ON THE STRUCTURE OF NON-SINGULAR ITERATION GROUPS ON THE CIRCLE

Krzysztof Ciepliński

Institute of mathematics, Pedagogical University, Podchorazych 2, PL-30-084 Kraków, Poland

Received: October 2002

MSC 2000: 39 B 12, 37 E 10, 20 F 38

Keywords: Disjoint, strictly disjoint, non-singular, singular, non-dense, dense iteration group, rotation number, limit set.

Abstract: The aim of this paper is to investigate the structure of nonsingular iteration groups on the unit circle \mathbb{S}^1 , that is, families $\mathcal{F}=\{F^v:$: $\mathbb{S}^1 \longrightarrow \mathbb{S}^1$, $v \in V$ } of homeomorphisms such that $F^{v_1} \circ F^{v_2} = F^{v_1+v_2}$, $v_1, v_2 \in V$

and at least one $F^v \in \mathcal{F}$ has no periodic point (V is a linear space over $\mathbb Q$ with dim $V \geq 1$). Our main result shows that iteration groups under study are direct sums of some special subgroups.

1. Introduction

Denote by \mathbb{S}^1 the unit circle and let V be a linear space over \mathbb{Q} such that $\dim V \geq 1$.

Recall that a family $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ of homeomorphisms for which

$$F^{v_1} \circ F^{v_2} = F^{v_1 + v_2}, \quad v_1, \ v_2 \in V$$

is called an *iteration group* or a flow (on \mathbb{S}^1). An iteration group is said

E-mail address: kc@wsp.krakow.pl or smciepli@cyf-kr.edu.pl

to be *disjoint* if every its element either is the identity mapping or has no fixed point.

Some special cases of such iteration groups under the assumption that $V = \mathbb{R}$ have been investigated in [2] and [3]. A complete description of disjoint iteration groups $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ can be found in [6] and [kc6].

An iteration group $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is said to be non-singular if at least one its element has no periodic point, otherwise \mathcal{F} is called a singular iteration group.

The aim of this paper is to investigate the structure of non-singular iteration groups which do not need to be disjoint. We shall show that every such group is a direct sum of two subgroups and one of these subgroups is a special disjoint iteration group. In order to do this we use some ideas from [11].

2. Preliminaries

We begin by recalling the basic definitions and introducing some notation.

Throughout the paper \mathbb{N} stands for the set of all positive integers and the set of all cluster points of the set $A \subset \mathbb{S}^1$ will be denoted by A^d .

A set $A \subset \mathbb{S}^1$ is said to be an *open arc* if there are distinct $v, z \in \mathbb{S}^1$ for which

$$A = (v, z) := \{e^{2\pi i t}, t \in (t_v, t_z)\},$$

where $t_v, t_z \in \mathbb{R}$ are such that $e^{2\pi i t_v} = v, e^{2\pi i t_z} = z$ and $0 < t_z - t_v < 1$.

It is well-known (see for instance [1], [2] and [12]) that for every continuous mapping $F: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ there is a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$, which is unique up to translation by an integer, and a unique integer k such that

$$F(e^{2\pi ix}) = e^{2\pi i f(x)}, \qquad x \in \mathbb{R}$$

and

$$f(x+1) = f(x) + k, \qquad x \in \mathbb{R}.$$

The integer k is called the *degree* of F, and is denoted by $\deg F$. If $F: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ is a homeomorphism, then so is f. Furthermore, $|\deg F| = 1$. We say that a homeomorphism $F: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ preserves orientation if $\deg F = 1$, which is clearly equivalent to the fact that f is increasing.

Moreover, F preserves orientation if and only if for any v, w, $z \in \mathbb{S}^1$ such that $w \in (v, z)$ we have $F(w) \in (F(v), F(z))$ (see [5]). Recall also that every element of an iteration group $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ preserves orientation (see [6]).

For every orientation-preserving homeomorphism F the number $\alpha(F) \in [0, 1)$ defined by

$$\alpha(F) := \lim_{n \to \infty} \frac{f^n(x)}{n} \pmod{1}, \qquad x \in \mathbb{R}$$

is called the *rotation number* of F. This number always exists and does not depend on x and f. Furthermore, $\alpha(F)$ is rational if and only if F has a periodic point. If $\alpha(F) \notin \mathbb{Q}$, then the non-empty set

$$L_F := \{ F^n(z), \ n \in \mathbb{Z} \}^{\mathrm{d}},$$

(the *limit set* of F) does not depend on $z \in \mathbb{S}^1$ (see for instance [9] and [10]).

By the *limit set* of a disjoint iteration group $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ we mean the set

$$L_{\mathcal{F}} := \{ F^v(z), \ v \in V \}^{\mathrm{d}}$$

which does not depend on $z \in \mathbb{S}^1$. By the *limit set* of a non-singular iteration group \mathcal{F} we mean the set

$$L_{\mathcal{F}}:=L_{F^v},$$

where $F^v \in \mathcal{F}$ is an arbitrary homeomorphism with $\alpha(F^v) \notin \mathbb{Q}$. This set does not depend on the choice of such a homeomorphism.

Although the above definitions are different, in the case when the iteration group is both disjoint and non-singular they determine the very same set.

A non-singular or disjoint iteration group $\mathcal{F}=\{F^v:\mathbb{S}^1\longrightarrow\mathbb{S}^1,v\in V\}$ is called:

- dense, if $L_{\mathcal{F}} = \mathbb{S}^1$;
- non-dense, if $\emptyset \neq L_{\mathcal{F}} \neq \mathbb{S}^1$;
- discrete, if $L_{\mathcal{F}} = \emptyset$.

It is worth pointing out that every discrete iteration group is both disjoint and singular, and every dense iteration group is disjoint (see [6]). Therefore we shall investigate only non-dense non-singular iteration groups.

We now repeat the relevant, slightly modified, material from [6]. **Lemma 1** (see [6] and also [8]). If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a dense or non-dense iteration group, then there exists a unique pair

 $(\varphi_{\mathcal{F}}, c_{\mathcal{F}})$ such that $\varphi_{\mathcal{F}}: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ is a continuous function of degree 1 with $\varphi_{\mathcal{F}}(1) = 1$ and $c_{\mathcal{F}}: V \longrightarrow \mathbb{S}^1$ satisfying the following system of functional equations

$$\varphi_{\mathcal{F}}(F^v(z)) = c_{\mathcal{F}}(v)\varphi_{\mathcal{F}}(z), \quad z \in \mathbb{S}^1, \ v \in V.$$

Regarding the structure of dense non-singular iteration groups we have the following theorem.

Theorem 1 (see [6]). If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a dense iteration group, then there exists a unique orientation-preserving homeomorphism $\varphi_{\mathcal{F}} : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ having fixed point 1 such that

$$F^{v}(z) = \varphi_{\mathcal{F}}^{-1}(e^{2\pi i\alpha(F^{v})}\varphi_{\mathcal{F}}(z)), \qquad z \in \mathbb{S}^{1}, \ v \in V.$$

If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense iteration group, then its limit set is a non-empty perfect and nowhere dense subset of \mathbb{S}^1 , and therefore we have the following decomposition

$$\mathbb{S}^1 \setminus L_{\mathcal{F}} = \bigcup_{q \in \mathbb{Q}} I_q,$$

where I_q for $q \in \mathbb{Q}$ are open pairwise disjoint arcs.

Lemma 2 (see [6]). If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense iteration group, then:

- (i) for every $q \in \mathbb{Q}$ the mapping $\varphi_{\mathcal{F}}$ is constant on I_q ,
- (ii) for any distinct $p, q \in \mathbb{Q}, \varphi_{\mathcal{F}}[I_p] \cap \varphi_{\mathcal{F}}[I_q] = \emptyset$,
- (iii) $\varphi_{\mathcal{F}}[\mathbb{S}^1 \setminus L_{\mathcal{F}}] \cdot \operatorname{Im} c_{\mathcal{F}} = \varphi_{\mathcal{F}}[\mathbb{S}^1 \setminus L_{\mathcal{F}}].$

According to Lemma 2 we can correctly define

$$\{\Phi_{\mathcal{F}}(q)\} := \varphi_{\mathcal{F}}[I_q], \qquad q \in \mathbb{Q}$$

and

$$T_{\mathcal{F}}(q, v) := \Phi_{\mathcal{F}}^{-1}(\Phi_{\mathcal{F}}(q)c_{\mathcal{F}}(v)), \qquad q \in \mathbb{Q}, \ v \in V.$$

Lemma 3 (see [6]). If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense iteration group, then:

- (i) $T_{\mathcal{F}}(T_{\mathcal{F}}(q, v_1), v_2) = T_{\mathcal{F}}(q, v_1 + v_2) \text{ for } q \in \mathbb{Q}, v_1, v_2 \in V,$
- (ii) $T_{\mathcal{F}}(q, 0) = q \text{ for } q \in \mathbb{Q},$
- (iii) $F^{v}[I_q] = I_{T_{\mathcal{F}}(q, v)}$ for $q \in \mathbb{Q}$, $v \in V$.

3. Main results

We start with some auxiliary results which are valid without any assumption on the iteration group $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$.

It is easily seen that we have

Remark 1. Let $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ be an iteration group. If $z_0 \in \mathbb{S}^1$ is a fixed point of $F^v \in \mathcal{F}$, then so is $F^w(z_0)$ for $w \in V$. **Lemma 4.** Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is an iteration group. Then:

- (i) if F^{v_1} , $F^{v_2} \in \mathcal{F}$ have fixed points, then they have a common fixed point,
- (ii) if $\alpha(F^{v_0}) \in \mathbb{Q}$ for a $v_0 \in V$, then $\alpha(F^{v_0}) \in \mathbb{Q}$ for $r \in \mathbb{Q}$.

Proof. (i) Fix $v_1, v_2 \in V$ and assume that $z_1 \in \mathbb{S}^1$ is a fixed point of F^{v_1} . If $F^{v_2}(z_1)=z_1$, then z_1 has the desired property. Now, assume that $F^{v_2}(z_1) \neq z_1$ and let $z_2 \in \mathbb{S}^1$ be a fixed point of F^{v_2} . If z_2 is the unique fixed point of F^{v_2} , then from Remark 1 it follows that $F^{v_1}(z_2) =$ $=z_2$. Finally, we turn to the case when F^{v_2} has at least two fixed points. Denote by (a_1, b_1) the maximal open arc without fixed points of F^{v_2} such that $z_1 \in (a_1, b_1)$. Since $F^{v_2}(a_1) = a_1$, $F^{v_2}(b_1) = b_1$ and the homeomorphism F^{v_2} preserves orientation, we have $F^{v_2}(z_1) \in (a_1, b_1)$. This together with $F^{v_2}(z_1) \neq z_1$ shows that either $F^{v_2}(z_1) \in (a_1, z_1)$

or $F^{v_2}(z_1) \in (z_1, b_1)$. Assume, for instance, that $F^{v_2}(z_1) \in (a_1, z_1)$.

Then $F^{nv_2}(z_1) \in (a_1, F^{(n-1)v_2}(z_1))$ for $n \in \mathbb{N}$ and consequently

(1)
$$F^{lv_2}(z_1) \in (F^{kv_2}(z_1), F^{jv_2}(z_1))$$
 for $j, l, k \in \mathbb{N} \cup \{0\} \text{ with } j < l < k.$

Suppose that there are subsequences

$$(F^{n_k v_2}(z_1))_{k \in \mathbb{N} \cup \{0\}}, (F^{m_k v_2}(z_1))_{k \in \mathbb{N} \cup \{0\}}$$

of the sequence $(F^{nv_2}(z_1))_{n\in\mathbb{N}\cup\{0\}}$ for which

$$\lim_{k \to \infty} F^{n_k v_2}(z_1) = g_1 \neq g_2 = \lim_{k \to \infty} F^{m_k v_2}(z_1),$$

where

$$g_1, g_2 \in (a_1, b_1) \cup \{a_1, b_1\}$$

and let O_{g_1} , O_{g_2} be neighbourhoods of g_1 and g_2 , respectively, with $O_{g_1} \cap O_{g_2} = \emptyset$. Then, by (1), there exist non-negative integers m_k , n_{k_1} , n_{k_2} such that $n_{k_2} < m_k < n_{k_1}$ and

$$(F^{n_{k_1}v_2}(z_1), F^{n_{k_2}v_2}(z_1)) \subset O_{g_1}, F^{m_kv_2}(z_1) \in O_{g_2}.$$

Therefore $F^{m_k v_2}(z_1) \notin (F^{n_{k_1} v_2}(z_1), F^{n_{k_2} v_2}(z_1))$, contrary to (1).

We have thus shown that the sequence $(F^{nv_2}(z_1))_{n\in\mathbb{N}\cup\{0\}}$ is convergent. It is obvious that its limit, which will be denoted by g, is a fixed point of F^{v_2} . Moreover,

$$F^{v_1}(g) = \lim_{n \to \infty} F^{v_1}(F^{nv_2}(z_1)) = \lim_{n \to \infty} F^{nv_2}(F^{v_1}(z_1))$$

= $\lim_{n \to \infty} F^{nv_2}(z_1) = g$.

(ii) Let $z_0 \in \mathbb{S}^1$ and $n \in \mathbb{Z} \setminus \{0\}$ be such that $F^{nv_0}(z_0) = z_0$. Fix an $r \in \mathbb{Q}$ and take $k \in \mathbb{Z}$, $l \in \mathbb{N}$ for which $r = \frac{k}{l}$. Putting $m := nl \in \mathbb{Z} \setminus \{0\}$ we get

$$F^{mrv_0}(z_0) = (F^{nv_0})^k(z_0) = z_0,$$

which gives $\alpha(F^{rv_0}) \in \mathbb{Q}$. \Diamond

Corollary 1. If $\mathcal{F} = \{F^w : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, w \in \mathbb{Q}\}$ is an iteration group, then either $\alpha(F^w) \in \mathbb{Q}$ for $w \in \mathbb{Q}$ or $\alpha(F^w) \notin \mathbb{Q}$ for $w \in \mathbb{Q} \setminus \{0\}$.

Definition. An iteration group $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is said to be *strictly disjoint* if the fact that $F^v \in \mathcal{F}$ has a fixed point implies v = 0.

Lemma 5. If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is an iteration group, then the following conditions are equivalent:

- (i) \mathcal{F} is strictly disjoint,
- (ii) $\alpha(F^v) \notin \mathbb{Q} \text{ for } v \in V \setminus \{0\},$
- (iii) for any $z \in \mathbb{S}^1$ the mapping $V \ni v \longmapsto F^v(z) \in \mathbb{S}^1$ is an injection.

Proof. It is immediate that (ii) yields (i). Now, assume that (i) holds true and let $\alpha(F^v) \in \mathbb{Q}$ for a $v \in V$. Then $F^{nv} \in \mathcal{F}$ has a fixed point for an $n \in \mathbb{Z} \setminus \{0\}$, which together with (i) gives nv = 0, and consequently v = 0. To finish the proof it suffices to observe that conditions (i) and (iii) are also equivalent. \Diamond

Let us observe that every strictly disjoint iteration group $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is disjoint and, by Lemma 5, non-singular. Lemma 6. If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is an iteration group, then the set

$$U_{\mathcal{F}} := \{ u \in V : \ \alpha(F^u) \in \mathbb{Q} \}$$

is a linear subspace of V.

Proof. Since $0 \in U_{\mathcal{F}}$, we have $U_{\mathcal{F}} \neq \emptyset$. Fix u_1 , $u_2 \in U_{\mathcal{F}}$ and let z_1 , $z_2 \in \mathbb{S}^1$, n_1 , $n_2 \in \mathbb{Z} \setminus \{0\}$ be such that $F^{n_1u_1}(z_1) = z_1$ and $F^{n_2u_2}(z_2) = z_2$. By Lemma 4(i) there is a $z_0 \in \mathbb{S}^1$ for which $F^{n_1u_1}(z_0) = z_0 = F^{n_2u_2}(z_0)$, and therefore

$$(F^{u_1+u_2})^{n_1n_2}(z_0) = F^{n_1n_2u_1}(F^{n_1n_2u_2}(z_0)) = z_0.$$

As $n_1 n_2 \in \mathbb{Z} \setminus \{0\}$, we get $\alpha(F^{u_1+u_2}) \in \mathbb{Q}$, and consequently $u_1 + u_2 \in U_{\mathcal{F}}$. To finish the proof it suffices to apply Lemma 4(ii). \Diamond

The following fact follows immediately from Lemma 5.

Corollary 2. Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is an iteration group and let W be a complementary subspace to $U_{\mathcal{F}}$ in V. Then

$$\mathcal{F}_W := \{ F^w : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, \ w \in W \}$$

is a strictly disjoint iteration group if $\dim W \geq 1$, whereas $\mathcal{F}_W = \{id\}$ if $W = \{0\}$.

It is easily seen that we also have

Remark 2. Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is an iteration group and let W be a complementary subspace to $U_{\mathcal{F}}$ in V. Then \mathcal{F} is non-singular if and only if $\dim W > 1$.

From now on we shall make some assumptions on iteration groups under study.

We start with

Lemma 7. Let $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ be a non-singular (respectively, singular and disjoint) iteration group. If $F^v \in \mathcal{F}$ has a fixed point, then

$$F^v(z) = z, \qquad z \in L_{\mathcal{F}}.$$

Proof. Let $v \in V$ and $z_0 \in \mathbb{S}^1$ be such that $F^v(z_0) = z_0$. If the iteration group \mathcal{F} is singular and disjoint, then our assertion follows from Remark 1 and the continuity of F^v . Next, assume that \mathcal{F} is non-singular and let $w \in V$ be such that $\alpha(F^w) \notin \mathbb{Q}$. Using the same arguments as before we see that

$$F^{v}(z) = z, \qquad z \in \{F^{nw}(z_0), n \in \mathbb{Z}\}^{d} = L_{F^{w}} = L_{\mathcal{F}}.$$

Next, let us note that an immediate consequence of Remark 2 and Cor. 2 is

Corollary 3. Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-singular iteration group and let W and \mathcal{F}_W be as in Cor. 2. Then

$$L_{\mathcal{F}} = L_{\mathcal{F}_W}.$$

Lemma 8. If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense iteration group and $F^u \in \mathcal{F}$ has a fixed point, then:

- (i) $F^u[I_p] = I_p \text{ for } p \in \mathbb{Q},$
- (ii) $F^{u+v}[I_p] = I_{T_{\mathcal{F}}(p, v)}$ for $p \in \mathbb{Q}$, $v \in V$.

Proof. (i) Fix a $p \in \mathbb{Q}$ and let a_p , $b_p \in \mathbb{S}^1$ be such that $I_p = (a_p, b_p)$. Since a_p , $b_p \in L_{\mathcal{F}}$, from Lemma 7 it follows that $F^u(a_p) = a_p$ and $F^u(b_p) = b_p$, which together with the fact that F^u preserves orientation gives

$$F^{u}[I_{p}] = (F^{u}(a_{p}), F^{u}(b_{p})) = I_{p}.$$

(ii) Fix $p \in \mathbb{Q}$, $v \in V$. Using (i) and Lemma 3(iii) we obtain $F^{u+v}[I_p] = F^u[F^v[I_p]] = F^u[I_{T_{\mathcal{F}}(p, v)}] = I_{T_{\mathcal{F}}(p, v)}. \quad \Diamond$

Lemma 9. Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense non-singular iteration group and let W be a complementary subspace to $U_{\mathcal{F}}$ in V. If $T_{\mathcal{F}}(p, w_1) = T_{\mathcal{F}}(p, w_2)$ for some $p \in \mathbb{Q}$, $w_1, w_2 \in W$, then $w_1 = w_2$.

Proof. Fix $p \in \mathbb{Q}$, w_1 , $w_2 \in W$ for which $T_{\mathcal{F}}(p, w_1) = T_{\mathcal{F}}(p, w_2)$. Then, by Lemma 3(i) and (ii), we have

$$T_{\mathcal{F}}(p, w_1 - w_2) = T_{\mathcal{F}}(T_{\mathcal{F}}(p, w_1), -w_2) = T_{\mathcal{F}}(T_{\mathcal{F}}(p, w_2), -w_2)$$

= $T_{\mathcal{F}}(p, 0) = p$

and Lemma 3(iii) now shows that

(2)
$$F^{w_1 - w_2}[I_p] = I_p.$$

Let $a_p, b_p \in \mathbb{S}^1$ be such that $I_p = (a_p, b_p)$. Since $F^{w_1-w_2}$ is an orientation-preserving homeomorphism, from (2) it follows that $F^{w_1-w_2}(a_p)=a_p$. Therefore $\alpha(F^{w_1-w_2})\in\mathbb{Q}$, and consequently $w_1-w_2\in U_{\mathcal{F}}$. But we also have $w_1-w_2\in W$, and $U_{\mathcal{F}}\cap W=\{0\}$ finally yields $w_1=w_2$. \Diamond

The following fact follows immediately from Lemma 9.

Corollary 4. Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense non-singular iteration group and let W be a complementary subspace to $U_{\mathcal{F}}$ in V. Then the mapping $c_{\mathcal{F}} \mid W : W \longrightarrow \mathbb{S}^1$ is an injection.

Lemma 10. Assume that $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense non-singular iteration group and let W be a complementary subspace to $U_{\mathcal{F}}$ in V. Then

$$(3) 1 \le \dim W \le \aleph_0.$$

Proof. According to Remark 2 it suffices to show that $\dim W \leq \aleph_0$. Let the iteration group \mathcal{F}_W be as in Cor. 2. This group is non-singular and, by Cor. 3, non-dense. Therefore from Lemma 2 and Cor. 4 it

follows that $\operatorname{cardIm} c_{\mathcal{F}_W} = \aleph_0$ and the mapping $c_{\mathcal{F}_W} : W \longrightarrow \mathbb{S}^1$ is an injection. Consequently,

$$\dim W \leq \operatorname{card} W = \operatorname{card} \operatorname{Im} c_{\mathcal{F}_W} = \aleph_0.$$
 \Diamond

Theorem 2. If $\mathcal{F} = \{F^v : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, v \in V\}$ is a non-dense non-singular iteration group, then there is a linear subspace W of V satisfying condition (3) and a linear subspace U of V such that $V = U \oplus W$ and

$$\mathcal{F} = \mathcal{F}_U \oplus \mathcal{F}_W$$
,

where $\mathcal{F}_W := \{F^w : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, w \in W\}$ is a strictly disjoint non-dense iteration group with $L_{\mathcal{F}_W} = L_{\mathcal{F}}$ and $\mathcal{F}_U := \{F^u : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, u \in U\}$ is a singular iteration group if $\dim U \geq 1$, whereas $\mathcal{F}_U = \{\mathrm{id}\}$ if $U = \{0\}$. **Proof.** Put $U := U_{\mathcal{F}}$ and note that, by Lemma 6 U is a linear subspace of V. Let W be a complementary subspace to U in V. Since from Lemma 10 it follows that W satisfies (3), Corollaries 2 and 3 show that $\mathcal{F}_W := \{F^w : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, w \in W\}$ is a strictly disjoint non-dense iteration group for which $L_{\mathcal{F}} = L_{\mathcal{F}_W}$. It is also obvious that $\mathcal{F}_U := \{F^u : \mathbb{S}^1 \longrightarrow \mathbb{S}^1, u \in U\}$ is a singular iteration group if $\dim U \geq 1$, whereas $\mathcal{F}_U = \{\mathrm{id}\}$ if $U = \{0\}$. Finally, \mathcal{F}_U and \mathcal{F}_W are subgroups of (\mathcal{F}, \circ) with $\mathcal{F}_U \cap \mathcal{F}_W = \{\mathrm{id}\}$ and

$$\mathcal{F}_{U} \circ \mathcal{F}_{W} = \{ F_{1} \circ F_{2}, \ F_{1} \in \mathcal{F}_{U}, \ F_{2} \in \mathcal{F}_{W} \}$$

$$= \{ F^{u} \circ F^{w} : \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}, \ u \in U, \ w \in W \}$$

$$= \{ F^{u+w} : \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}, \ u \in U, \ w \in W \}$$

$$= \{ F^{v} : \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}, \ v \in V \} = \mathcal{F}. \qquad \Diamond$$

References

- [1] ALSEDÀ, L., LLIBRE, J. and MISIUREWICZ, M.: Combinatorial dynamics and entropy in dimension one, World Scientific Publishing Co., Inc., River Edge, NJ, 1993.
- [2] BAE, J.S., MIN, K.J., SUNG, D.H. and YANG, S. K.: Positively equicontinuous flows are topologically conjugate to rotation flows, *Bull. Korean Math. Soc.* 36 (1999), no. 4, 707–716.
- [3] BAJGER, M.: On the structure of some flows on the unit circle, *Aequationes Math.* **55** (1998), no. 1–2, 106–121.
- [4] BLOCK, L.S. and COPPEL, W.A.: Dynamics in one dimension, Springer-Verlag, Berlin, 1992.

- [5] CIEPLIŃSKI, K.: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, *Publ. Math. Debrecen* **55** (1999), no. 3-4, 363-383.
- [6] CIEPLIŃSKI, K.: The structure of disjoint iteration groups on the circle, (to appear).
- [7] CIEPLIŃSKI, K.: General construction of non-dense disjoint iteration groups on the circle, (to appear).
- [8] CIEPLIŃSKI, K. and ZDUN, M.C.: On a system of Schröder equations on the circle, (to appear).
- [9] CORNFELD, I.P., FOMIN, S.V. and SINAI, YA.G.: Ergodic theory, Springer–Verlag, New York, 1982.
- [10] NITECKI, Z.: Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971.
- [11] TABOR, J.: Characterization of mixed iteration groups, European Conference on Iteration Theory, Lisbon, 1991, J. P. Lampreia et al. (eds.), World Scientific, Singapore, 1992, 273-284.
- [12] WALL, C.T.C.: A geometric introduction to topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972.