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Abstract: The existence of the product of d.g. seminear-rings in the category
of all d.g. seminear-rings is proved. Then the d.g. subdirect product of a
family of d.g. seminear-rings is defined, and some relations with the underlying
generating semigroups are discussed. Furthermore, a well-known result of
Birkhoff about subdirect decomposition of an algebra is generalized for the
case of seminear-rinigs. Namely, we prove that every d.g. seminear-ring is a
d.g. subdirect product of d.g. subdirectly irreducible d.g. seminear-rings.

1. Introduction

A lot of work concerning d.g. near-rings have been done, in partic-
ular, decomposition of d.g. near-rings. It seems that some concepts can
be established and a lot of results can be extended to the case of d.g.
seminear-rings. In this paper we first prove the existence of the product
of d.g. seminear-rings in the category of all d.g. seminear-rings. Then
we define the d.g. subdirect product of a family of d.g. seminear-rings
in the category of all d.g. seminear-rings and prove some related results.
In fact, we prove that every d.g. seminear-ring is a d.g. subdirect prod-
uct of d.g. subdirectly irreducible d.g. seminear-rings. We note that
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some fundamental ideas are defined in a way analogous to the case of
d.g. near-rings. However, some concepts are not because semigroups
are involved rather than groups. So, in order to start, we need some
basic definitions and elementary results.

A set R with two binary operations 4+ and . is called a (left)
seminear-ring if (R,+) and (R,.) are semigroups and the left distribu-
tive law a(b+ ¢) = ab + ac for all a,b,c € R is satisfled. An element
d € R is called distributive if (a + b)d = ad + bd for all a,b € R. A
natural example of a seminear-ring is the set M (S) of all mappings on
a semigroup (S, +) with the operations of pointwise addition and mul-
tiplication given by composition of maps. A seminear-ring R is called
a distributively generated (d.g.) seminear-ring if R contains a multiplica-
tive subsemigroup (S, .) of distributive elements which generates (R, +).
Note that S need not be the semigroup of all distributive elements and
such a d.g. seminear-ring is denoted by (R, S). If we consider the above
seminear-ring M (S) then the set End(S), of all endomorphisms of S, is
a distributive subsemigroup of M (S), and generates a d.g. seminear-ring
denoted by (E(S), End(S)). A mapping 6 : (R,S) — (T,U) is called
a seminear-ring homomorphism if € is both a semigroup homomorphism
from (R,+) to (T,+) and also from (R,.) to (T}.); and such a homo-
morphism is called a d.g. seminear-ring homomorphism if, in addition, it
satisfies that SO C U. It is known [3] that a semigroup homomorphism
6:(R,+) — (T, +) is a d.g. seminear-ring homomorphism from (R, S5)
to (T,U) if and only if 4 is a semigroup homomorphism from (S, .) to
(U,.). Unless otherwise stated, we will be using the term homomorphism
to mean a d.g. seminear-ring homomorphism. In [3], the free d.g. seminear-
ring (Frs(S), S) on a semigroup S was constructed, where (Frs(S), +)
is the free semigroup on S. Moreover, every d.g. seminear-ring is a
homomorphic image of a free d.g. seminear-ring.

Let {Ax; A € A} be a family of objects in a category 2. A product
for the family is a family of morphisms {ay: A — Ax; A € A} with the
property that for any family {fy : B — Ax; A € A} there is a unique
morphism ¢ : B — A such that ¢ay = f for each A€ A.

In order to consider some results on subdirect product of d.g.
seminear-rings we first need to prove the existence of the product of
d.g. seminear-rings in the category of all d.g. seminear-rings. This is
the aim of the following section.



On decompositions of d.g. seminear-rings 131

2. Product of d.g. seminear-rings

Let € be the category of all d.g. seminear-rings. Let {(R}, Sy) :
: A € A} be a family of d.g. seminear-rings in . Let P = ILea B,
then P is a seminear-ring which is not necessarily a d.g. seminear-ring.
Now let S = J],ca S, then it can be seen that S is a distributive
subsemigroup of P. Thus S generates a sub d.g. seminear-ring (R, .S)
of P. Now we prove the following.
Theorem 2.1. The d.g. seminear-ring (R, S) is the product in Q of the
family {(Rx,S)) : A € A} of d.g. seminear-rings in .
Proof. Consider the seminear-ring P = 11 rea F2x and also the subsemi-
group S = [[5ep Sx of P. Let px : P —s R, be the projection map for
each A € A. Then it can be seen that py maps S onto Sy C Ry, for each
A € A. Tt follows that R is mapped onto Ry. Thus, for each ) € A palr
is & d.g. seminear-ring homomorphism. Let gy = pia|r, A € A. Then
¢ : (R, 8) — (R»,S)) is a d.g. seminear-ring epimorphism for each
A€ A Let (T,U) be a d.g. seminear-ring in  together with a family
{r : (T,U) — (Rx,S2)}ren of d.g. seminear-ring homomorphisms.
We can consider ¢ : T — Rj,A € A as seminear-ring homomor-
phisms. By the property of products there exists a unique seminear-ring
homomorphism ¢ : T — P such that ¢py = 1 for each A € A. For
t € T, wehavet¢ =11y, A € A. Now since ¢, is a d.g. seminear-ring ho-
momorphism, then 1 maps U into S in Ry. Therefore ¢ maps U C T
into S C P and so T is mapped into R. Hence ¢ is a d.g. seminear-ring
homomorphism from (T, U) into (R, S). Moreover, ¢gx = ¢x, A € A as
d.g. seminear-ring homomorphisms. Finally, the uniqueness of ¢ as a
d.g. seminear-ring homomorphism follows from the uniqueness of ¢ as
a semigroup homomorphism. This completes the proof. ¢

3. Subdirect decompositions

Now the product of d.g. seminear-rings exists, so given a fam-
ily {(T»,Ux) : A € A} of d.g. seminear-rings in the category of all
d.g. seminear-rings, then the product of this family is {py : (T,U) —
= (T, Ux); A € A}, where {pAly : U —s Ux; A € A} is the product of
the set {Ux; A € A} of semigroups.

Definition 3.1. A d.g. seminear-ring (R, S) is called a d.g. subdirect
product of the set {(Th, Ux); A € A} of d.g. seminear-rings if there exists
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a monomorphism 7 : (R, S) — (T, U) such that np, is an epimorphism
for each A € A. In this case we write {(R,S) 2 (T,U) 22 (Tx,U»);
A€ A}

The above definition will lead to the following result.
Theorem 3.2. Let (R, S) be a d.g. seminear-ring having a family of
congruences {pax; A € A} such that {px; A € A} is trivial. Then (R, S)
is a subdirect product of {(R,S)/px; A € A},
Proof. Let (Mx,Sy\) = (R, S)/pA, where S is the image of § in
M. Then the product {(T,U) 22 (Mx,S)); X € A}, is defined by
conszdermg T as the subseminear-ring of [[,., M generated by U =
= [Trea Sx- Now let 7 : (R,S) — [[nep M, defined by rn°= rpa,
A€ A Then (R,S)n € T. Now the result follows using standard
methods. ¢
Remark 3.3. Note that if (R, S) is a subdirect product of d.g. seminear-
rings {(Th,Ux); A € A}; given by {(R,S)>(T,U)> B (T, Uy); )\EA}
then this induces a subdirect decomposition of S: {S — 34U By,
A € A}, by considering n|s, palv, for A € A
Theorem 3.4. Let S be a semigroup with o subdirect decomposition

(3.1) (S LU 25Uy he A}

Then there exists a d.g. seminear-ring (R, S) which has a d.g. subdirect
decomposition

{(R,S) = (T, U) 2 (Frs(Uy),Ux); A € A},

giving rise to (3.1).

Proof. First consider n : § — U. Then 7 can be extended uniquely to
a d.g. seminear-ring homomorphism 7 : (F'rs(S),S) — (Frs(U),U).
Indeed, 7 is monomorphism since it maps a set of generators to a set
of generators. Similarly, px can be extended to a d.g. seminear-ring
monomorphism By : (Frs(U),U) — (Frs(U,),Uy), for each A € A.
Thus we now have

(Frs(S),S) 2 (Frs(U) U) (Frs(U,\) U,), for each A € A.

Let {gx : (T,U) — (Frs(Ux),Ux); A € A} be the product of
{(Frs(Uy),Uy); A € A} in the category of all d.g. seminear-rings. Then
there exists a unique homomorphism ¢ : (Frs(U),U) — (T,U) such
that ¢gx = P,, for each A € A. Now consider the following diagram
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(Frs(S),S) L (F?“S(U) U) == (Frs(Uy),Uy)
Wl ¢l /" an
(R, 8)——=——(T,U)

where 7 is the natural homomorphism with Kerr = Kerj¢. Hence there
exists a unique homomorphism « : (R,S) — (T,U) such that the
above diagram commutes. Now, rma = fj¢, Kerm = Ker7¢ and = is
an epimorphism. Hence o is a monomorphism. This completes the
proof. §

We close with the following result which extends Birkhoff’s result
to the case of d.g. seminear-rings.
Theorem 3.5. Every d.g. seminear-ring is a d.g. subdirect product of
d.g. subdirectly irreducible seminear-rings.
Proof. Let (R, S) be a d.g. seminear-ring. Consider R as a seminear-
ring. Applying Birkhoff’s decomposition to R, being a seminear-ring,
we get a subdirect decomposition

(3.2) {RL NPTy, he ),

where each T is a subdirectly irreducible seminear-ring. For each A€ A,
let Uy = Snpx. Since npy is an epimorphism for each \ € A, then U,
is a distributive subsemigroup of Ty for each A € A and (Ty,+) =
= sg(U,). Hence {(T»,Ux); A € A} is a set of d.g. seminear-rings
with d.g. seminear-ring homomorphisms 7npy. Let {gx : (T,U) —
— (I, Ux); A € A} be the product of {(Th,Ux); A € A}. As seen in
section 2, T is the subseminear-ring of N generated by U and qA =
= pA]T Moreover, S C U and Ry C T. Thus {(R,S) & (T U) 2

— (T, Ux);A € A} is a d.g. subdirect decomposition of (R, S). But
each T} is a subdirctly irreducible as a seminear-ring, and so d.g. sub-
directly irreducible. This completes the proof. ¢
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