ON DECOMPOSITIONS OF D.G. SEMINEAR-RINGS

Mohammad Samman

Department of Mathematics, KFUPM, Dhahran 31261, Saudi Arabia

Received: April 2002

MSC 2000: 16 Y 30, 16 Y 60

Keywords: Seminear-ring, distributive element, distributively generated seminear-ring, subdirect product.

Abstract: The existence of the product of d.g. seminear-rings in the category of all d.g. seminear-rings is proved. Then the d.g. subdirect product of a family of d.g. seminear-rings is defined, and some relations with the underlying generating semigroups are discussed. Furthermore, a well-known result of Birkhoff about subdirect decomposition of an algebra is generalized for the case of seminear-rings. Namely, we prove that every d.g. seminear-ring is a d.g. subdirect product of d.g. subdirectly irreducible d.g. seminear-rings.

1. Introduction

A lot of work concerning d.g. near-rings have been done, in particular, decomposition of d.g. near-rings. It seems that some concepts can be established and a lot of results can be extended to the case of d.g. seminear-rings. In this paper we first prove the existence of the product of d.g. seminear-rings in the category of all d.g. seminear-rings. Then we define the d.g. subdirect product of a family of d.g. seminear-rings in the category of all d.g. seminear-rings and prove some related results. In fact, we prove that every d.g. seminear-ring is a d.g. subdirect product of d.g. subdirectly irreducible d.g. seminear-rings. We note that

E-mail address: msamman@kfupm.edu.sa

some fundamental ideas are defined in a way analogous to the case of d.g. near-rings. However, some concepts are not because semigroups are involved rather than groups. So, in order to start, we need some basic definitions and elementary results.

A set R with two binary operations + and \cdot is called a (left) seminear-ring if (R, +) and (R, .) are semigroups and the left distributive law a(b+c)=ab+ac for all $a,b,c\in R$ is satisfied. An element $d \in R$ is called distributive if (a + b)d = ad + bd for all $a, b \in R$. A natural example of a seminear-ring is the set M(S) of all mappings on a semigroup (S, +) with the operations of pointwise addition and multiplication given by composition of maps. A seminear-ring R is called a distributively generated (d.g.) seminear-ring if R contains a multiplicative subsemigroup (S, .) of distributive elements which generates (R, +). Note that S need not be the semigroup of all distributive elements and such a d.g. seminear-ring is denoted by (R, S). If we consider the above seminear-ring M(S) then the set $\operatorname{End}(S)$, of all endomorphisms of S, is a distributive subsemigroup of M(S), and generates a d.g. seminear-ring denoted by (E(S), End(S)). A mapping $\theta: (R, S) \longrightarrow (T, U)$ is called a seminear-ring homomorphism if θ is both a semigroup homomorphism from (R, +) to (T, +) and also from (R, .) to (T, .); and such a homomorphism is called a d.g. seminear-ring homomorphism if, in addition, it satisfies that $S\theta \subseteq U$. It is known [3] that a semigroup homomorphism $\theta: (R, +) \longrightarrow (T, +)$ is a d.g. seminear-ring homomorphism from (R, S)to (T, U) if and only if θ is a semigroup homomorphism from (S, .) to (U, .). Unless otherwise stated, we will be using the term homomorphism to mean a d.g. seminear-ring homomorphism. In [3], the free d.g. seminearring (Frs(S), S) on a semigroup S was constructed, where (Frs(S), +)is the free semigroup on S. Moreover, every d.g. seminear-ring is a homomorphic image of a free d.g. seminear-ring.

Let $\{A_{\lambda}; \lambda \in \Lambda\}$ be a family of objects in a category Ω . A product for the family is a family of morphisms $\{\alpha_{\lambda}: A \longrightarrow A_{\lambda}; \lambda \in \Lambda\}$ with the property that for any family $\{f_{\lambda}: B \longrightarrow A_{\lambda}; \lambda \in \Lambda\}$ there is a unique morphism $\phi: B \longrightarrow A$ such that $\phi\alpha_{\lambda} = f_{\lambda}$ for each $\lambda \in \Lambda$.

In order to consider some results on subdirect product of d.g. seminear-rings we first need to prove the existence of the product of d.g. seminear-rings in the category of all d.g. seminear-rings. This is the aim of the following section.

2. Product of d.g. seminear-rings

Let Ω be the category of all d.g. seminear-rings. Let $\{(R_{\lambda}, S_{\lambda}) : \lambda \in \Lambda\}$ be a family of d.g. seminear-rings in Ω . Let $P = \prod_{\lambda \in \Lambda} R_{\lambda}$, then P is a seminear-ring which is not necessarily a d.g. seminear-ring. Now let $S = \prod_{\lambda \in \Lambda} S_{\lambda}$, then it can be seen that S is a distributive subsemigroup of P. Thus S generates a sub d.g. seminear-ring (R, S) of P. Now we prove the following.

Theorem 2.1. The d.g. seminear-ring (R, S) is the product in Ω of the family $\{(R_{\lambda}, S_{\lambda}) : \lambda \in \Lambda\}$ of d.g. seminear-rings in Ω .

Proof. Consider the seminear-ring $P = \prod_{\lambda \in \Lambda} R_{\lambda}$ and also the subsemigroup $S = \prod_{\lambda \in \Lambda} S_{\lambda}$ of P. Let $p_{\lambda} : P \longrightarrow R_{\lambda}$ be the projection map for each $\lambda \in \Lambda$. Then it can be seen that p_{λ} maps S onto $S_{\lambda} \subseteq R_{\lambda}$, for each $\lambda \in \Lambda$. It follows that R is mapped onto R_{λ} . Thus, for each $\lambda \in \Lambda$, $p_{\lambda}|_{R}$ is a d.g. seminear-ring homomorphism. Let $q_{\lambda} = p_{\lambda}|_{R}, \lambda \in \Lambda$. Then $q_{\lambda}:(R,S)\longrightarrow(R_{\lambda},S_{\lambda})$ is a d.g. seminear-ring epimorphism for each $\lambda \in \Lambda$. Let (T, U) be a d.g. seminear-ring in Ω together with a family $\{\psi_{\lambda}: (T,U) \longrightarrow (R_{\lambda},S_{\lambda})\}_{{\lambda}\in\Lambda}$ of d.g. seminear-ring homomorphisms. We can consider $\psi_{\lambda}: T \longrightarrow R_{\lambda}, \lambda \in \Lambda$ as seminear-ring homomorphisms. By the property of products there exists a unique seminear-ring homomorphism $\phi: T \longrightarrow P$ such that $\phi p_{\lambda} = \psi_{\lambda}$ for each $\lambda \in \Lambda$. For $t \in T$, we have $t\phi = t\psi_{\lambda}, \lambda \in \Lambda$. Now since ψ_{λ} is a d.g. seminear-ring homomorphism, then ψ_{λ} maps U into S_{λ} in R_{λ} . Therefore ϕ maps $U \subseteq T$ into $S \subseteq P$ and so T is mapped into R. Hence ϕ is a d.g. seminear-ring homomorphism from (T, U) into (R, S). Moreover, $\phi q_{\lambda} = \psi_{\lambda}, \lambda \in \Lambda$ as d.g. seminear-ring homomorphisms. Finally, the uniqueness of ϕ as a d.g. seminear-ring homomorphism follows from the uniqueness of ϕ as a semigroup homomorphism. This completes the proof. \Diamond

3. Subdirect decompositions

Now the product of d.g. seminear-rings exists, so given a family $\{(T_{\lambda}, U_{\lambda}) : \lambda \in \Lambda\}$ of d.g. seminear-rings in the category of all d.g. seminear-rings, then the product of this family is $\{p_{\lambda} : (T, U) \rightarrow (T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$, where $\{p_{\lambda}|_{U} : U \longrightarrow U_{\lambda}; \lambda \in \Lambda\}$ is the product of the set $\{U_{\lambda}; \lambda \in \Lambda\}$ of semigroups.

Definition 3.1. A d.g. seminear-ring (R, S) is called a d.g. subdirect product of the set $\{(T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$ of d.g. seminear-rings if there exists

a monomorphism $\eta:(R,S)\longrightarrow (T,U)$ such that ηp_{λ} is an epimorphism for each $\lambda\in\Lambda$. In this case we write $\{(R,S)\stackrel{\eta}{\to}(T,U)\stackrel{p_{\lambda}}{\longrightarrow}(T_{\lambda},U_{\lambda}); \lambda\in\Lambda\}$.

The above definition will lead to the following result.

Theorem 3.2. Let (R, S) be a d.g. seminear-ring having a family of congruences $\{\rho_{\lambda}; \lambda \in \Lambda\}$ such that $\bigcap \{\rho_{\lambda}; \lambda \in \Lambda\}$ is trivial. Then (R, S) is a subdirect product of $\{(R, S)/\rho_{\lambda}; \lambda \in \Lambda\}$.

Proof. Let $(M_{\lambda}, S_{\lambda}) = (R, S)/\rho_{\lambda}$, where S_{λ} is the image of S in M_{λ} . Then the product $\{(T, U) \xrightarrow{p_{\lambda}} (M_{\lambda}, S_{\lambda}); \lambda \in \Lambda\}$, is defined by considering T as the subseminear-ring of $\prod_{\lambda \in \Lambda} M_{\lambda}$ generated by $U = \prod_{\lambda \in \Lambda} S_{\lambda}$. Now let $\eta : (R, S) \longrightarrow \prod_{\lambda \in \Lambda} M_{\lambda}$, defined by $r\eta = r\rho_{\lambda}$, $\lambda \in \Lambda$. Then $(R, S)\eta \subseteq T$. Now the result follows using standard methods. \Diamond

Remark 3.3. Note that if (R, S) is a subdirect product of d.g. seminearrings $\{(T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$; given by $\{(R, S) \xrightarrow{\eta} (T, U) \xrightarrow{p_{\lambda}} (T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$, then this induces a subdirect decomposition of $S: \{S \xrightarrow{\eta} U \xrightarrow{p_{\lambda}} U_{\lambda}; \lambda \in \Lambda\}$, by considering $\eta|_{S}, p_{\lambda}|_{U}$, for $\lambda \in \Lambda$.

Theorem 3.4. Let S be a semigroup with a subdirect decomposition

$$(3.1) \{S \xrightarrow{\eta} U \xrightarrow{p_{\lambda}} U_{\lambda}; \lambda \in \Lambda\}.$$

Then there exists a d.g. seminear-ring (R, S) which has a d.g. subdirect decomposition

$$\{(R,S) \xrightarrow{\alpha} (T,U) \xrightarrow{q_{\lambda}} (Frs(U_{\lambda}),U_{\lambda}); \lambda \in \Lambda\},\$$

giving rise to (3.1).

Proof. First consider $\eta: S \longrightarrow U$. Then η can be extended uniquely to a d.g. seminear-ring homomorphism $\bar{\eta}: (Frs(S), S) \longrightarrow (Frs(U), U)$. Indeed, $\bar{\eta}$ is monomorphism since it maps a set of generators to a set of generators. Similarly, p_{λ} can be extended to a d.g. seminear-ring monomorphism $\bar{p}_{\lambda}: (Frs(U), U) \longrightarrow (Frs(U_{\lambda}), U_{\lambda})$, for each $\lambda \in \Lambda$. Thus we now have

$$(Frs(S), S) \xrightarrow{\bar{\eta}} (Frs(U), U) \xrightarrow{\bar{p}\lambda} (Frs(U_{\lambda}), U_{\lambda}), \text{ for each } \lambda \in \Lambda.$$

Let $\{q_{\lambda}: (T,U) \longrightarrow (Frs(U_{\lambda}),U_{\lambda}); \lambda \in \Lambda\}$ be the product of $\{(Frs(U_{\lambda}),U_{\lambda}); \lambda \in \Lambda\}$ in the category of all d.g. seminear-rings. Then there exists a unique homomorphism $\phi: (Frs(U),U) \longrightarrow (T,U)$ such that $\phi q_{\lambda} = \overline{p}_{\lambda}$, for each $\lambda \in \Lambda$. Now consider the following diagram

$$(Frs(S), S) \xrightarrow{\bar{\eta}} (Frs(U), U) \xrightarrow{\bar{p}_{\lambda}} (Frs(U_{\lambda}), U_{\lambda})$$

$$\pi \downarrow \qquad \qquad \phi \downarrow \qquad \nearrow q_{\lambda}$$

$$(R, S) \xrightarrow{\alpha} (T, U)$$

where π is the natural homomorphism with $\text{Ker}\pi = \text{Ker}\bar{\eta}\phi$. Hence there exists a unique homomorphism $\alpha:(R,S)\longrightarrow (T,U)$ such that the above diagram commutes. Now, $\pi\alpha=\bar{\eta}\phi$, $\text{Ker }\pi=\text{Ker }\bar{\eta}\phi$ and π is an epimorphism. Hence α is a monomorphism. This completes the proof. \Diamond

We close with the following result which extends Birkhoff's result to the case of d.g. seminear-rings.

Theorem 3.5. Every d.g. seminear-ring is a d.g. subdirect product of d.g. subdirectly irreducible seminear-rings.

Proof. Let (R, S) be a d.g. seminear-ring. Consider R as a seminear-ring. Applying Birkhoff's decomposition to R, being a seminear-ring, we get a subdirect decomposition

$$(3.2) {R \xrightarrow{\eta} N \xrightarrow{p_{\lambda}} T_{\lambda}; \lambda \in \Lambda},$$

where each T_{λ} is a subdirectly irreducible seminear-ring. For each $\lambda \in \Lambda$, let $U_{\lambda} = S\eta p_{\lambda}$. Since ηp_{λ} is an epimorphism for each $\lambda \in \Lambda$, then U_{λ} is a distributive subsemigroup of T_{λ} for each $\lambda \in \Lambda$ and $(T_{\lambda}, +) = sg \langle U_{\lambda} \rangle$. Hence $\{(T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$ is a set of d.g. seminear-rings with d.g. seminear-ring homomorphisms ηp_{λ} . Let $\{q_{\lambda} : (T, U) \to (T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$ be the product of $\{(T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$. As seen in section 2, T is the subseminear-ring of N generated by U and $q_{\lambda} = p_{\lambda}|_{T}$. Moreover, $S\eta \subseteq U$ and $R\eta \subseteq T$. Thus $\{(R, S) \xrightarrow{\eta} (T, U) \xrightarrow{q_{\lambda}} (T_{\lambda}, U_{\lambda}); \lambda \in \Lambda\}$ is a d.g. subdirect decomposition of (R, S). But each T_{λ} is a subdirectly irreducible as a seminear-ring, and so d.g. subdirectly irreducible. This completes the proof. \Diamond

Acknowledgement. The author gratefully acknowledges the support provided by KFUPM during this research.

References

- [1] MAHMOOD, S. J. and MELDRUM, J. D. P.: Subdirect decompositions of d.g. near-rings, *Proc. Roy. Irish Acad.* 82 (1982), 151–162.
- [2] MELDRUM, J. D. P.: Near-rings and their links with groups, Res. Notes in Math. 134 Pitman, Boston Ma, 1985.
- [3] MELDRUM, J. D. P. and SAMMAN, M.: On free d.g. seminear-rings, Riv. Mat. Univ. Parma (5) 6 (1997), 93–102.