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Abstract: The aim of this paper is to investigate the structure of non-
singular iteration groups on the unit circle S!, that is, families F = {F" :
: St — 8!, v € V} of homeomorphisms such that

Fv1 o FY2 — Fv1+v2’ vi, vg €V,

and at least one FY € F has no periodic point {V is a linear space over Q
with dimV > 1). Our main result shows that iteration groups under study

are direct sums of some special subgroups.

1. Introduction

Denote by S! the unit circle and let V' be a linear space over Q
such that dimV > 1.
Recall that a family F = {F” : S! — S, v € V} of homeo-
morphisms for which
Fv o F¥2 = Fvitvz vi, 13 EV

is called an iteration group or a flow (on S'). An iteration group is said
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to be disjoint if every its element either is the identity mapping or has
no fixed point.

Some special cases of such iteration groups under the assumption
that V' = R have been investigated in [2] and [3]. A complete description
of disjoint iteration groups F = {F? : S' — S, v € V'} can be found
in [6] and [kc6].

An iteration group F = {F? : S — S, v € V} is said to be
non-singular if at least one its element has no periodic point, otherwise
F is called a singular iteration group.

The aim of this paper is to investigate the structure of non-singular
iteration groups which do not need to be disjoint. We shall show that
every such group is a direct sum of two subgroups and one of these
subgroups is a special disjoint iteration group. In order to do this we
use some ideas from [11].

2. Preliminaries

We begin by recalling the basic definitions and introducing some
notation.

Throughout the paper N stands for the set of all positive integers
and the set of all cluster points of the set A C S! will be denoted by
Ad,

A set A C S'is said to be an open arc if there are distinct v, z € S*
for which

— .
A= (v, z):={e*™, t € (t,, t.)},
where ,, t, € R are such that ™% =y, e2™#: = zand 0 < t,—t, < 1.

It is well-known (see for instance [1], [2] and [12]) that for every

continuous mapping F' : S* — S! there is a continuous function f :

: R — R, which is unique up to translation by an integer, and a unique
integer k such that

F(eZ‘n‘iz) — 627rif(:1;)’ zeR
and

flz+1) = f(z) +k, z €R.
The integer k is called the degree of F', and is denoted by deg F. If F':
: S' — S is a homeomorphism, then so is f. Furthermore, | deg F'| =
= 1. We say that a homeomorphism F' : S' — S! preserves orientation
if deg F' = 1, which is clearly equivalent to the fact that f is increasing.
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Moreover, F' preserves orientation if and only if for any v, w, z € St
—

.—..—)
such that w € (v, z) we have F(w) € (F(v), F(z)) (see [5]). Recall
also that every element of an iteration group F = {F" : S} — S1,
v € V'} preserves orientation (see [6]).

For every orientation-preserving homeomorphism F' the number
a(F) € [0, 1) defined by

n
a(F):= lim i—(@—(mod 1), zeR
n—oo n
is called the rotation number of F. This number always exists and does
not depend on z and f. Furthermore, a(F') is rational if and only if F

has a periodic point. If a(F') ¢ Q, then the non-empty set

Ly :={F"(2), n € Z}9,
(the limit set of F') does not depend on z € S* (see for instance [9] and
[10]).

By the limit set of a disjoint iteration group F = {F* : S — S1,

v € V} we mean the set
Ly :={F"(2), ve V}¢
which does not depend on z € S*. By the limit set of a non-singular
iteration group F we mean the set
L]: =L Fv,
where F¥ € F is an arbitrary homeomorphism with a(F¥) ¢ Q. This
set does not depend on the choice of such a homeomorphism.

Although the above definitions are different, in the case when the
iteration group is both disjoint and non-singular they determine the
very same set. ’

A non-singular or disjoint iteration group F = {F" : S — S,
v € V'} is called:

— dense, if Ly = S%;

— non-dense, if § # L # S1;

— discrete, if Ly = (.

It is worth pointing out that every discrete iteration group is both
disjoint and singular, and every dense iteration group is disjoint (see
[6]). Therefore we shall investigate only non-dense non-singular itera-
tion groups.

We now repeat the relevant, slightly modified, material from [6].
Lemma 1 (see [6] and also [8]). If F = {FV:S' — S’ v eV} is
a dense or non-dense iteration group, then there exists a unique pair
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(pF, cF) such that or : S — S is a continuous function of degree
1 with o(1) =1 and cx : V — S? satisfying the following system of
functional equations

pr(FY(2)) = cr()pr(z), z€ShveV.

Regarding the structure of dense non-singular iteration groups we
have the following theorem.
Theorem 1 (see [6]). If F = {F? : S! — S v € V} is a dense
iteration group, then there exists a unique orientation-preserving home-
omorphism ¢ : S — St having fized point 1 such that

F?(2) = go}l(ezwm(Fv)soy-'(z))a zeSth veV.

If 7 ={F:S! — S!, v € V} is a non-dense iteration group,
then its limit set is a non-empty perfect and nowhere dense subset of
S%, and therefore we have the following decomposition

S\ Lr=J I,
q€eQ
where I, for ¢ € Q are open pairwise disjoint arcs.
Lemma 2 (see [6]). If F = {F":S! — S, v € V} is a non-dense
iteration group, then:
(i) for every g € Q the mapping px is constant on I,
(ii) for any distinct p, g € Q, px[I)Nwx[ly] =0,
(i) @#[S'\ Lx] - Imcr = px[S'\ L#].
According to Lemma 2 we can correctly define
{2r(0)} = wrlly), q¢€Q
and
Tf(Q) U) = (D;l(@]:(Q)C}-(U))a qc Qa velV.
Lemma 3 (see [6]). If F = {F”:S! — S!, v € V} is a non-dense
iteration group, then:
(i) TF(T}_(% Ul)’ 'U2) = TF(Qa U1 + UZ) forqeQ, vy, v €V,
(ii) Tr(q, 0) =q forq € Q,
(iii) FU[I,) = Ir,(q ») forg€Q, v EV.

3. Main results

We start with some auxiliary results which are valid without any
assumption on the iteration group F = {F*:S! — S, v € V}.
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It is easily seen that we have
Remark 1. Let F = {F? :S! — S!, v € V'} be an iteration group. If
zo € S is a fixed point of F¥ € F, then so is F¥(z) for w € V.
Lemma 4. Assume that F = {F" : S! — S, v € V} is an iteration
group. Then:

(i) o F"*, F¥?> € F have fized points, then they have a common

fized point,

(i) if a(F") € Q for avg € V, then a(F™°) € Q forr € Q.
Proof. (i) Fix v1, vz € V and assume that z; € S is a fixed point of
Fvt, If F¥2(z1) = z, then 2z; has the desired property. Now, assume
that F¥2(z1) # 2; and let 2 € S? be a fixed point of F¥2. If z, is the
unique fixed point of F'*2, then from Remark 1 it follows that F¥1(23) =
= 2. Finally, we turn to the case when F'V2 has at least two fixed points.

Denote by (a1, b;) the maximal open arc without fixed points of F¥2
such that z; € (a:bl). Since F2(a1) = a1, F2(b1) = by and the
homeomorphism F™# preserves orientation, we have F'*?(z1) € (al,_) b1).
This together with F'¥2(z1) # 2; shows that either F2(z1) € (a: z1)
or F'2(z) € (zl,_)blz._}Assume, for instance, that F¥2(z;) € (al—,_;l).

Then F™2(z;) € (ay, F(»~1v2(z)) for n € N and consequently

—_)
@ % (21) € (¥ (1), F/*(21))
for j, I, k e NU{0} with j <[ < k.
Suppose that there are subsequences
(F™2 (21)) kenutoys (F™ %2 (21))kenu{o}

of the sequence (F™?(z1))nenufo} for which

hm Fnkvz (251) =0 7—4 g2 = hm kavz (Zl),

k—oo k—oo
where

N
g1, 92 € (a1, b1) U {a1, b1}

and let Oy, Oy, be neighbourhoods of g; and ga, respectively, with

Oy, MOy, = 0. Then, by (1), there exist non-negative integers my, n, ,

Nk, such that ng, < mg < ng, and
_—}

(F™1%2(z1), F™2%2(21)) C Og,, F™"2(21) € Oy,.

2

—
Therefore F™ V2 (z1) ¢ (F™1V2(zy), F™2"2(2;)), contrary to (1).
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We have thus shown that the sequence (F™?(21))nenugo} is con-
vergent. It is obvious that its limit, which will be denoted by g, is a

fixed point of F¥2. Moreover,
F'(g) = lim FY(F™2(z)) = lim F™2(F"*(21))
n—o0 n—00

= lim F””z(zl) = dg.

n—o0

(ii) Let zg € S* and n € Z\ {0} be such that F™"(z) = z. Fix an
r € Q and take k € Z, [ € N for which r = £. Putting m := nl € Z\ {0}
we get

F™%0(20) = (F™*)*(20) = 20,

which gives a(F™) € Q. O
Corollary 1. If F = {F¥ :S! — S, w € Q} s an iteration group,
then either a(F¥) € Q for w € Q or a(F¥) ¢ Q for w € Q\ {0}.
Definition.An iteration group F = {F? : S — S, v € V} is said
to be strictly disjoint if the fact that F¥ € F has a fixed point implies
v = 0.
Lemma 5. If F = {F":S!— S, v € V} is an iteration group, then
the following conditions are equivalent:

(i) F is strictly disjoint,
(i) a(F?) ¢ Q forve V \ {0},
(iii) for any z € S* the mapping V > v — F"(z) € S' is an
injection.
Proof. It is immediate that (ii) yields (i). Now, assume that (i) holds
true and let a(FV) € Qforav € V. Then F™ € F has a fixed point for
an n € Z \ {0}, which together with (i) gives nv = 0, and consequently
v = 0. To finish the proof it suffices to observe that conditions (i) and
(iii) are also equivalent. ¢
Let us observe that every strictly disjoint iteration group F =
= {F":S' — S!, v € V} is disjoint and, by Lemma 5, non-singular.
Lemma 6. If F = {F¥:S' — S, v € V} is an iteration group, then
the set
Ur={ueV: a(F*)eQ}

is a linear subspace of V.
Proof. Since 0 € Ur, we have Ur # . Fix u1, us € Uz and let 21, z3 €
€ S, ny, ny € Z\ {0} be such that F™%1(2;) = z; and F™%2(23) = 25.
By Lemma 4(i) there is a zg € S* for which F™%*(zp) = 2o = F"*"2(2y),
and therefore
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(FU1+uz)n1nz (Zo) = fminau (anzuz (ZO)) = 2.

As ning € Z )\ {0}, we get a(F*17¥2) € Q, and consequently u; + ug €
€ Ur. To finish the proof it suffices to apply Lemma 4(ii). ¢

The following fact follows immediately from Lemma, 5.
Corollary 2. Assume that F = {F* : St — S, v € V} is an
iteration group and let W be a complementary subspace to Ur in V.
Then

Fw = {F*:S' — St we W}

is a strictly disjoint iteration group if dimW > 1, whereas Fy = {id}
if W = {0}.

It is easily seen that we also have
Remark 2. Assume that F = {F? : S — S!, v € V} is an iteration
group and let W be a complementary subspace to Uz in V. Then F is
non-singular if and only if dimW > 1.

From now on we shall make some assumptions on iteration groups
under study.

We start with
Lemma 7. Let F = {FV : St — S, v € V} be a non-singular
(respectively, singular and disjoint) iteration group. If F* € F has a
fized point, then

FY(2) = z, z € Lg.

Proof. Let v € V and 2z € S be such that F¥(z) = 2. If the iteration
group F is singular and disjoint, then our assertion follows from Remark
1 and the continuity of F'¥. Next, assume that F is non-singular and let
w € V be such that a(F%) ¢ Q. Using the same arguments as before
we see that
F¥(z) = z, 2 € {F"(z), n €2} =Lpw =Lzr. ¢

Next, let us note that an immediate consequence of Remark 2 and
Cor. 2 is
Corollary 3. Assume that F = {F" : St — S, v € V'} is a non-
singular iteration group and let W and Fw be as in Cor. 2. Then

Ly =Lg,.

Lemma 8. If F = {F":S! — S, v € V} is a non-dense iteration
group and F™ € F has a fived point, then:

(i) FU[Ip) =1, forpe Q,
(i) Futv[L,] = Irp(p, vy forpeQ, veV,
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.._.—)
Proof. (i) Fix a p € Q and let ay, b, € S be such that I, = (ap, bp).
Since ap, by € Ly, from Lemma 7 it follows that F “(ap) = ap and
F*(b,) = by, which together with the fact that F** preserves orientation
gives

—
FU[I,) = (F"(ap), F*(bp)) = Ip.
(ii) Fix p € Q, v € V. Using (i) and Lemma 3(iii) we obtain
FUtLp] = FU[FU[L]] = F*lUrep, v)] = I1r(p, ). ©

Lemma 9. Assume that F = {FV :S! — S, v € V'} is a non-dense
non-singular iteration group and let W be a complementary subspace to
Ur in V. If Te(p, w1) = Tx(p, wa) for some p € Q, wy, wa € W,
then w1 = wa.
Proof. Fix p € Q, wy, wy € W for which T#(p, w1) = T#(p, wa).
Then, by Lemma 3(i) and (ii), we have

Tr(p, w1 — wz) = Tr(Tx(p, w1), —wa) = Tr(Tr(p, w2), —ws)

and Lemma 3(iii) now shows that
@) A

—
Let ap, b, € S' be such that I, = (ap, bp). Since F*17*2 is an

orientation-preserving homeomorphism, from (2) it follows that
F¥1—w2(q,)=qa,. Therefore a(F"™2)€Q, and consequently w; —w; €
€ Ur. But we also have w; —wy € W, and U NW = {0} finally yields
wy = way. O

The following fact follows immediately from Lemma 9.
Corollary 4. Assume that F = {F? : St — S', v € V'} is a non-
dense non-singular iteration group and let W be a complementary sub-
space to Ur in V. Then the mapping cr |w : W — St is an injec-
tion.
Lemma 10. Assume that F = {F? : S — S, v € V'} is a non-dense
non-singular iteration group and let W be a complementary subspace to
Ur in V. Then
(3) 1 < dimW < X.

Proof. According to Remark 2 it suffices to show that dimW < N,.
Let the iteration group Fw be as in Cor. 2. This group is non-singular
and, by Cor. 3, non-dense. Therefore from Lemma 2 and Cor. 4 it
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follows that cardlmcx,, = Ry and the mapping cz,, : W — St is an
injection. Consequently,

dimW < cardW = cardlmcg,, = Ng. ¢

Theorem 2. IfF = {FY:S! — S!, v € V} is a non-dense non-
singular iteration group, then there is a linear subspace W of V satis-
fying condition (3) and a linear subspace U of V such thatV =U & W
and
F=Fu & Fw,
where Fy = {F" : S' — S, w € W} is a strictly disjoint non-dense
iteration group with Ly, = Ly and Fy := {F*:S' — SY, u € U} is
a singular iteration group if dimU > 1, whereas Fy = {id} if U = {0}.
Proof. Put U := Uz and note that, by Lemma 6 U is a linear subspace
of V. Let W be a complementary subspace to U in V. Since from
Lemma 10 it follows that W satisfies (3), Corollaries 2 and 3 show
that Fw := {F¥ : S' — S1, w € W} is a strictly disjoint non-dense
iteration group for which Ly = Lz, . It is also obvious that Fy =
= {F*:S! — S!, u € U} is a singular iteration group if dimU > 1,
whereas Fyy = {id} if U = {0}. Finally, 7y and Fy are subgroups of
(F, o) with Fy N Fw = {id} and
FuoFw ={F10oFy, F1 € Fy, F5 € Fw}

={F'oFY:S'—SY uel, weW}

={F"*:8' — 8, uel, weW}

={F":S'—Sh veV}="F. O
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