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9. Comparing both radical theories

At first we repeat the basic definitions of the redical theory given
in [12], where the axioms (Ra), (Rb), (Rec), (Sa), (Sb), (ab), (oc) and
(od) have already been introduced in Sections 4-7.

Definition 9.1. The frame of all the following considerations is a
universal class $ of G* U & as already defined in Section 3, that is, an
n-universal class § which satisfies also

1) (A,+,)efn=(4,)epnforal (A +, ) € &~

a) A subclass R of § is called a radical class of $ if R satisfies
(Ra), (Rb), (Rc) and the following axiom

(Rk) For all (A,4,) € 5§ NG&* if |[R(A,+,) NR|] = 1 then
|IR(A, ) NR| =1. o

b) An operator ¢ which assigns to each A € § a kernel pA € R(A)
is called a radical operator in $ if it satisfies, for all A € §, the axioms
(ab), (0c¢), (ed) and the following one:

(ea) ©(0A) C B holds for all surjective morphisms ¢ : A — B of
the types 1), 2) and 3).

c) A subclass S of § is called a semisimple class of 5, if S satisfies
(Sa), (Sb) and the following axiom ‘

(Sc) For all (A,+,) e 5N&*, if (A, +,-) € S then (4,-) €S.
Remark 9.2. A glance to Def. 9.1 suggests the following question
posed as a problem in [12]. Is a subclass R of § which satisfies (Ra),
(Rb) and (Rc), called a weak radical calss in that paper, already a
radical class of $7 (In other words: is an n-radical class R of a universal
class § already a radical class of £7) Here we solve this problem in the
negative by a counterexample at the end of this section. In fact, it is
just the other way around, and we state as a useful improvement of [12]
the following
Proposition 9.3. In the definition of a radical class R of a universal
class 9, condition (Rc) is a consequence of (Ra), (Rb) and (Rk), and
hence superfluous.

Proof. Suppose (4,:) € R for some (A,+,:) € HN &*. To show
(A,+,-) € R by (Ra), we use that every homomorphism (A, +,-)->
- (B, 4+, ) induces a homomorphism (A4, -)-> (B,-). Applying (Rb) to
(A,-) € R, we get a kernel C'<(B,-) which satisfies C € R, that is,
|IR(B, ) NR| # 1. Now (Rk) yields |[R(B,+, ) NR| # 1. This shows the
existence of a kernel D (B, +, -) satisfying D € R and thus (4,+,-) € R
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by (Ra). ¢

Our next point is to show that, only with the exception of Remark
7.4, all of our statements on n-radical classes, n-radical operators and
n-semisimple classes are true for the concepts introduced in Def. 9.1,
which establishes again various results obtained in [12]. By the following
lemma, this is obvious for every statement in which such concepts occur
only in the assumptions and not in the conclusions, as for instance in
Prop. 5.5 and Th. 5.7.

Lemma 9.4. a) Each radical class R of a universal class $ is an
n-radical class of § which satisfies (Rk), and conversely.

b) Fach semisimple class S of $ is an n-semisimple class of H
which satisfies (Sc), and conversely.

c) Each radical operator ¢ in § is an n-radical operator of $ which

satisfies
(9'1> Q(A> ) - «Q(A7+) ) fO’}" all (A’ -+, ) € 9,
and conversely.
Proof. Comparing Def. 9.1 with Defs. 5.1 and 7.1, one obtains a) and
b), the latter because (Sc) implies obviously (Sv). To show c¢), let o
be a radical operator and ¢ : (4,-) — (B, +,+) a surjective morphism
of type 3. Then (pa) states w(o(A,-)) C o(B,+,-). Applying this to
the morphism ¢ : (4,-) — (4,+,) given by the identical mapping on
A, we obtain (9.1). The latter yields (ow) since g(A4, ) = (4,-) and
0(A,") T o(A,+,) by (9.1) imply o(A,+,-) = (A,+,). Hence each
-radical operator p satisfies (9.1) and is an n-radical operator. Con-
versely, assume (9.1) for an n-radical operator. We have to show that
o satisfies (pa) for each surjective morphism ¢ : (4,:) — (B,+,:) of
type 3. For this end we apply (oa) for p to the surjective morphism
w: (A4,)) — (B,) of type 2, and we obtain ¢(g(A4, ) C o(B, ), whereas
o(B,-) € o(B,+,-) holds by (9.1). ¢ '

Now, we show that the bijective correspondence between n-radical
classes, n-radical operators and n-semisimple classes transfers to the
concepts of Def. 9.1.

Proposition 9.5. a) For every semisimple class S of a universal class
9, the n-radical class R =US determined by S is a radical class of $.

b) For every radical class R of §3, the n-radical operator gg deter-
mined by R is a radical operator of 5.

c) For every radical operator ¢ in 9, the n-semisimple class S
determined by o according to S = {A € | oA € T} is a semisimple
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class of §.

Proof. a) Considering S and R = US as n-semisimple and n-radical
classes of §), we have |[R(A) NR| =1« A €S for each A € §. Hence
(A,+,) € S= (A,)) € Sby (S¢) for S yields |[R(4,+, ) NR| =1 =
= |R(4,-) NR| = 1, that is, (Rk) for R. So R is a radical class by
Lemma 9.4 a).

b) We have to show that pp satisfies (9.1). By way of contra-
diction, we assume gr(A,-) € or(A,+,-) for some (4,+,-) € H and
use at first only properties which R shares with each n-radical class.
The homomorphism (A, +,:) — (A, +,")/or(4,+,") = (B, +,:) maps
(A,-) onto (B,-), and so (K,-) = gr(4,-) € R is mapped onto a sub-
group (C,-) € R of (B,-). Further, (K,:) € or(4,+,-), as assumed,
yields (C,-) ¢ %, and so |R(B, ) NR| # 1. However, (pb) for gr yields
or(B,+,) € %, that is, |R(B,+,-) N R| = 1. This contradicts the
assumption that R is a radical class which satisfies (Rk).

¢) By Lemma 9.4 ¢), the radical operator g satisfies (9.1). This
yields, in particular, o(A,+,-) € T = p(4,:) € T, and so (4,+,:) €
€S = (4,) €S for every (A,+,-) € 5, that is, (Sc) for S. Hence S is
a semisimple class. ¢
Proposition 9.6. a) Each of the characterizations i)-iv) of n-radical
classes given in Th. 5.9 yields a corresponding characterization of rad-
ical classes of a universal class $ if one replaces (Rc) by (Rk), and the
same holds for Prop. 6.3 b).

b) Similarly, each characterization 1)~v) of n-semisimple classes
m Th. 7.9 yields a characterization of semisimple classes of § if one
replaces (Sv) by (Sc) in 1)-iv) and adds (Sc) in v). A further charac-
terization of semisimple classes can be obtained from v) if one writes
“US is a radical class” in place of “US is an n-radical class”.

c) Also Th. 8.3 characterizes subclasses R and S of a universal
class ) as a radical class and the corresponding semisimple class if one
formulates e) with (Rk) and (Sc).

Proof. a) If a set of properties characterizes an n-radical class, the
same set and (Rk) characterize a radical class R of $ by Lemma 9.4 a).
In the set (Ra), (Itb), (Rc) and (RE) obtained from i) in this way, (Rc)
is superfluous since (Ra), (Rb) and (Rk) imply (Rc) by Prop. 9.3. The
same applies to the sets obtained from ii)—iv), since each of these sets
implies (Ra) and (Rb) without making use of (Rc) (cf. Remark 5.10).

The last statement is obvious by Prop. 6.3 a).
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b) Again, one obtains characterizations of semisimple classes of £
if one adds (Sc) to i)—v) (or to the characterizations obtained from i)-v)
by a)-d) in Th. 7.9). Since (Sc¢) implies (S7), the latter is superfluous
everywhere it occurs. Only for the last assertion of b) one has to consult
the proof of v)=+i) in Th. 7.9 up to the statement that SUS = S holds
for US, assumed to be an n-radical class in v). Strengthening the latter
to a radical class, SUS = S yields that S is even a semisimple class.
c¢) The properties a)—d) in Th. 8.3 imply (Ra) and (Rb) for R and
(Sa) and (Sb) for S = SR. Hence R becomes a radical class of § and S
a semisimple class if one adds (Rk) for R or (Sc) for S instead of e).
Remark 9.7. a) Comparing the results of this section with those of
the previous ones, we can state the following. Each of our statements
on n-radical classes, n-semisimple classes and n-radical operators of
an n-uniwersal class yields, apart from one exception, a corresponding
statement on radical classes, semisimple classes and radical operators
in a universal class § C &* U & if one likewise replaces (Rc) by (Rk)
and (Sv) by (Sc) and if one adds (oa) or (9.1) to the concept of an
n-radical operator.
'b) The exception of this general rule is Remark 7.4, where we
could not decide whether the corresponding statement is valid. So we
formulate it as a problem:
Let M be a subclass of a universal class §) such that M satisfies (Sb)
and (Sc). Is then R = UM a radical class of §7
Clearly, R = UM is a radical class if one assumes also (Sa) for
M (cf. Prop. 9.5 a)). Otherwise, we know only by Remark 7.4 that
R = UM is an n-radical class of §, and that R’ C R holds even for
every n-radical class R’ of § which satisfies R’ "M C %.
Finally, as announced in Remark 9.2, we solve a problem posed
in [12].
Theorem 9.8. Let R be a subclass of a universal class $ which satisfies
(Ra), (Rb) and (Rc), that is, a weak radical class or an n-radical class
of $5. Then, by the following example, R need not be a radical class
of 9.
- Example 9.9. a) The key of this example is a semifield (A4, +,-) con-
structed from two simple idempotent semifields. The first one is the
semifield (B, +, ) considered in Ex. 2.9 b) which can be obvoiusly lin-
early ordered by b < b < i < j. The second one is any semifield
(G,+,-) € &9 guch that (G,-) is a simple non-commutative group.
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(For each group (G, -) one obtains a semifield (G, +,-) € G'9P by defin-
ing g+ h = g for all g,h € G. This addition is non-commutative,
but there are also additively commutative and idempotent semifields
(G,4+,-) for suitable simple non-commutative groups (G, ), see Ex.
10.15.) On the direct product (4,-) = (B,-) x (G, ) we define an
addition by ,

(b, 9) for 1> j
(9.2) (', 9)+ ¥, h) = (,g+h) for i=j

(v, h) for i< j.
As one easily checks, in this way we obtained a semifield (4, -+, ) which
is additively commutative iff (G,+,) is so. Moreover, (A,+,-) has
exactly three kernels
9.3) {0 e)} €%, A, and L=({(e,g) | g€ G}, +,-) = (G, +,").
The construction of (4,+,-) and the statement about its kernels follow
from the more general considerations in [13, Ex. 3.4 amd Th. 3.5]. For
the sake of completeness, we give a short direct proof of the latter. First
of all, (b*,g) — b* defines a surjective homomorphism ¢ : (4,4, )=
— (B, +,-) with kernel L. Now, let K be any kernel of A. Since
(L,+,-) is simple, K C L implies K € T or K = L. Otherwise, K
contains an element (b, g) for some i # 0 and g € G. We may choose
¢ > 0, and thus 7 > 1. Then we have

(0% e) + (b h)y = (t°,e) forall heQ
by (9.2), which yields by (2.2)
®°%e) + (0 )b, g) = (8%, €) + (b', hg) = (b', hg) € K.
This shows that (b1,§) € K for all j€ G, and so K = A.

b) Let $ C G*U®& be any universal class which contains (4, +,-),
and hence also (G,+,-),(4,-) and (G,-). We claim that § contains a
subclass R which satisfies (Ra), (Rb) and (Rc) but not (Rk). For this
end we consider the subset

M = {(A7 +, ')7 (Gv +, ')a (Ga )}
and the subclass
R=UM={XehH | WX>Y =Y ¢M)}

of . In view of (9.3) and since (G,-) is simple, the set M satisfies
(Sb). Moreover, also (Sv) holds for M because (G, ) and (A4, ) are not
contained in UM, the latter by (A4,-)—(G,-) and (G,-) € M. Hence
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R = UM is — by Remark 7.4 — an n-universal class of § such that R
satisfies (Ra), (Rb) and (Rc).

To disprove (Rk), we take into account that all non-trivial kernels
of (A,+,") are contained in M. This yields that |R(A,+,) NR| = 1.
But the group (4,) = (B,-) x (G, ) has a kernel isomorphic to (B, ),
and also (B, -) € R because all homomorphic images of this cyclic group
are commutative and so not in M. This shows that [R(A4, ) NR]| # 1,
and so (Rk) fails to be true for R.

¢) Note that R is an n-radical class of the universal class $ which
is not a radical class. Hence S = SR is an n-semisimple class of §
which is not a semisimple class, that is, S is an example of a class
satisfying (Sa), (Sb) and (Sv) but not (Sc). Indeed, as a consequence
of b), we have (4,+,-) € S and (4,-) ¢ S. In particular, as far as (Sv)
is concerned, (4, ) ¢ US = R was stated above, and (G, ") is a group
such that (A4, ) (G,") € S.

10. Hereditariness of semisimple and n-semisimple
classes

As already mentioned in the introduction, the claim in [12] that
every semisimple class of a universal class is hereditary has not been
substantiated, and it remains open as whether this assertion is true or
not. In the sequel we present sufficient conditions for the hereditariness
of semisimple classes S of a universal class § C &* U &, and we deal
with the same question also in the more general case of n-semisimple
classes of an n-universal class. As in other radical theories, the hered-
itariness of an n-semisimple class S is guaranteed if the corresponding
class R = US satisfied the following property named after Anderson,
Divinsky and Sulinski [1]. ~
Definition 10.1. Let ¢ be an n-radical operator in an n-universal
class § of G* U ® and R = R, the corresponding n-radical class. We
say that ¢ or R have the ADS-property if
(10.1) K € R(A) implies oK € R(A) for all K, A € §.

- In [12] we posed also the question as whether there are radical
classes R of a universal class $ which do not have the ADS-property.
We still cannot answer this question, although we shall give examples
of n-semisimple classes which are not hereditary and n-radical classes
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which do not satisfy the ADS-property. Prior to this, however, some
conditions and statements will be discussed which concern merely semi-
fields, tacitly assumed to be proper ones.
Definition 10.2. A semifiled A satisfies the restricted transitivity con-
dition for the kernel relation, briefly denoted by (RT), if
(10.2)N «K <A and (N, )<(A, ") imply N<A for all N, K € G* U &.
Moreover, A satisfies the condition (RT") if (10.2) holds under the sup-
plementing assumption that N is also a semifield.

Since the trivial kernel N of K € R(A) satisfies N € K(A4), we
avoid in (10.2) the somewhat clumsy formulation

N e R(K), K€ 8(A) and (N,-) € &(A4,-) imply N € R(A),

and proceed similarly in corresponding situations. For instance, we may
write K <A instead of K € R(A) in (10.1).
Proposition 10.3. a) Every additively commutative semifield A sat-
isfies condition (RT"), but not necessarily (RT).

b) Every additively commutative and idempotent semifield satisfies
(RT).
Proof. a) We assume N<K<A and (NV,-)<(4,) as well as NeG*
Since (A,+) is commutative, the same holds for (K,+). Therefore
(K,+,-,<) is a partially ordered semifield with respect to its natural
order relation '
(10.3) k1 <ky e ki=kyorky+x=ks for some z € K,
which yields that each kernel N of K is a convex subset of (K, <) (cf.
Th. 4.2 and Cor. 4.7 in [6]). We use this to show that T = hull4 (N), the
smallest kernel of A which contains N, coincides with N. By Prop. 2.13,
an arbitrary element ¢t =¢; of T'= hull4 (V) is a sum

t1 = 8111 + Song + -+ - + 8Ny
of elements n; € N and s; € A satisfying s; + - -+ + s, = e. Hence also
lo = 81Mg + Sang + -+ + 81y

tr = s1Mp + S2m1 + -+ + SpNp 1
are elements of T. Using again that (A, +) is commutative and n; +
+ -+ n, =n € N holds, we get
tit+to+ o Htr=(1+ - +s)(n1+-+n)=e-n=néecN.
Now N C K <A implies T =hull4(N) C K, and so tg +---+t, =k €
€ K. This shows that for each t = ¢; € T there are elements k € K
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and n € N satisfying t + k = n, that is, t < n by (10.3). This yields
t~1 < m for some m € N,and so m™! <t form~! =n' € N. Hence
each t € T C K satisfies n’ < t < n for elements n’,n € N. Since
N € R(K), N is convex in K, and therefore t € N follows. Thus we
have shown N =T = hull4(N), and so N <A. For the last statement
of a) we refer to the following Ex. 10.4.

b) All kernels of an idempotent semifield are again idempotent
semifields (cf. Cor. 2.8 a)). Hence N <K <A € G'IP yields N € &P C
C 6&*. Taking into account that A is also additively commutative,
(RT") for A, as shown above, implies (RT) for A. { .
Example 10.4. Consider the factor ring R = Q[2]/(2?) of the rational
polynomial ring Q[z] and denote the elements of R by a+bz for a,b € Q.
One easily checks that the subset

A={a+bz|aecHbe Q}

is a semifield (A, +,-), where the inverse of o + 0Z is o' — a™2bZ €
€ A. Obviously, a + bz +—— « yields a homomorphism ¢ : A->H.
The kernel K = {14 bz | b € Q} of ¢ is a group because of H € &°,
and (K, -) is isomorphic to (Q,+). The subset N = {1+ gz | g € Z}
is a kernel (N,-) of (K,-). Thus we have N <K <A for an additively
commutative semifield A and clearly (N, ) <(A,-), but N is not a kernel
of A. The latter follows from (2.2), because of 1/2+1/2 =1 and 1/2+
+(1/2)(1+1Z) =1+ (1/2)3 ¢ N.

To obtain additively non-commutative semifields which satisfy
(RT), we consider rectangular semifields as introduced in Ex. 8.5. Every
semifield (M, +,-) of this kind is a direct product (G,+,-) x (Ga,+,)
of (uniquely determined) semifields (G, ~+,), where the group (Gy,")
is endowed with the addition a; + by = a; for all a1,b; € G; and the
group (Gz,-) with the addition ay + by = by. Conversely, starting from
arbitrary groups (G, -), one obtains a rectangular semifield (M, +,-) in
this way (cf. [10]). The following lemma has not been published so far.
Lemma 10.5. Let (M,+,-) = (G1,+,) x (Ga,+,-) be a rectangu-
lar semifield and N a normal subgroup of (M,-). Then the following
statements are equivalent:

a) N is additively closed, that is, (N,+,-) is a subsemifield of
(M,+,-).

b) (N,:) = (N1,-) x (Na,-) holds for normal subgroups (N;,-) of
(G, ).

c) N is a kernel of (M,+,).
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Proof. Note that (a1, a2) + (b1, b2) = (a1, b2) holds for the addition in
(M,+,-). Assuming a), if (n1,n2) € N and (e1,e2) € N for the identity
of M, then
(n1,m9) + (e1,e2) = (n1,e2) € N

and likewise (e;,nq) € N, which clearly yields b). To show b)=-c) by
(2.2), assume (aj, as)+ (b1, b2) = (e, e2) and (ny,ns) € N. The former
implies a; = e; and by = €9, and

(61, CLQ) -+ (bl,eg)(nl, 7’1,2) = (61,7’&2) e N
by b) proves c¢). The latter yields a) since (M, +, ) is idempotent. ¢
Proposition 10.6. Let M be a rectangular semifield. Then the kernel
relation in M is transitive, a statement which clearly yields (RT).
Proof. We apply Lemma 10.5 to N <K <M. Then N <K implies that
N is a subsemifield of K and hence one of M, which yields N <M. ¢

Now, we focus our attention to statements on hereditariness and

the ADS-property. We start with those which are even true for n-
semusimple classes and n-radical operators of an n-universal class, and
hence by Lemma 9.4 all the more for semisimple classes and radical
operators of a universal class.
Proposition 10.7. Let H C &* U be an n-universal class and o
an n-radical operator in 3, and suppose pK = N C K <A € 8. Then
(N,-) ts a normal subgroup of (A,-) regardless whether these groups are
contained in § or not.

This yields K <A = oK € R(A) whenever A € § 1is a group,
recovering the validity of the ADS-property for groups.

Proof. Since K is (at least) a normal subgroup of (4, -), each a € A de-
fines an automorphism ¢, of K by ¢, (k) = a~'ka. This automorphism
@q is of type 2 for K € & and of type 1 for K € &*. In both cases it
holds K € $ and we can apply (oa) to ¢, and obtain ¢,(0K) C oK.
Hence N = pK, considered as a group (NN, ) € &, is a normal subgroup
of (A4,) € 6.0

Theorem 10.8. Let §§ C &* U B be an n-universal class.

a) If an n-radical class R of § does not contain non-trivial groups,
the ADS-property holds for every (A,+, ) € $ which satisfies (RT").
In particular, the n-semisimple class S = SR is hereditary if each
(A, +,-) €8 satisfies (RT").

b) For an arbitrary n-radical class R of §, the ADS-property holds
for each (A,+,-) € $ which satisfies (RT), and an n-semisimple class
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S of $ is hereditary if each (4,4+,-) € S satisfies (RT).

¢) If each (A,+,) € 9 satisfies (RT), the ADS-property holds

for all n-radical classes R of $ and every n-semisimple class S of § is
hereditary.
Proof. We start with b), and suppose pK = N C K <A € §. Then
(N, ) € &(4,") holds in & by Prop. 10.7. Hence, if A € § is a semifield
which satisfies (RT'), we get oK € £(A), and so the ADS-property for
all semifields with (RT"). Now, assume that every semifield contained
in S satisfies (RT"). Then oK € K(A) holds for all K <A € S, regardless
whether A is a group or a semifield. Consequently we have oK C pA
by Th. 5.7, and pA € ¥ implies K € S, that is, S is hereditary.

Since b) clearly implies c), it remains to show a). Again for pK =
=N C K<A € §, the assumption on R yields pK = opK € G* U %.
Hence it is enough to assume (RT") instead of (RT) for a semifield A
€ §) to obtain oK € £(A) and to complete the proof of a) in the above
pattern. ¢ ,

Combining Th. 10.8 with Props. 10.3 and 10.6, we obtain
Corollary 10.9. Let § C G* U S be an n-universal class.

a) If an n-radical class R of $ does not contain non-trivial groups,
the ADS-property holds for each semifield (A, +,-) € § which is either
additively commutative or rectangular. In particular, the n-semisimple
class S = SR is hereditary if each (A,+,-) € S is either additively
commutative or rectangular.

b) For an arbitrary n-radical class R of §, the ADS-property holds
for each semifield (A,+,") € § which is idempotent and either commu-
tatwe or rectangular, and an n-semisimple class S of § is hereditary if
each (A,+,-) €S has the properties just described. ¢

We emphasize again that all these results apply, in particular, to
the radical theory given in [12] which deals with radical classes and
semisimple classes in a universal class § C &* U &. Stronger results,
which are in fact only true in this theory, are prepared by the following
Lemma 10.10. Let § C 6* U ® be a uniwersal class, o a radical
operator in § and (A,+,-) € H. If the radical o(A,+,") of (A,+,)
happens to be a group, then p(A,+, ) coincides with the radical o(A, ")
of the group (A,-), say o(A,+,) = 0(4, ).

Proof. Assume p(A,+,-) = (C,:) € &. Then (C,-) is contained in the
radical class R = R, and is a kernel of (A4,-), which yields (C,-) C
C o(A,-), that is, o(A,+,) € p(A,-). The converse inclusion holds by
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(9.1) in Lemma 9.4 since g is now a radical operator. ¢
Theorem 10.11. Let $H C &* U & be a universal class.

a) If each semifield (A,+,-) in a semisimple class S of § satisfies
(RT"), then'S is hereditary. .

b) If each (A, +,-) € § satisfies (RT"), then all semisimple classes
S of 9 are hereditary.

c) If each (A,+,-) € 9 is either additively commutative or rect-

angular, then all semisimple classes S of ) are hereditary.
Proof. The implications a)=-b)=-c) are obvious, the latter by Props.
10.3 a) and 10.6. To show a) we assume again oK = N C K<A €
€ S. This implies (N,-) € K(A) by Prop. 10.7, and so oK € K(A) if
A is a group. Now, let A be a semifield satisfying (RT”). Then we
get oK € R(A) if pK = N is a semifield, too. Hence in both of these
cases oK € R(A) implies oK C pA € %, and so K € S. It remains to
consider the case A € &* and pK € &. If also K € & holds, then oK =
= po(K,) is clear. If K € G*, then pK = g(K,+, ) = o(K,") follows
from Lemma 10.10. Now, we use g(X,-) C o(4,-) for the group (4,")
and Q(A’ ) - Q(A7+7 ) by (91) Hence oK = Q(Ka ) - Q(A7+7 ) €%
shows K € § also in the remaining case, that is, S is hereditary if every
(A, +,-) €S satisfies (RT"). ¢

In contrast to these results of the old theory, all statements of Th.

10.11 fail to be true in the new more general theory.
Theorem 10.12. Even if all semifields (A,+,-) contained in an n-
universal class H C &* U & satisfy (RT'), in particular, if all these
semifields are additively commutative, an n-semisimple class S of $
need not be hereditary. This yields that an n-radical class R of $ need
not satisfy the ADS-property.

The statement follows from Ex. 10.15 which is based on
Proposition 10.13. Let S be an n-semisimple class of an n-universal
class $ which is not semisimple.  Hence there is a semifield
(A,+,-) €S such that (A, ) ¢ S holds. Assume that'S contains a direct
product (H,+,-) = (A, +,) x (C,+,") of such a semifield (A,+,-) and
a non-idempotent semifield (C,+,-). Then S is not hereditary.

Proof. By Ex. 2.4 the natural projection H—C € &° yields a kernel
K of (H,+,-) € S which satisfies K = (K,-) = (4,) ¢ S. Hence S is
not hereditary. ¢ :

Corollary 10.14. Let $ be an n-universal class which is closed under
taking finite direct products and S an n-semisimple, but not semisimple
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class of $. If S contains a non-idempotent semifield, then S is not
hereditary.

Proof. As assumed, S contains a semifield (4, +,-) such that (4,-) ¢ S
holds. Now (C,+,:) € § for some (C,+,:) € &° yields (4,+,") x
x (C,4+,-) € S by the assumption on $ and Prop. 7.7. Hence S is not
hereditary by Prop. 10.13.

Example 10.15. We present an n-universal class $§ C &* U & with
the following properties:

1) Every semifield in $ is additively commutative.

2) There are an n-semisimple class S and a semifield H = A x C
in §) which satisfy the assumptions of Prop. 10.18, and hence S is not
hereditary.

a) At first we define a suitable semifield (H,+,-). For this end
we need an additively commutative and idempotent semifield (G, +, )
such that (G, ) is a non-commutative simple group. Now each addi-
tively commutative and idempotent semifield (G, +,:) is determined
by a lattice-ordered group (G, ) and the addition g +h = gV h (cf.
Prop. 4.1 in [13]). So we need such a group which is non-commutative
and simple, for instance the (linearly ordered) Chehata group (cf. [2]).

Now let (A,+,) be the semifield constructed in Ex. 9.9 a) from
the semifield (B,+,-) used there and a semifield (G, +,-) as described
above. The addition of (A4,+,-) is defined by (9.2) and so 4 is an
additively commutative and idempotent semifield. Moreover, in view
of (9.3) the semifield A has exactly three kernels, and we also recall

A+>B=A/L where L ={(e,g) | g € G} = (G, +,").

Finally, we define (H,+,-) as the direct product of (4,+,-) and
the simple semifield C' = (P, +,-) € &° of positive real numbers (cf. Ex.
2.9). Clearly, (H,+, ) = (4, +,) x (P, +, ) is additively commutative.

b) For § we can take any n-universal class satisfying condition 1) and
containing (H,+,-) and so also (P,+,-), but not the group (P,-). Later
we shall prove that such a class § really exists and contains the group
(A,-) as well as the set

M = {(A7 +, ')7 (G7 -+, ')) (G7 ')) (]P)a +, )}
Similarly to Ex. 9.9 b) one can verify that M fulfils (Sb) and (Sv), (for
the latter one needs (P,-) ¢ $ to obtain (P,-) ¢ UM). Hence R =
= UM is an n-radical class of ), and we show that the corresponding
n-semisimple class S = SR satisfies the assumptions of Prop. 10.13.
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Firstly, S contains obviously (4,+,-) but not (4,-). The latter follows
since (4,:) = (B,:) x (G,-) has a kernel isomorphic to the infinite
cyclic group (B, ), where (B,-) € R holds because of (B,-) cannot be
mapped homomorphically onto a member of M. Secondly, S contains
the direct product (H,+,-) of (4, +,-) and (P,+,-) € &°. This follows
from A,P €S and H € 9, again by Prop. 7.7.

c) To obtain an n-universal class § as required in b) we gather infor-
mation on semifields and groups which occur if we start with H = (H, +, )
and proceed step by step to homomorphic images and kernels. We write

', 9,0) = ((b',9),a) withi€Z, ge Gand a P
for the elements of (H,+,-) = (4, +,") x (P,+,-). This direct product

has at least the following homomorphic images, listed together with
their kernels:

H>A=H/K, € &P K, ={{°e0a)|acP}
H»>P= H/K, € &° Ky ={(t',g9,1) |i e Z,ge G},
H->B = H/Ky € G Ky ={(°g,0) | g€ G,a e P},

H>BxP=H/K;€6° Ky={%g,1)]geqG}

Note that K), and K3 are semifields isomorphic to (P,+,-) and
(G, +,-) x (P,+,), respectively, and that Ky and K, are groups iso-
morphic to (A4,-) and (G,-), respectively. Now we use the following
assertion which will be proved in d): .

i) The above list contains already all proper kernels of (H,+,-),
that is, all except of H and {(0% ¢, 1)}, and hence all proper homomor-
phic images up to isomorphism.

So, we can go on, and consider kernels and homomorphic im-
ages of the semifields and groups obtained so far. Recall that (P, +,),
(B,+,) and (G,-) are simple and that (A4,+,-) has only the proper
kernel (L,+,-) = (G,+,), where A/L is isomorphic to (B,+,:). For
the remaining semifields we shall prove under e):

ii) All proper kernels of the semifields B x P and G x P = K5 are
isomorphic to (B,-), (G,-) and (P,+,-), and so their proper homomor-
phic images are isomorphic to (P, +,), (B,+,:) and (G, +,).

Since all semifields occuring in ii) are simple, it remains to deal
with groups obtained from (A4,-) = (B,-) x (G,-). Here we come also
to an end by the following statement which can be verified straightfor-
wardly.
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iii) Let (Z,-) be any cyclic group and (G,-) a simple non-commu-
tative group. Then all kernels and homomorphic images of (Z,-) x (G, )
are cyclic groups or isomorphic to (G,-) or to a direct product of two
such groups.

Based on these preparations, we obtain an n-universal class § as
desired. Let $’ be the n-universal (in fact, universal) class consisting of
all finite and countable additively commutative semifields and groups.
Define a class § by extending §’ with isomorphic copies of the semifields
H, A P B, G, BxP,GxP and of the groups described in iii). Then,
by the above considerations, $ is an n-universal class which satisfes 1)
and which contains all objects used in b), but not the group (P, ).

d) We show i) in c¢) by the following steps:

o) For each K<H, either K C Ky or K 2 K;. If K is not
contained in Ks, then there is some (b, g,a) € K such that a # 1.
Then (W,e,0) + (b/,e,7) = (b% e,1) holds for ¢ +7 = 1 and every
4 < 0. Assuming also j + 1 < 0, we get by (2.2)
for o + Ta #£ 1. Hence K N K; is a non-trivial kernel of H, and so of
K;. Since K1 = (P, +,-) is a simple semifield, this yields K N K; = K1
and so K 2 Kj.

B) If K<H and K C K, then K equals Ko or K4 First, let
K C K, contain some (b*,g,1) such that ¢ # 0. We may assume i > 0
and so ¢ > 1. Then, for ¢ +7 =1 in P, we obtain

(10.4) (% e,0)+ (b1 b, 7) = (1%, e,1) forallh e,
and so by (2.2)
(10.5) ®°,e,0) + (0' % b, 7)(V',9,1) = (', h-g,1) € K.

This yields K = Kj. Otherwise, K <H is contained in Ky = (G,-),
which is a minimal kernel of H since (G,-) is simple. Hence K = K,
follows.

~v) If K<H and K1 C K, then K equals K; or K3 or H. As-
sume that K # K;. Then K contains some (b*,g,a) ¢ K3, and so by
(% e,a™t) € K, also (b, g,1) # (1% ¢,1). Hence KN Ky is a non-trivial
kernel of H, and therefore K N Ky = Ky or KN Ky = K4 by ). In
both cases K contains K4, and so K; - Ky = K3. But K3 is a maximal
- kernel of H because of H/K3 = (P,+,-) is simple (cf. Remark 2.11).
Hence K O K3 implies K = K3 or K = H.

e) First, we show ii) in ¢) for the semifield S=BxP. Since (P,+,-)
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is simple, L1 = {(}°,a) | a € P} = (P,+,") is a minimal kernel of
S, and Ly = {(b*,1) | i € Z} is a maximal one because of S/L
=~ (P,+,-). Let L be any proper kernel of S and assume (b*,5) €
with 7 # 0. Choose i > 1, and replace (10.4) by (b°, o) + (b'7%, 7) =
= (0°,1). Then (b%,1) € L follows in view of (10.5). This shows L 2 L
and thus L = L, since Lo is maximal. Otherwise L is contained in L4
which yields L = L; since L; is minimal.

Turning to the semifield S = G x P, both kernels L1 = {(e,a) | a €
€ P} and Ly = {(g,1) | g € G} are minimal as well as maximal. Hence
each element (g,a) # (e,1) of a further proper kernel L of S should
satisfy ¢ % e and o # 1. But such a kernel does not exist. Choosing
g > e, we get (e,;0) + (g7, 7) = (e, 1) because of g~ < e, and so
by (2.2) (e,0) + (g7, 7)(g9,0) = (e,0 + 7a) € L, where o + 7ar # 1
contradicts the above statement on L.
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