(®@*).
If {=kj+r, where k > 2 and 0 < r < 7, then applying (2.5) we have

ps(®) = ps(@*7) = ps (") = .. = ps(PT) = 1,
where j < j -+ 7 < 27 and we use the result of Case 1.

In order to complete the proof we show that if S is multiplicative
and condition (2) holds, then we have (2.4) for every 0 < ¢ < b < a.

Cosider the cases of the Remark of above. For (i) and (ii) (2.4)
holds trivially. In case (iii) if p/ ¢ Sforevery 1< j<e—1landp’ € §
for every j > e, then (2.4) means that the statements ”[(b > e and
a—b>e)and (c>eand b—c>e)]” and ’[(c > e and a —c > e) and
(b—c>eand a—0b>e)]” are equivalent. A quick check shows that
this is true.

Remark. From Th. 2.2 we obtain that the Qg-convolution (k > 2) is
not associative, but the Ly-convolution and the (P)-convolution defined
in the Introduction are associative.

Theorem 2.3. If conditions (1) and (2) of Th. 2.2 hold, then the
set of all complex valued arithmetical functions forms a commutative
(and associative) ring with identity with respect to ordinary addition
and S-convolution (in particular Ly convolution).

This ring has no divisors of zero if and only if S =N, i. e. xg is
the Dirichlet convolution.

Proof. The first part of this result follows at once from Th. 2.2 and
from the previous remarks.

Furthermore, it is well-known that for the Dirichlet convolution
there are no divisors of zero. Conversely, suppose that S # N satisfies
conditions (1) and (2) of Th. 2.2. Then there exists a prime p such that
p ¢ S and the following functions are divisors of zero:

) = gt) = {

1, ifn=np,
0, otherwise. &

Theorem 2.4. If conditions (1) and (2) of Th. 2.2 hold, then the set
of all complex valued arithmetical functions f with f(1) # 0 forms a
commutative group under S-convolution (in particular Ly-convolution)
and the set of all nonzero multiplicative functions forms a subgroup of
this group.
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Proof. This yields in a similar manner as in case of the Dirichlet convo-
lution and unitary convolution or in general for certain K-convolutions,
see [3], Chapter 4. ¢

Consider now the ”k-full”-convolution corresponding to S = Ly,
the set of k-full numbers: Let pi denote the ”k-full Mobius function”,
representing the inverse of the function I(n) = 1,n € N with respect to
this convolution. According to Th. 2.4 uy is multiplicative and a short
computation shows that for every prime power p®,

pe(@®) =-1, 1<a<2k

and

pr(0®) = pe(@®™") = pe(@*%), @ > 2k.

Observe that 1 = p is the ordinary Mobius function.
For the ”squarefull Mébius function” pe (case k = 2) we have
p2(p) = po(p?) = p2(p®) = —1 and
pa(p?) = p2 (1) — pa(p®™?), a > 4.

Therefore, Nz(P) = le(P ) = pa(p’) = —1 MZ(P ) =0, uz( %) =
= pa(p®) =1, Mz( ") =0, p2(p®) = p2(p°) = -1, Mz( 9)=0,..

The values taken by pg are —1,0,1. This is not true for us, since
pa(p®) = —1 for 1 < a <5, p3(p®) = 0, pa(p”) = 1, pa(p®) = pa(p®) =
=2, u3(p"°) = 1, pua(p™) = —1, pa(p™?) = =3, pa(p*®) = —4, ... .

We pose the following problems: Which are the values taken by
ur? Investigate asymptotic properties of ug. Does it posses a mean
value?

?

3. Identities

For an arbitrary S C N let ug be the Mobius function of S defined
by

(1) S us(n) = ps(n), neN,
din
see [1], therefore, by Mobius inversion,
(3.2) Zpg p(n/d), neN, .
din

where p1 = 1y is the ordinary Maobius function.
The zeta function (g is defined by
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Cs(z) = Z ,OS(n _

It follows that {y = ( is the Rlemann zeta function and

— ps(n)  (s(2) .
S

Theorem 3.1. If S C N and f and g are completely multiplicative
functions, then for every n € N,

(3.4) (f*sg)(n)=>_ us(d d)(f = 9)(n/d?),

d?|n

(3.3)

n=1

where * = %y 15 the Dirichlet convolution and
(3.5) (f *s9)(n) = > ps(d d)(f x g)(n/d?),
d?|n

where X = (1} is the unitary convolution.
Proof. Using (3.1) we have for every n € N,

(f+s9)(m) =D ps((d,e))f(d)gle) = (Z ps(J )) F(d)g(e).

de=n de=n \j|(d,e)
Hence with d = ja,e = jb,

(Feso)(m)= Y ps(i)f(ia)g(ib)= Y ws(i)f(i)f(a)g(s)g(b)=

j2ab=n j2ab=n

= Y us()FGaG) D F@g®) = D ns()F (Gl (f *9)(®),

jz.e:n ab=¢ _72£=n
which is (3.4).
Furthermore,

de=n aE&S de=n

=> ps(@) D fldge)

de=n

(d/a,e/a)=1
With d = ai,e = bj we get
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(fxs9)m)= Y ps(a)f(a)g(a)f($)g(i) =

azij=n

(i,3)=1

= Y ps(@f(@g@) Y fE@g() = Y ps(@)f(a)g(@)(f x 9)(),

alb=n ij=b a?b=n
(i,7)=1

giving (3.5). ¢
Theorem 3.2. If S CN, then for every n € N,

(3.6) 75(n) = Y us(d)r(n/d*) = Y ps(d)7*(n/d?),

d?|n d?|n

3.7)  os(n)=>_ ws(d)do(n/d®) = ps(d)do*(n/d?).

d?|n d?|n

Proof. This yields at once from Th. 3.1 applied for f(n) = g(n) =1
and f(n) = n,g(n) =1, respectively. ¢

Note that if S is multiplicative, then the functions 7s(n) and og(n)
are also multiplicative. The generalized Euler function ¢g(n) = #{k €
€ N:k <n,(k,n) € S} was considered in [1] and one has ¢g = pg *
*E = pg*¢, where E(n) = n,n € Nand ¢ = ¢y is the ordinary Euler
function, see also [7].

4. Asymptotic formulae

The following asymptotic formulae generalize and improve the
known formulae concerning the functions o(n), 7(n), their unitary ana-
logues, those involving k-ary divisors and the functions o4(n), 74(n)
associated with cross-convolutions, cf. [3], Chapter. 6; [5], Cor. 3.1.1;
[6], Cor. 3.1; [7], Th. 12; [7i], Th. 2; see also [9], Cor. 1.

Theorem 4.1. If S CN, then

(4.1) S os(n) = 22_§s§ {2)¢s(3) 24 Rg(z),

where the remainder term can be evaluated as follows:
(1) Rs(z) = O(zlog®® z) for an arbitrary S,
(2) Rs(z) = O(zlog®?x) for an S such that " L < oo (in
neSs
particular for every finite S) and for every multiplicative S,

n<zx
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(3) Rs(z) = O(zlog®®z) for every multiplicative S such that
> % < oo (in particular if the set {p: p ¢ S} is finite).
pg¢s
Proof. We have from (3.7),

Zag(n): Z ps(d)d Z o(e

n<w d<\/z e<z/d?

Applying now the well-known result of Walfisz [10],
2
Z o(n) = o ):c + O(z 1og*® z)

we obtain B
_ ((2)a? o)
(Z)x Zﬂs(d (mz Z I,Ll,s(d)l) n
d>vT @

d)|
o) 2/3 l/‘LS( )
+ (m(log x) Z g
i<z
For the main term apply (3.3) and the given error term yields from the
next statements:

(a) For an arbitrary S C N, |us(n)] < > ps(d) < 7(n) for every
din

n € N and

3o stn)] IMS ZpS(d Z 1

n<z d<z e<m/d

O(logz), if 3 es(n) oo,
:O(IOng%i)> :{ ( & ) ngl "

d<wz O(log2 z), otherwise.

(b) If S is multlphcatlve then pg is multiplicative too, us(p®) =
= ps(p®) — ps(p® 1) for every prime power p® (a > 1) and pg(n) €
€ {-1,0,1} for each n € N.

(c) Suppose S is multiplicative. Then
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o0 k . o
Y IMS(kP )l Szp: (195(22 1] +:L;21%> _

p k=1 p
1 1
TR I
pesPlp—1)  L2p—1
1 1 1
<2 2—5+Z— <oo if - < 00.
pes P pgs? pgs P

oQ
It follows that in this case the series ). '—’“‘% is convergent. ¢
n=1

Theorem 4.2. If S is an arbitary subset of N, then

Z Ts(n) =

n<z

¢s(2) < 2¢5(2) ZC’(2)> 2
4.2) = z{logz+2y—1+ — + O(v/zlog” z),
(42 ="y o\ L@ @ ) TV
where v is the Euler constant and (5(z) is the derivative of (s(z).
This result follows applying the first identity of (3.6) and using
Dirichlet’s formula
3" r(n) = alogz + 27~ 1) + O(a").
n<lz
The remainder term of (4.2) can be improved assuming further
properties of S. For example, if S is multiplicative, then the error term
is O(y/zlogz) and if S (i. e. pg) is completely multiplicative and {p :
: p & S} is a finite set, then the error term is O(z®). We do not go into
details.

5. Maximal orders

Generalizing the result of Gronwall concerning the function o(n)
we prove the following theorem.
Theorem 5.1. Let S be an arbitrary multiplicative subset. Denote by
P the set of primes p such that p’ € S for every j € N. For everyp ¢ P
let s(p) € N denote the least exponent j such thatp’ ¢ S (i. e. pP € S
for every 1 < j < s(p) and p*°® ¢ S).
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Then
o
hﬂsolip n log logn H ( p2®) )

Proof. For every p € P,a € N and for every p ¢ P,a < 2s(
S-divisors of p® are all divisors 1, p, p?, ..., p%. Hence og(p®) =
=1+p+p*+..+p%

For every p ¢ P and a > 2s(p) the numbers p*® and po—s(®)
are certainly not S-divisors of p?, since (p?=*®), p*(®)) = ps®) ¢ g
Therefore og(p®) < (1 +p+p? + ... +p>5@)=1) 4 (pa—se)+1 4 4
+pa) <pa—s(p) +pa—s(p)+1+m+pa Spa——Zs(p)-i-l _I_pa—23(p)+2_|_m_}_pa'
We obtain that

os(p®) 11 1

° S1+1—5+F+“'+;2—s@)—_1

p) the
o(p®) =

(4.3)

holds for every prime power p® with p ¢ P with equality for a = 2s(p) —
— 1.
Also, for every p € P,a € N,

a -1
(4.4) os(p®) _ (1 _ _1_> .
p* D
We show that
ag(n
sel H ( p?s(® )> loglogn(l+o(1))  as n — 00.
p¢pP
Using (4 3) and (4.4) we have for every n > 1,

1 1 1
<H( ) H<1+I—)+P+...+W>:

pln pin
pEP PgFP
-1 —1
H 1 H 1
pln p pin p
p<logn p>logn
pEP pepP
1 1 1
X 1+—+——~+...+~—>><
H ( p p? p2s(p)-1
p<logn

pEP
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1 1
X H <1+ —I—;-i- +_2S(Tf)§

pln

p>logn
PEP
-1
1 1 1
< (1——) (1+ + =+ +———~———_)><
peEP p&P
-1 1 -1
G-I
pln pln p
p>logn p>logn
pEP p&P
-1 -1
1 1 1
-1 (-gw) T (1-5) T (1) <
p<logn p<llogn pln
pgP p>logn
1 1\ 1\
< 11 (1—_2_) I (1__) I <1_ ) _
p<logn ps(p) p<llogn p pln logn
PEP p>logn
1
=" ][] (1— e )> loglogn(1 + o(1)),
p¢P

applying Mertens’ theorem ] . (1 - %) = logz( +0(1)) as £ — oo,

and the fact that #{p: p|n,p > logn} < ﬁ:ﬁ%'
Now we show that this upper bound is asymptotically attained.

For a given € > 0 choose t so large such that
1
I <1 - —5) >1—e.
p
p>t
For this ¢ choose an exponent a > 1 such that
1
11 (1 — —a> >1—e.
p<t p
Consider the sequence (ny)r>1 given by

"?k — H pa.-—l H p2s(p)—1 H .

p<t p<t t<p<ek
rep rep <p<

We obtain




262 L. Téth

ag(nk)_ 1 1 1
(g )

p<t p
peP
1 1 1 1
p<t t<p<ek
p&P -
1 1 1 1\ "
STRTAFR AT R
p<t pEP p>t p<ek

1
2
Z (1 - E) H (1 - Zm) 67]{2(1 -+ 0(1)) as k— o0,
p¢ P
applying Mertens’ theorem again.

Furthermore, considering the Chebysev function 6(z) = Y logp
p<z
and using the elementary estimate 6(z) = O(z), we get

logng < O(1) + 8(eF) = O(eF).
Hence, for sufficiently large k,
loglogn, < O(1) +k < (1 +e¢)k.
Therefore
g (TL],,) 1 - 8
li v
1,228;.}1) ng log logn;c - 1+e € H < 23(10))
and the proof is complete. ¢
A direct consequence of Th. 5.1 is the following result.
Theorem 5.2. Let S be an arbitarary multiplicative subset and suppose

that there ezists s € N such that for every prime p, p’ € S for every
1<j<sandp®*¢S. Then

lim sup os(n) = el
naoo nloglogn  ((2s)
This result can be applied for S = Q (case s =k > 1), for S = Ly,
(case s =1).
What is the maximal order of og(n) for an arbitrary subset S ?
Theorem 5.3. Let S be an arbitrary subset such that 1 € S. Then

(4.5) Jim sup log 75(n) loglogn
n—o00 log n

= log 2.
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Proof. It is well-known that this result holds for the function 7(n) (case
S = N) and that for the sequence ny = p1ps3...pg, where p; is the i-th
prime,

log 7(ng) log log ng

lim

= log 2.
k—00 log °8

Taking into account that if 1 € S, then 79(n) = 7(n) for every
squarefree n and 75(n) < 7(n) for every n € N, (4.5) follows at once.
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