HAAR SPACES AND POLYNOMIAL SELECTIONS

Mircea Balaj

Department of Mathematics, Oradea University, Str. Armatei Române Nr. 5, 3700 Oradea, România

Szymon Wasowicz

Department of Mathematics, University of Bielsko-Biała, Willowa 2, 43-309 Bielsko-Biała, Poland

Received: April 2002

MSC 2000: 26 E 25, 54 C 65; 52 A 35, 39 B 72, 39 B 82

Keywords: Haar space, separation theorem, multifunction, selection, Lagrange interpolating polynomial, stability of Hyers–Ulam type.

Abstract: A theorem on the existence of selections belonging to a Haar space is proved. As consequences some generalizations of the second author's earlier results concerning polynomial selections and separation by polynomials (cf. [7]) are obtained.

1. Introduction

Recall that if X,Y are two sets, then a map $\Phi:X\longrightarrow 2^Y$ is called a multifunction (or set-valued function). A function $h:X\longrightarrow Y$ is a selection of Φ if $h(x)\in\Phi(x)$ for every $x\in X$. For a topological vector space Y by $\operatorname{cc}(Y)$ we denote the family of all nonempty, compact and convex subsets of Y.

In [7] a necessary and sufficient condition for two real functions defined on a real interval I to be separated by a polynomial of degree at

 $[\]hbox{\it E-mail address:} \ \ mbalaj@math.uoradea.ro, swasowicz@ath.bielsko.pl$

most n was given. It was obtained using a consequence of the classical Helly's theorem proved in [2] by E. Behrends and K. Nikodem. Their result was recently generalized by M. Balaj and K. Nikodem ([1, Th. 1]) in the following way:

Theorem A. Let D be a nonempty subset of a set X, $(Y, \|\cdot\|)$ be a normed space and for each $i \in \{1, \ldots, l+1\}$ $\Phi_i : D \longrightarrow \operatorname{cc}(Y)$ be a multifunction. Assume that W is an l-dimensional subspace of the vector space of all functions from X to Y and D has enough points for $f\|_D = 0$ to imply f = 0, for each $f \in W$. If for every l+1 points $x_1, \ldots, x_{l+1} \in D$ there exists an $h \in W$ such that $h(x_i) \in \Phi_i(x_i)$, $(1 \le i \le l+1)$, then for some $i_0 \in \{1, \ldots, l+1\}$ there exists an $h \in W$ such that $h(x) \in \Phi_i(x)$ for all $x \in D$.

The main goals of this note is to show that Th. 1 of [7] can be generalized using Th. A instead of Behrends and Nikodem's result and to give an extended version of Th. 2 of [7] on separation by polynomials.

2. Haar spaces

Let us adopt the following definition (cf. [3], [4], [6]):

Definition.Let D be a set containing at least n elements. A linear subspace $\mathcal{H}_n(D)$ of \mathbb{R}^D will be called an n-dimensional Haar space on D, if for any n distinct elements x_1, x_2, \ldots, x_n of D and any $y_1, y_2, \ldots, y_n \in \mathbb{R}$ there is exactly one $h \in \mathcal{H}_n(D)$ for which $h(x_j) = y_j$ $(1 \le j \le n)$.

By the above definition it follows immediately that any non-zero function $h \in \mathcal{H}_n(D)$ has at most n-1 zeros.

Borwein [3] gave some examples of Haar spaces as follows:

- (i) span $\{1, e^{\alpha_1 x}, \dots, e^{\alpha_{n-1} x}\}$, where $\alpha_1, \dots, \alpha_{n-1}$ are distinct non-zero real numbers, is an n-dimensional Haar space on any real interval;
- (ii) span $\{1, x, x^2, \dots, x^{n-2}, f(x)\}$, where $f^{(n-1)}(x) > 0$, is an n-dimensional Haar space on any real interval;
- (iii) span $\{1, x^{\bar{2}}, x^4, \dots, x^{\bar{2}n-2}\}$ is an *n*-dimensional Haar space on each interval [a, b], where a > 0.

If x_1, x_2, \ldots, x_n are n distinct elements of D, then for each $j \in \{1, 2, \ldots, n\}$ let $c_j(\cdot; x_1, x_2, \ldots, x_n)$ be the unique function in $\mathcal{H}_n(D)$ satisfying

$$c_j(x_i; x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases} \quad (1 \le i \le n).$$

The proof of the following lemma is elementary.

Lemma 1. Let x_1, \ldots, x_n be distinct elements of D and $y_1, \ldots, y_n \in \mathbb{R}$. The unique function $h \in \mathcal{H}_n(D)$, for which $h(x_j) = y_j$ $(1 \le j \le n)$, is given by the formula

$$h(x) = \sum_{j=1}^{n} c_j(x; x_1, x_2, \dots, x_n) y_j.$$

As a consequence of Lemma 1 we get

$$\mathcal{H}_n(D) = \text{span}\{c_j(\cdot; x_1, x_2, \dots, x_n) : 1 \le j \le n\}$$

for every distinct points $x_1, \ldots, x_n \in D$. In particular, $\mathcal{H}_n(D)$ is n-dimensional space of functions.

3. Main result

Our main result is the following

Theorem 1. Let $\mathcal{H}_n(D)$ be an n-dimensional Haar space and Φ_i : $D \longrightarrow \operatorname{cc}(\mathbb{R})$ $(1 \le i \le n+1)$ be set-valued functions. Assume that:

(i) for each
$$x \in D$$
, $\bigcap_{i=1}^{n+1} \Phi_i(x) \neq \emptyset$,

(ii) for any n+1 distinct elements $x_1, x_2, \ldots, x_{n+1} \in D$ there exists an index $i \in \{1, 2, \ldots, n+1\}$ such that

$$\Phi_i(x_i) \cap \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) \Phi_j(x_j) \neq \emptyset.$$

Then there exist $i_0 \in \{1, 2, ..., n+1\}$ and $h \in \mathcal{H}_n(D)$ such that $h(x) \in \Phi_{i_0}(x)$ for all $x \in D$.

Proof. On account of Th. A it is enough to prove that for any n + 1 points $x_1, x_2, \ldots, x_{n+1} \in D$ there exists $h \in \mathcal{H}_n(D)$ such that $h(x_j) \in \Phi_j(x_j), (1 \le j \le n+1)$.

Consider firstly n+1 distinct elements $x_1, x_2, \ldots, x_{n+1} \in D$. By (ii) there exist $y_j \in \Phi_j(x_j)$ $(1 \le j \le n+1)$ such that

$$y_i = \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) y_j.$$

for some $i \in \{1, ..., n+1\}$. Since $\mathcal{H}_n(D)$ is a vector space, the function

$$h(x) = \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) y_j$$

is an element of $\mathcal{H}_n(D)$ and satisfies

$$h(x_j) = y_j \in \Phi_j(x_j)$$
 $(1 \le j \le n+1).$

Suppose now that the points $x_1, x_2, ..., x_{n+1} \in D$ are not distinct, for instance $x_1 = x_2 = ... = x_{k_1} =: \bar{x}_1, x_{k_1+1} = x_{k_1+2} = ... = x_{k_2} =$ $=: \bar{x}_2, ..., x_{k_l+1} = x_{k_l+2} = ... = x_{n+1} =: \bar{x}_{l+1}$. By (i) we can choose $y_1 \in \bigcap_{i=1}^{k_1} \Phi_i(\bar{x}_1), y_2 \in \bigcap_{i=k_1+1}^{k_2} \Phi_i(\bar{x}_2), ..., y_{l+1} \in \bigcap_{i=k_l+1}^{n+1} \Phi_i(\bar{x}_{l+1})$.

Clearly there exists at least one function $h \in \mathcal{H}_n(D)$ such that $h(\bar{x}_i) = y_i$ ($1 \le i \le l+1$). Hence $h(x_i) \in \Phi_i(x_i)$ ($1 \le i \le n+1$) and the proof is complete. \Diamond

4. Applications

The following result extends under many aspects Th. 1 of [7]. Corollary 1. Let $\mathcal{H}_n(D)$ be an n-dimensional Haar space and F: $D \longrightarrow \operatorname{cc}(\mathbb{R})$. The following statements are equivalent:

- (i) there exists an $h \in \mathcal{H}_n(D)$ such that $h(x) \in F(x)$ for all $x \in D$;
- (ii) for any n+1 distinct elements $x_1, x_2, \ldots, x_{n+1} \in D$ there exists an index $i \in \{1, 2, \ldots, n+1\}$ such that

$$F(x_i) \cap \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) F(x_j) \neq \emptyset.$$

Proof. The implication (i) \Rightarrow (ii) follows immediately from Lemma. To prove the converse we take $\Phi_i = F$, i = 1, 2, ..., n + 1. Then the condition of Th. 1 are automatically fulfilled, hence the result follows from Th. 1. \Diamond

Next we present the following generalization of Th. 2 of [7]. Corollary 2. Let $I \subset \mathbb{R}$ be an interval and $\mathcal{H}_n(I)$ an n-dimensional Haar space. Let $f_1, \ldots, f_{n+1}, g_1, \ldots, g_{n+1}$ be real functions defined on I with the following properties:

(i) $\max\{f_1(x), \dots, f_{n+1}(x)\} \le \min\{g_1(x), \dots, g_{n+1}(x)\}\$ for each $x \in I$;

(ii) for any $x_1 < \cdots < x_{n+1}$ belonging to I there exists an index $i \in \{1, \ldots, n+1\}$ such that

$$[f_i(x_i), g_i(x_i)] \cap$$

$$\cap \sum_{\substack{j=1 \ j \neq i}}^{n+1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) [f_j(x_j), g_j(x_j)] \neq \emptyset.$$

Then there exist $i_0 \in \{1, ..., n+1\}$ and $h \in \mathcal{H}_n(I)$ such that $f_{i_0}(x) \leq h(x) \leq g_{i_0}(x)$ for all $x \in I$.

Proof. By (i) we get $f_i \leq g_i$ for all $i \in \{1, ..., n+1\}$. Let $\Phi_i(x) = [f_i(x), g_i(x)], x \in I, i = 1, ..., n+1$. Applying (i) once again we obtain n+1

 $\bigcap_{i=1}^{n} \Phi_i(x) \neq \emptyset$ for all $x \in I$. Then the multifunctions $\Phi_1, \ldots, \Phi_{n+1}$:

: $I \longrightarrow \mathrm{cc}(\mathbb{R})$ fulfil all the assumptions of Th. 1. Thus Th. 1 can be applied to obtain the desired conclusion. \Diamond

5. Separation by polynomials

Let $I \subset \mathbb{R}$ be an interval and $\mathcal{P}_{n-1}(I)$ be the set of all polynomials $p: I \longrightarrow \mathbb{R}$ of degree at most n-1. Clearly, $\mathcal{P}_{n-1}(I)$ is an n-dimensional Haar space on I. According to Lagrange interpolation theorem, in this particular case $(\mathcal{H}_n(I) = \mathcal{P}_{n-1}(I))$ for any distinct $x_1, x_2, \ldots, x_n \in I$ we have

$$c_j(x; x_1, x_2, \dots, x_n) = \prod_{\substack{k=1\\k \neq j}}^n \frac{x - x_k}{x_j - x_k}$$

With this significance for $c_j(x; x_1, x_2, ..., x_n)$ we have another generalization of Th. 2 of [7].

Corollary 3. Let $f_1, \ldots, f_{n+1}, g_1, \ldots, g_{n+1}$ be real functions defined on I with the following properties:

- (i) $\max\{f_1(x), \dots, f_{n+1}(x)\} \le \min\{g_1(x), \dots, g_{n+1}(x)\}\$ for each $x \in I$;
- (ii) for any $x_1 < \cdots < x_{n+1}$ belonging to I there exists an index $i \in \{1, \ldots, n+1\}$ such that

$$f_i(x_i) \le \sum_{j \in S_1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) g_j(x_j) +$$

+
$$\sum_{j \in S_2} c_j(x_i; x_1, \dots x_{i-1}, x_{i+1}, \dots, x_{n+1}) f_j(x_j)$$

and

$$g_i(x_i) \ge \sum_{j \in S_1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) f_j(x_j) +$$

+
$$\sum_{j \in S_2} c_j(x_i; x_1, \dots x_{i-1}, x_{i+1}, \dots, x_{n+1}) g_j(x_j)$$

where $S_1 = \{j : 1 \le j \le n+1, \ j-i \text{ is odd}\}, \ S_2 = \{j : 1 \le j \le n+1, \ j \ne i, \ j-i \text{ is even}\}.$

Then there exist $i_0 \in \{1, ..., n+1\}$ and $h \in \mathcal{P}_{n-1}(I)$ such that $f_{i_0}(x) \leq h(x) \leq g_{i_0}(x)$ for all $x \in I$.

Proof. If $x_1 < \cdots < x_{n+1}$ $(x_j \in I)$ it is not hard to see that $c_j(x_i; x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1})$ is positive if $j \in S_1$ and negative if $j \in S_2$.

Let u and v be the right hand sides of the inequalities (1) and (2), respectively. Then $v \leq u$ and $[f_i(x_i), g_i(x_i)] \cap [v, u] \neq \emptyset$ (otherwise $g_i(x_i) < v$ contradicting (2), or $u < f_i(x_i)$ contradicting (1)).

It is easy to verify that

$$[v,u] = \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) [f_j(x_j), g_j(x_j)].$$

Hence the condition (ii) of Cor. 2 is satisfied. Thus the result follows from Cor. 2. \Diamond

Theorems on selections of multifunctions as well as theorems on separation by functions belonging to some classes are often useful for investigating the problems of the stability of Hyers-Ulam type (see [1], [5], [7]). Our last result is in this spirit.

Corollary 4. Let $\varphi \in \mathcal{P}_{n-1}(I)$ and $f_1, f_2, \ldots, f_{n+1} : I \longrightarrow \mathbb{R}$ satisfy the following conditions:

- (i) $|f_i(x) f_j(x)| \le \varphi(x)$, for each $i, j \in \{1, 2, \dots, n+1\}$ and all $x \in I$:
- (ii) for any $x_1 < \cdots < x_{n+1}$ belonging to I there exists an index $i \in \{1, \ldots, n+1\}$ such that

$$(1) \quad \left| f_i(x_i) - \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x_i; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) f_j(x_j) \right| \le \varphi(x_i).$$

Then there exists an $h \in \mathcal{P}_{n-1}$ such that

$$|f_i(x) - h(x)| \le \frac{3}{2}\varphi(x)$$

for all $x \in I$, $i \in \{1, 2, ..., n + 1\}$.

Proof. Let $g_i = f_i + \varphi$ $(1 \le i \le n+1)$. Then, by (i) we immediately get

 $\max\{f_1(x),\ldots,f_{n+1}(x)\} \le \min\{g_1(x),\ldots,g_{n+1}(x)\}, \text{ for each } x \in I.$

Fix $x_1, \ldots, x_n \in I$ such that $x_1 < \cdots < x_{n+1}$. Since $\varphi \in \mathcal{P}_{n-1}(I)$, by Lemma 1 it admits the representation

$$\varphi(x) = \sum_{\substack{j=1\\j\neq i}}^{n+1} c_j(x; x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) \varphi(x_j).$$

Keeping in mind the fact that $c_j(x_i; x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1})$ is positive if $j \in S_1$ and negative if $j \in S_2$, from (4) we successively infer:

$$f_{i}(x_{i}) \leq \sum_{\substack{j=1\\j\neq i}}^{n+1} c_{j}(x_{i}; x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) g_{j}(x_{j}) \leq$$

$$\leq \sum_{j \in S_{1}} c_{j}(x_{i}; x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) g_{j}(x_{j}) +$$

$$+ \sum_{j \in S_{2}} c_{j}(x_{i}; x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) f_{j}(x_{j})$$

and

$$g_{i}(x_{i}) \geq \sum_{\substack{j=1\\j\neq i}}^{n+1} c_{j}(x_{i}; x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) f_{j}(x_{j}) \geq$$

$$\geq \sum_{\substack{j\in S_{1}}} c_{j}(x_{i}; x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) f_{j}(x_{j}) +$$

$$+ \sum_{\substack{j\in S_{2}}} c_{j}(x_{i}; x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) g_{j}(x_{j}).$$

Therefore the functions f_i, g_i $(1 \le i \le n+1)$ satisfy the conditions of Cor. 3. Thus, for some $i_0 \in \{1, 2, ..., n+1\}$ there exist $h' \in \mathcal{P}_{n-1}(I)$

such that $f_{i_0}(x) \leq h'(x) \leq g_{i_0}(x) = f_{i_0}(x) + \varphi(x)$. Let $h(x) = h'(x) - \frac{1}{2}\varphi(x)$. Hence $h \in \mathcal{P}_{n-1}(I)$ and $f_{i_0}(x) - \frac{1}{2}\varphi(x) \leq h(x) \leq f_{i_0}(x) + \frac{1}{2}\varphi(x)$, from which we obtain $|f_{i_0}(x) - h(x)| \leq \frac{1}{2}\varphi(x)$, $x \in I$. For $i \in \{1, 2, ..., n+1\}$ and $x \in I$ by (i) we get

$$\left| f_i(x) - h(x) \right| \le \left| f_i(x) - f_{i_0}(x) \right| + \left| f_{i_0}(x) - h(x) \right| \le$$
$$\le \varphi(x) + \frac{1}{2} \varphi(x) = \frac{3}{2} \varphi(x),$$

which finishes the proof. \Diamond

References

- [1] BALAJ, M., NIKODEM, K.: Remarks on Bárány's theorem and affine selections, *Discrete Math.* **224** (2000), 259–263.
- [2] BEHRENDS, E., NIKODEM, K.: A selection theorem of Helly type and its applications, *Studia Math.* **116** (1995), 43–48.
- [3] BORWEIN, P. B.: On Sylvester problem and Haar spaces, *Pacific J. of Math.* **109** (1983), 275–278.
- [4] HOLMES, R. B.: A Course on Optimization and Best Approximation. Lecture Notes in Mathematics 257, Springer-Verlag, Berlin-Heidelberg-New York 1972.
- [5] NIKODEM, K., WASOWICZ, SZ.: A sandwich theorem and Hyers-Ulam stability of affine functions, *Aequationes Math.* 49 (1995), 160–164.
- [6] SINGER, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin-Neidelberg, 1970.
- [7] WASOWICZ, SZ.: Polynomial selections and separation by polynomials, Studia Math. 120 (1996), 75–82.