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Abstract: A theorem on the existence of selections belonging to a Haar space
is proved. As counsequences some generalizations of the second author’s earlier
results concerning polynomial selections and separation by polynomials (cf.
[7]) are obtained.

1. Introduction

Recall that if X, Y are two sets, then a map ® : X — 2¥ is called
a multifunction (or set-valued function). A function h: X — Y is a
selection of ® if h(z) € ®(z) for every z € X. For a topological vector
space Y by cc(Y) we denote the family of all nonempty, compact and
convex subsets of Y.

In [7] a necessary and sufficient condition for two real functions
defined on a real interval I to be separated by a polynomial of degree at
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most n was given. It was obtained using a consequence of the classical
Helly’s theorem proved in [2] by E. Behrends and K. Nikodem. Their
result was recently generalized by M. Balaj and K. Nikodem ([1, Th.
1]) in the following way:
Theorem A. Let D be a nonempty subset of a set X, (Y, |- 1) oe
a normed space and for each i € {1,...,01+ 1} ®; : D — cc(Y) be
a multifunction. Assume that W is an [-dimensional subspace of the
vector space of all functions from X to'Y and D has enough points for
fllp = 0 to imply f = 0, for each f € W. If for every l + 1 points
Z1,...,Ti41 € D there exists an h € W such that h(z;) € ®;(z;), (1 <
< i < 1+1), then for someig € {1,...,1+ 1} there exists an h € W
such that h(z) € ®;,(x) for all x € D.

The main goals of this note is to show that Th. 1 of [7] can be
generalized using Th. A instead of Behrends and Nikodem’s result and
to give an extended version of Th. 2 of [7] on separation by polynomials.

2. Haar spaces

Let us adopt the following definition (cf. [3], [4], [6]):
Definition.Let D be a set containing at least n elements. A linear sub-
space H,, (D) of RP will be called an n—dimensional Haar space on D, if
for any n distinct elements z1,Z9,...,2, of D and any y1,%2,---,Yn €
€ R there is exactly one h € H,,(D) for which h(z;) =y; (1 <j < n).

By the above definition it follows immediately that any non—zero
function h € H, (D) has at most n — 1 zeros.

Borwein [3] gave some examples of Haar spaces as follows:

(i) span{l,e*® ..., e*~1*} where o, .. ., Op—1 are distinct non-
zero real numbers, is an n—dimensional Haar space on any real interval;

(i) span{1,z,2%,...,2"72, f(z)}, where f™~D(z) > 0, is an n-
dimensional Haar space on any real interval;

(iii) span{1,z?,z%,... 2> 2} is an n—dimensional Haar space on
each interval [a, b], where a > 0.

If z1,%9,..., 2, are n distinct elements of D, then for each j €
€{L,2,...,n}let ¢;(-;z1,%2,...,z,) be the unique function in H, (D)
satisfying

1 ifi=y, .
cj(xi;xl,xg,...,xn)z{o iy (1 <i<mn).

The proof of the following lemma is elementary.
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Lemma 1. Letxy,..., %, be distinct elements of D and y1, . .. yUn € R.
The unique function h € Hn (D), for which h(z;) =y; (1<j<n), is
given by the formula

h(ﬂ?) == ZCj(fE;l’l,ﬂTQ, ce- 7$n)y]
§=1

As a consequence of Lemma 1 we get
Hn(D) = span{c;(-;21,%2,...,2,) : 1 <5< n}

for every distinct points z1,...,z, € D. In particular, H, (D) is n—
dimensional space of functions.

3. Main result

Our main result is the following
Theorem 1. Let H,(D) be an n—dimensional Haar space and ®; :

: D ——ce(R) (1 <i<n+1) be set-valued functions. Assume that:
n+41

(i) for each x € D, ﬂ Q;(x) # 0,

=1
(ii) for any n + 1 distinct elements x1,%a,...,%pp1 € D there
exists an index i € {1,2,..., n+ 1} such that

n-41
O, (z;) N Z i (Ti; 1, - -+, Tim1, Tig1, - - ,fl?n+1)(1’j($j) # 0.
=1
i
Then there exist ip € {1,2,...,n+ 1} and h € H,(D) such that

h(z) € ®;,(x) for allz € D.
Proof. On account of Th. A it is enough to prove that for any n +

+ 1 points z1,Z2,..., Tpy1 € D there exists h € H,(D) such that
h(z;) € ®;5(z;), (1 < j<n+1).
Consider firstly n 4 1 distinct elements z1,2s,...,2,41 € D. By
(ii) there exist y; € ®;(x;) (1 < j < n+1) such that
n+1
Y, = Z cj(a:i;xl, ey Li—1y Ti41, - - - ;$n+1)yj-
i

for some ¢ € {1,...,n+1}. Since H, (D) is a vector space, the function
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n+1
h(z) = Z (T T1, -y Tim1, Tik 1y - - Tk 1)Y5
p
is an element of H,,(D) and satisfies
h(z;) =y; € j(z;) (1<j<n+1)
Suppose now that the points z1, 2, . .., Tp41 € D are not distinct,
for instance 1 = Xg = -+ = Tk, =: T1, Thi+1l = Thy42 = - = Thy =

= ZEQ, vy Tyl = T2 = 0 = Ipdl — jl-}-l- By (’L) we can
k1 ko n+1

choose y1 € ﬂ Q,(Z1), y2 € ﬂ D,(Za), ..., Y141 € ﬂ D (Tig1)-
i=1 i=k1+1 i=k;+1

Clearly there exists at least one function h € H,, (D) such that h(Z;) =

=19 (1 <i<1+1). Hence h(z;) € B;(z;) (1 £49<n+1) and the

proof is complete. ¢

4. Applications

The following result extends under many aspects Th. 1 of [7].
Corollary 1. Let H,(D) be an n—dimensional Haar space and F :
: D — cc(R). The following statements are equivalent:

(i) there exists an h € H,(D) such that h(z) € F(z) for allz € D;

(ii) for any m + 1 distinct elements ©1,%2,...,%Tnt1 € D there
exists an index i € {1,2,..., n+ 1} such that
n+1
F(z;) N Z i (i T1, - Bim1y Tigl, - - ,Tnt1)F(z5) # 0.
j=1
J#i

Proof. The implication (i)=-(ii) follows immediately from Lemma. To
prove the converse we take ®; = F, 1 = 1,2,...,n+ 1. Then the
condition of Th. 1 are automatically fulfilled, hence the result follows
from Th. 1.

Next we present the following generalization of Th. 2 of [7].
Corollary 2. Let I C R be an interval and H,(I) an n—dimensional
Haar space. Let fi,..., fnx1,91;s- -, gns1 be real functions defined on
I with the following properties:

I(1> maX{fl(m)7 ce afn—l—l(x)} < min{gl (13), cet 7971,—}—1(:3)} fO'f‘ each
zel;
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(ii)for any 1 < --+ < zpy1 belonging to I there emists an index
i €{1,...,n+ 1} such that

[filzi), gs(z:)]N
n-1

N Z c_’] Ti; X1, 1 Li—1, Tid1y .- 7‘7;’f1:+1) [f](lj))g]('x])} # w

975%

Then there exist ip € {1,...,n+ 1} and h € H,(I) such that
Fio () < W) < gio () for all o € I,
Proof. By (i) we get fi < g; forall 7 € {1,...,n+1}. Let ®;(z) =
[fi(x),gz-(:c)}, zel,i=1,...,n+1. Applying (i) once again we obtain
n+1
ﬂ ®i(z) # 0 for all z € I. Then the multifunctions Oy, DPpyg
i=1
: I — cc(R) fulfil all the assumptions of Th. 1. Thus Th. 1 can be
applied to obtain the desired conclusion. ¢

5. Separation by polynomials

Let I C R be an interval and Pr.—1(I) be the set of all polynomials
p: I — Rofdegree at most n—1. Clearly, P,,_;(I) is an n—dimensional
Haar space on I. According to Lagrange interpolation theorem, in this
particular case (H,(I) = P,—1(I)) for any distinct T1,%2,...,Tn € T
we have

T
r— 2L
Cj(x;l-'l,flfg,..., H
k=17
k#j
With this significance for ¢;(z; 21,2, ... ,2,) we have another general-

ization of Th. 2 of [7].
Corollary 3. Let f1,..., fat1,91,- -, gns1 e real functions defined on
I with the following properties:

(i) max{ fi(z),... s frr1(z)} < minf{gi(z),. .., gnr1(z z)} for each
T el

(ii) for any z1 < -+ < Tpa1 belonging to I there exists an index
i€ {l,...,n+ 1} such that

Films) < i@ @, oo Bimt, Tiga s Bngd )95 (35)+
JES
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+ Z Cj<xz’;$1,---3313—1,-7573—}—17---:xn-{—l)fj(xj)
JES:2

and

gi(z:i) = Z i (Ta;T1, 0y Tim1, Ti1 - - - s 1) fi (25)+
JES

-+ Z Cj(.’IIi; Trye o o Li—13 L1y - - 733n+1)gj(33j)
JES?2
where Sy = {j:1<j<n+1 j—iisodd}, S ={j:1<j<n+
+1, j#14, j—1i1s even}.
Then there exist ip € {1,...,n+ 1} and h € Pp_1(I) such that
fio (@) < h(z) < gip(x) for all z € I.

Proof. If ;7 < -+ < Znpy1 (z; € I) it is not hard to see that
¢i(®i;T1, - Tim1, Tig1 - - -, Tny1) 18 positive if j € S; and negative if
j € 8.

Let u and v be the right hand sides of the inequalities (1) and
(2), respectively. Then v < u and [fi(z:), gi(z:)] N [v,u] # @ (otherwise
gi(z;) < v contradicting (2), or u < fi(z;) contradicting (1)).

It is easy to verify that

nt+1

[v,u] = Z (T3 L1,y Tim 1y Tit1 - s Trfe1) [fj(fb‘j):gj(l’j)]-
—
i
Hence the condition (ii) of Cor. 2 is satisfied. Thus the result follows
from Cor. 2. O
Theorems on selections of multifunctions as well as theorems on
separation by functions belonging to some classes are often useful for
investigating the problems of the stability of Hyers-Ulam type (see [1],
[5], [7]). Our last result is in this spirit.
Corollary 4. Let ¢ € Pr_1(I) and fi1, fa,.. ., foy1 : I — R satisfy
the following conditions:
(i) |fi(z) — fj(x)l < @(z), for each i,j € {1,2,...,n+ 1} and all
rel;
(ii) for any x1 < -++ < Tpg1 belonging to I there exists an index
ie{l,...,n+ 1} such that ’
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n41
(1) [ falms) = D¢ @s 1, @ity Bt - Tag1) f (25)] < 0(w).

=1

i
Then there exists an h € P, _; such that

3

£ile) = h(@)] < Se(x)
forallzel, ie{1,2,...,n+1}.
Proof. Let g; = fi + ¢ (1 <i < n+1). Then, by (i) we immediately
get
max{fl(a:), . ,fnﬂ(x)} < min{gl(x), o ,gnH(m)}, for each z € I.
Fix z1,...,2, € I such that ; < --- < z,4;1. Since ¢ € P,,_1(I),
by Lemma 1 it admits the representation

n+4+1
o(z) = Z Ci(T T, Tim1, Ti 1, - -+, Top1) 0 T4).
j=1
J#i
Keeping in mind the fact that ¢;(z;;21,...,Zi—1, Tig1,. -+, Tpr1) is pos-
itive if j € S; and negative if j € Sy, from (4) we succesively infer:
n+1
Fil) € (@31, Tim1, Tidts - - T )95 (25) <
=1
i
< Z Ci(Ts; 1, oo Tim 1, Tig 1y - oo Tnge1 ) g5 (T5)+
J€S:
+ O i(@a T, T, Ty, - Ta1) f ()
JES2
and
n+1
gz(mz) > ch(xi;fl?l, ey Li1y Tid 1y - - - ,il?n+1)fj(33j) >
j=1
J#i
> Z Ci(Ti; 1, Tim1, Tt 1, -+ o5 Trte1) fi (25)+
jE€ES:
+ Z Ci(Tiy 1, o Tim1, Tig 1y - - -5 Tog1)95 (T4).
JES,

Therefore the functions f;,¢; (1 < i < n+ 1) satisfy the conditions of
Cor. 3. Thus, for some ig € {1,2,...,n + 1} there exist A’ € P,_1(I)
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such that fi;(z) < A'(z) < gio(z) = fio(x) + p(z). Let h(z) = h'(z) —
— %go(x) Hence h € P,—1(I) and f;,(z) — %(,0(:5) < h(z) < fi(z) +
+ 3¢(z), from which we obtain lfio (z) — h(r)[ < 1p(z), z € I. For

i€{1,2,...,n+1} and = € I by (i) we get
|fi(z) = h(@)] < [filz) = fio (2)] + | fio (&) — h(2)] <

1 3
<o(z) + 5(z) = Se(),
which finishes the proof. ¢
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