Mathematica Pannonica
14/2 (2003), 165-181

AFFINE COMPLETE ALGEBRAS
GENERALIZING KLEENE AND
STONE ALGEBRAS

Vladimir Kuchméi

Institute of Pure Mathematics, University of Tartu, Tartu 50090,
Estonia

Received: December 2002
MSC 2000: 06 D 15, 08 A 40

Keywords: Kleene algebra, Stone algebra, compatible function, (local) poly-
nomial function, (locally) affine complete algebra.

Abstract: In this paper we describe affine complete and locally affine com-
plete members of the variety generated by all Kleene and Stone algebras.
We also characterize local polynomial functions of the algebras of that vari-
ety. These results generalize the results earlier known for Kleene and Stone
algebras.

1. Preliminaries

Let A be a universal algebra. A function f: A™ — A is called
compatible if, for any congruence p of A, (a;, b)) € p, i = 1,...,n,
implies

(flas,-.. yan), f(b,... ,bn)) € p.

- An algebra A is called affine complete if every compatible function
on A is a polynomial. Furthermore, an algebra A is said to be locally
affine complete, if for every n > 1, every n-ary compatible function on
A can be interpolated on any finite subset F¥ C A™ by a polynomial
of A.
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Originally, the problem of characterization of affine complete al-
gebras was formulated in [3]. For various varieties of algebras affine
completeness has already been investigated. In [4] affine completeness
of algebras abstracting Kleene and Stone algebras was studied. In par-
ticular, it was shown there that a finite Kleene algebra is affine complete
if and only if it is Boolean. In [6] a characterization of (locally) affine
complete Stone algebras was presented. In [5] a description of local
polynomial functions as well as a characterization of affine complete-
ness and local affine completeness for Kleene algebras was given. In [7]
an alternative approach to the affine completeness problems of Kleene
algebras together with examples was presented. In [8] local polynomial
functions of Stone algebras were described. The aim of this paper is
to generalize these results to the variety generated by all Kleene and
Stone algebras.

A distributive Ockham algebra is an algebra (L; V, /\,* ,0,1), where
(L;V, A, 0,1) is a bounded distributive lattice and * is a unary operation
such that 0* =1, 1* =0 and for all z,y € L,

(1) (Ay) =" Vy*,
(2) (zVy) =z Ay*.

More information about these algebras can be found in [1].

It is well known that Kleene and Stone algebras are distributive
Ockham algebras. The variety K V S generated by the class of all
Kleene and Stone algebras is the subvariety of the variety of distributive
Ockham algebras defined by the following additional identities:

(3) z < z**

(4) VAN A AN i

(5) (zAZ)VYyVy* =yVy";
6) VYt VYt > o

It is known that the only subdirectly irreducible algebras in the
variety KV S are K3 = {0,a,1}, S = {0,b,1} and By = {0,1} where
0<a<1,0<b<1,a* =a,b*=0. Thus, given an algebra A € VS,
we may write

A<.a]]As,
i€l

where A; € {Bs,K3,S3}. The next lemma is a direct consequence
from this subdirect decomposition. It will be crucial in the proofs of
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our main results because it reduces all problems to Kleene algebras and
to functions with range contained in AY defined below.
Lemma 1.1. The following identity holds in the variety KV S:

=z N(zVz").

For every algebra A € KV S we denote
AY={zvz*:|:ze€ A},

It is easy to prove that AV is a filter of the lattice A.

For any subset H C A we define

H* ={z" |z e H}.

Note that the set A*™ is a subuniverse of A; in fact A** is a Kleene
algebra. It is easy to observe that the operation ** is an idempotent
endomorphism of A with range A**. The kernel ® of this homomor-
phism is called the Glivenko congruence of A in the literature. Given an
element u € A we denote by [u]s the ®-block containing u. Obviously
[u]a is a distributive lattice with greatest element u**.
Lemma 1.2. Let A € KV S. For every z € (A*™)Y and y € A with
y > ¢ we have y € A*.
Proof. Let z € (A**)Y and y € A with y > z. Since z € AY, (2)
and (5) imply z* < z and z = 2™ because of x € A**. Hence, by
(3) we have z* < 2**. Thus (6) implies y*™* < yVa™ =yVaz =y
Consequently y = y** and y € A**. O

Now we define an important binary relation on an arbitrary alge-
bra A € XV S. This relation generalizes one which for Kleene algebras
was introduced by M. Haviar, K. Kaarli and M. Plo§¢ica in [5].

The uncertainty order of the algebra A is a binary relation C,
defined by

tCy: @ :xAs<y<zVs for somese AY.

The next two lemmas list some properties of the uncertainty or-
der relation. Originally similar results were proved and used in [5] for
Kleene algebras, but one can easily generalize them to algebras from
the variety £V S.

Lemma 1.3. The restriction of the uncertainty order to AV coincides
with the reverse order relation of the lattice AY.

Lemma 1.4. If A < 4. HiEI A; and z,y € A then v Ty if and only
if x; Ty, for every i € 1.

Now we recall necessary results on affine completeness of distribu-
tive lattices, Kleene algebras and Stone algebras. For that we need the
notion of almost principal filter.
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A filter F of a lattice L is said to be principal if it is of the form
Tu = {z € Llz > u}, for some v € L. We say that F' is almost
principal if its intersection with every principal filter of L is a principal
filter of L. Note that Lemma 1.2 implies that (4**)Y is a filter of the
lattice AY. Moreover, (A**)Y is an almost principal filter of AY with
Tz N (A*)Y = Tz** for all z € AY. Any almost principal filter F of a
lattice L defines a function fp : L — L such that {fr(z) =Tz N F for
every £ € L. In particular, figs«yv(z) = 2** for allz € AY.

Theorem 1.5. ([2])

1. A distributive lattice is locally affine complete if and only if it
does not contain nontrivial Boolean intervals.

2. A function on a distributive lattice is a local polynomial if and

only if it is compatible and order preserving.
Theorem 1.6. ([6]) Let D be a filter of a bounded distributive lattice L.
The lattice D is affine complete in L, that is, every compatible function
of the lattice D s a restriction of a polynomial function of the lattice
L, if and only if the following conditions are satisfied:

1. D has no nontrivial Boolean intervals;

2. if F' is an almost principal filter of D then there exists a € L
such that F =TaN D.

Theorem 1.7. ([5], [6] and [8])

1. A function on a Kleene (Stone) algebra A is a local polyno-
mial function if and only if it preserves the congruences of A and the
uncertainty order.

2. A Kleene (Stone) algebra A is locally affine complete if and
only if the lattice AV does not contain nontrivial Boolean intervals.

3. A Kleene (Stone) algebra A is affine complete if and only if it
satisfies the following two conditions:

(a) the lattice AV does not contain nontrivial Boolean intervals;
(b) for every almost principal filter F of the lattice AV, there exists
be A such that F =1Tbn AV,

We will use several times the following general lemma. Its proof

can be found in [8].
Lemma 1.8. Let A be an algebra and e be a unary idempotent compat-
ible function on A such that C = e(A) is a subuniverse of some reduct
of A. Then, if f is an n-ary compatible function of that subreduct then
the function

g(z1,...,zn) = fle(z1),... ,e(zn))

s a compatible function on A and extends f.
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Throughout the paper we assume that A is an algebra of the
variety KV § and there is an embedding

(7) A <JJA: where A; € {S5,Ks},
174

for some index set I. We denote by m; : A — A; the projection map
to the ith subdirect factor of A. We write the elements of A in the
form = (z;)ier. It is not difficult to see that if f : A" — Ais a
compatible function of A and x,y € A™ then x; =y, implies f(x); =
= f(y);. This means that every compatible function f of A determines
the coordinate functions f; of m;(A) such that f;(x;) = f(x); for all
x € A™. Obviously, the family (f;)icr completely determines f, so we
may identify f with this family.

- 2. Local polynomial functions

In this section we describe local polynomials of algebras A € KVS.
Lemma 2.1. Let f be a compatible function on A which preserves
the uncertainty order. Then the restriction g = f**| 4+ is a compati-
ble function of the Kleene algebra A** which preserves the uncertainty
order relation of A*™.

Proof. The fact that g is a compatible function of A** follows easily
from the observation that every congruence p of A** is a restriction of
a suitable congruence 7 of A. That congruence 7 is defined by

(z,9) €7 <= (™, y"") €p.

Let C be the uncertainty order of A and C ., be the uncertainty
order of A**. Suppose that x = (z1,... ,2,), ¥y = ¥1,--- ,Yn) € (A**)"
and x T ,.y. Then, obviously, x C y. Thus, since f preserves the
uncertainty order of A, we have f(x) C f(y), that is,

f(x) As< fly) < f(x) Vs* for somese AY.
Hence ‘
(FE)AS)™" < fy)™ < (fx) V)™

and

FG™ A S S ) S 00"V (5"
The latter implies f(x)** C .. f(y)** and thus g(x) C ..g(y). ¢
Lemma 2.2. Assume that f is a compatible function on A and there
exists s € AV such that f preserves Ts. Then the restriction flys is a
compatible function of the lattice Ts.
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Proof. It is sufficient to prove that, for any congruence p of the lattice
Ts, there exists a congruence 7 of the algebra A such that 7|1 = p.
We define an equivalence relation 7 on A by

(z,y)eT

0

zVs,yVs)epand (z*Vs,y* Vs)epand (2" Vs, y™ Vs) €p.
Y

It is easy to verify that 7 is a congruence of the algebra A and obviously
T|ts € p. Assume that z,y € Ts and (z,y) € p. Then clearly

(xVs,yVs) = (z,y)€p and (z*Vs,y"Vs)=(ss)€p.

Hence (z,y) € 7 as soon as we show that (z** V s,y** Vs) =
= (z**,y**) € p. It is easy to see that z V (x A y)*™* < z**. By Lemma
12 wehaver <z V(zAy)*™ € A ThuszV (zAy)™ >z implying
** =z V (z Ay)**. Now, obviously, (z,y) € p implies (z**,y**) € p. O
Lemma 2.3. If the lattice AV does not contain nontrivial Boolean in-
tervals then also the lattice (A**)Y does not contain nontrivial Boolean
intervals.
Proof. Assume that (A**)Y contains a nontrivial Boolean interval

Llu,v)={ze A" |[u<z<v}.
By Lemma 1.2 we have
{reA" Ju<z<v}={yeA|lu<y<v}.

Thus L(u,v) is also a Boolean interval in the lattice AY and we have a
contradiction. ¢

Consider the set Q of all ordered pairs oo = (a1, ap), where oy and

ag are disjoint subsets of the set n = {1,...,n}. We assign to every
a € Q the n-ary term

T(x) = \/ Y \/ xi vV \/ (g Vzf) -
k€ay kE€as ken\ (a1 Uas)

Let f: A" — A be a compatible function. For every a € Q we define
a unary function f, : A — A by the rule

0 ifk oy
foly) = f(y®), where yp =< 1 ifk € ag;
y otherwise.
The following theorem describes local polynomial functions on
algebras of the variety LV S.
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Theorem 2.4. A function on A € KV S is a local polynomial function
if and only if 1t preserves the congruences of A and the uncertainty -
order.

Proof. The congruences of A as well as the uncertainty order are the
subuniverses of A? containing the diagonal. Thus they are preserved
by all local polynomial functions of A.

For the converse, let f be an m-ary compatible function on A
which preserves the uncertainty order. We have to prove that f is a
local polynomial. Let X be a finite subset of A™. By Lemma 1.1 we
have the identity

FE) = F)" A (F(x)V f(x)").
By Lemma 2.1 and Th. 1.7 the restriction f**| 4+~ is a local polynomial
function of the Kleene algebra A**. Thus there exists a polynomial
function q; of the Kleene algebra A** such that for any x € X** we
have ¢ (x) = f(x)**. Let ¢(x) = ¢1(x**). Since f preserves @, for every
xeX
q(x) = (x™) = f(x"™)" = f(x)"™".

It remains to show that also h(x) = f(x)V f(x)* is a local polyno-
mial function. Because h preserves AV, there exists u € AV such that
h(X) € Tu. Let r(x) = h(x) Vu; clearly the restrictions of h and 7 to
X coincide. We are going to prove that r coincides with the polynomial
function

p() =wv( N\ (s VT*())),
acQ
where so = 7o (u) = r(u®). In view of the embedding (7), it suffices to
show that p;(x;) = r;(x;) for every x € A™ and every 1 € I.

If u; = 1 then both r; and p; are constantly 1, thus they are equal.
Since the range of 7 is contained in AY, the remaining possibility is u; €
€ {a,b}. Now we have to distinguish between two cases.

1. ri(x;) = 1. We have to prove that (s4): VT*(x;) = 1 for every
a € Q. Assume T%(x;) # 1, then

{0,us =a} ifkea
(k)i € ¢ {1,u;} if ke ao
{ui} otherwise.

Note that (xr); = u; = a implies m;(A) = K3. Let X = (Z1,...,%n),
where
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TE A x}‘ ifkeo
Tr=< zpVu ikeca
U otherwise.

It is not difficult to see that u® C x. Thus s, C r(X). It is also easy
to see that X; = x;. Hence by Lemma 1.3 we have (s4); > 7:i(X;) =
= r;(x;) = 1, which proves that (s4); VT(x;) = 1 for every a € Q.

2. ri(x;) = u;. Let oy = {k| (zx): = 0} and an = {k | (z1): = 1}.
Then (sq); = (%) = u; and T(x;) < u,;. Hence p;(x;) = u;. Thus
the polynomial ¢ A p interpolates f on X. ¢

Having a characterization of local polynomial functions, it is not
difficult to describe the locally affine complete algebras of the variety
KvVS.

Theorem 2.5. An algebra A € IV S is locally affine complete if and
only if the lattice AV does not contain nontrivial Boolean intervals.
Proof. Suppose AV contains a nontrivial Boolean interval. Then by
Th. 1.5 the lattice AY has a compatible function g(x) which does not
preserve the order relation. Define a function f: A — A by f(z) =
= g(z V z*). Obviously the restriction of f to AV coincides with g,
and it follows from Lemma 1.8 that f is a compatible function of A.
Now Lemma 1.3 implies that f does not preserve the uncertainty order.
Thus, by Th. 2.4, f is not a local polynomial function.

For the converse, suppose that A has a compatible function f
which is not a local polynomial. By Th. 2.4 this means that f does
not preserve the uncertainty order. Similarly to the case of distributive
lattices (see [8], Th. 5.3.9) we may assume that f is unary. Using
Lemma 1.1, we have f = f** A (fV f*).

Now we distinguish two cases.

1. f** is not a local polynomial. Then also f**|" is not a local
polynomial function of the Kleene algebra A** though by the argument
regarding the compatibility in the proof of Lemma 2.1 it is a compatible
function of the Kleene algebra A**. Thus the Kleene algebra A** is
not locally affine complete. Now Th. 1.7 and Lemma 2.3 imply that
AY contains a nontrivial Boolean interval.

2. h = fV f* is not a local polynomial function and hence h does
not preserve the uncertainty order of A. Let u,v € Abesuch thatu & v
but A(u) Z h(v). In view of the embedding (7) and Lemma 1.4 there
must exist ¢ € I such that h; does not preserve the uncertainty order
of A;. If A; = K3 then also f; = f/* cannot preserve the uncertainty
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order of A, and consequently also f** is not a local polynomial function
of A, hence the result follows by the first case.

Assume that A; = S3. Then, due to h(4) € AY we must have
(ui,v;) = (1,b) and (hs(w;), hi(v;)) = (b,1). Let s = v Vv*. Then
se€ AY and s; = v; = b. Now let h(z) = h(z) V s. Since s; = b, we
have E(xz) = hi(z;). Then s,1 € Ts, 1> s, but Z(l) 7 h(s) because
hi(1) = hi(u;) = b, hi(s;) = hi(v;) = 1. It follows that the function E]TS
does not preserve the order relation of the lattice Ts. Now Lemma 2.2
and Th. 1.5 yield that the lattice Ts, but then also the filter AY has a
nontrivial Boolean interval.

3. Affine completeness

In this section we characterize the affine complete algebras of the
variety L V' 8. Our main tools are the almost principal filters of AV
and related compatible functions.

Similarly to the case of distributive lattices (see [9]) we can prove
the following:

Lemma 3.1. Let f be a unary compatible function on an algebra A
which preserves the uncertainty order and whose range is contained in
AY. Then

1. the set F' =1 f(AY) is an almost principal filter of AV ;

2. fr(z) = f(z) Vz for everyz € AY;

3. f(z) = fr(@) A f(1) for every z € AV.

Proof. First we will show that

TAA) N Tu="T(V f(u)

for every u € AY. This proves, in particular, the second claim of the
lemma. Obviously T(uV f(u)) C T f(AY) N Tu. To prove the reverse
inclusion, let z € T f(AY) N Tu. Since x € Tu, we only need to show
that £ > f(u). Now use the embedding (7) and show that z; > f;(u;)
for every i € I. The latter is trivial if z; = 1 or f;(u;) € {a,b}. Assume
that z; € {a,b} and fi(u;) = 1. Then z € Tu implies that z; = u,.
Thus, by Lemma 1.3 we have fi(m(AY)) = {1}. Consequently = €
€ 7 f(AY) implies z; = 1, a contradiction. This proves f;(u;) € {a,b},
a contradiction. Thus z > f(u).

To finish the proof of the first claim of the lemma it remains to
show that 7 f(AY) is closed with respect to meets. Let z,y € T f(A4Y)
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and u = (z Ay) V f(x Ay). Then by the first part of the proof z,y > u
and clearly u > z Ay, implying z Ay =u € T f(AY).
Finally, we need to show f(z) = fr(z) A f(1) for every z € AV,
We already know that f(z) < fr(x) and by Lemma 1.3 f(z) < f(1).
Hence f(z) < fr(z) A f(1) and we need to prove the reverse inequality.
Since fr(z) A f(1) = f(z) V (z A f(1)), our proof will be complete as
soon as we show that f(z) > x A f(1). Considering the embedding (7)
we see that the inequality f(z) > z A f(1) fails only if there exists i € I
such that z; = f;(1) =1 and f;(z;) < 1 but this is impossible. ¢
Lemma 3.2. If F' is an almost principal filter of the lattice A then F**
is an almost principal filter of AV and (frp)*™ = fr+. On the other
hand, every almost principal filter of the lattice (A**)Y is an almost
principal filter of the lattice AV.
Proof. Since F** C F, Lemma 1.2 implies that F** is a filter of AV,
Take any s € AV and consider Ts N F**. Since F is almost principal,
there exists t € AY such that 7t = TsNF. Now £ € F implies t** ¢ F**
Thus Tt** C TsN F**. On the other hand, TsN F** C TsN F implies
that for every x = 2** € s N F** we have x > t and hence z > t**.
Thus TsNF** C T¢**. This proves that F** is an almost principal filter
of AV as well as the equality (fg)** = fpes.
The second claim follows easily from Lemma 1.2. §
Lemma 3.3. Let F be an almost principal filter of the lattice AV and
g(x) = fr(x VvV a*). Then the following conditions are equivalent.
(1) g is a polynomial function of A.
(2) There exist k,s € A, k < s, such that
(EL) FEx — Tk N (A**)V’
(b) FNlule = T(sAu)Nule for every u € F**.
(3) There exist k,s € A, k < s, such that for every x € AV,
g(z)=(sVz)A(kVz™).
(4) There exist k,s € A, k < s, such that:
(a) g(z)* =k Vz** for every z € AV,
(b) g(z) = (s Au) Vz for every u € F** and = € [u]s.
Note that the same elements k,s € A can be taken in the last three
conditions.
Proof. We first prove the equivalence of the conditions (1) and (3).
That (3) implies (1), is obvious. To prove the opposite implication,
assume that ¢ is a polynomial function of A. Then there exist k; € A
such that the polynomial
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(ki V) A(ka Va*) A (ks V&™) A (kg Va V) A (ks Vz* V™) A ke
coincides with g(z) on A. In particular, if z € AY we have
9(x) = (ki ANka) V) A (ka V™) A ((ks Aks) V™) Akg .
Further, since g(1) = 1 we have ky = kg = 1. Thus for z € AY
g(x) = (k1 Nk)VZ)A((ks Nks)VZ*) =
= (ki Ak A((k1 Ak Nks ARs)VZ ™)) V= (sVz)A(kVT*™)

Where Szkl /\k4 andkzklAk4Ak3Ak5.
(3) = (4). Condition (3) implies
g@™) = (V)N EVZT)=(sAk)VZ™* =kVa**
for any z € AY. Now g(z)** = g(z**)** = (kVz**)**. Since by Lemma
1.2 kvVz™ € F**, we have g(z)** = (k V™)™ =k V 2™ for every
ze AV. Ifu € F** then g(u)** = fr(u)** = u. But on the other hand,
g(u)** =k Vu implying k < u. Now, if z € [u]s, then

g(z) = (sVa)A(kVa™) = (sVz)A(kVu) = (sVz)Au= (s Au) V.

(4) = (2). Given u € F** by (4)(a) we have u = u** = k V u,
hence F** C TkN (A*)V. If z € Tk N (A**)" then again using (4)(a),
we get ‘

gx)* =kvzr =z =12x.
Hence z € F** and we have proved the equality (2)(a).

To prove (2)(b), take u € F** and 2 € F N [u}s. Then by (4)(b)
we have z = g(z) = (s Au) Vz, implying z € T(s Au). This proves
the inclusion C in (2)(b). To show the opposite inclusion, take any
z € T(sAu)Nulg. Then g(z) = (s Au)Vr =z implyingz € F.

(2) = (3). Since

(sV)AN(EVz™)=kVzV(sAz™),
the equality y = g(z) = (sVz) A (kVa**) is equivalent to the following
5 inequalities: 1) y > x; 2) y <kVva*™; 3)y >k 4 y > sAz* and
5) y < sVu.

The first of these is obvious. By Lemma 3.2 we have the equality
(fr)*™ = fre~. Hence, y** is the least element z € F** such that = < 2
It follows from (2)(a) that z = k V z**. But then y < y** =k V 2**,
proving the inequality 2). To prove 3), we observe that y € F N [u]s
where v = y**. Hence, using (2)(b) and the equality u = k V z**, we
have y > s Au > k Au = k. This proves 3). The inequality 4) follows
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from y > s Au and u > z**. To prove 5), we first observe that (k V
V x)** = y** that is, k Vz € [u]s. The inequality y > s A u implies
sSAYy>sAu>sAy, thus sAy =sAu.
We now prove the equality g(kV z) = (s Au) V (k V). Since
glkvx)”* =kVv(kva)” =k vz =((kVvz*)* =kVz*,
we have g(k Vz) € F N ule. Thus, by formula (2)(b) we have that
glkvz)>(sAu)V(kVz). On the other hand,

((shu)V(EvVa)* =("Au)VEVD)™ =((s""Au)Vu=u.
We see that (sAu)V (kVz) € [u]s. Thus formula (2)(b) implies (s Au)V
V(kVz) € F. By the definition of g we have g(kVz) < (sAu)V (kVz).

It remains to calculate:
y=g()<glkVvz)=(sAu)V(EVz)=(sAy)V(kVvz) =
=(sVkVz)A(yVkVvz)=(sVz)Ay<sVz.

This completes the proof of the lemma.

We need one more lemma which allows us to prove that all compat-
ible functions are polynomial provided all unary compatible functions
are so.

Lemma 3.4. Assume that f and g are n-ary compatible functions of
A. Then f =g if and only if fo(x) = ga(x) for every a € Q and every
ze AY.

Proof. Of course we only have to prove the sufficiency. Suppose there
exists v € A" such that f(v) 5 g(v). Then, having in mind the embed-
ding (7), fi(vi) # gi(v;) for some i € I. Now we show that (fg); # (93):
where § = (01, 02) is defined by

pr={jen|(v;)i=0} and fo={jen] (v;);=1}.

If /1UBy = nthen (fg); and (gg); are the constant functions f;(v;)
and g;(v;), respectively. Hence f;(v;) # g:(v;) implies fg(1) # gg(1).

Let now (1 U O3 # n. It is easy to see that if 1, j2 & 61 U B2 then
(vj,)i = (vj,)s € {a,b}. Let y = v; V o} for some j & B U . Then
y€ AY and

filvi) = (Fp)i(y:) and gi(vi) = (98)i(vi) -

This implies fg(y) # gs(y) and we are done. ¢
Now we are ready to describe the affine complete algebras of the

variety XV S.
Theorem 3.5. An algebra A € KV S is affine complete if and only if

it satisfies the following two conditions:
(1) the lattice AV does not contain nontrivial Boolean intervals;
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(2) for every almost principal filter F' of the lattice AV there exist
k,se A, k <s, such that
(a) F** — Tk N (A**)V}
(b) FNlule =1(s Au)Nuls for every u € F**.
Proof. First assume that A is affine complete. Then A is locally affine
complete and by Th. 2.5 the lattice AV does not contain nontrivial
Boolean intervals.

Assume that F is an almost principal filter of the lattice AY. The
function fr induced by the filter F' is a compatible function of the lattice
AY. By Lemma 1.8 the function g(x) = fr(z V z¥) is a compatible
function of A. Since A is affine complete, g(x) is a polynomial function,
which is by Lemma 3.3 equivalent to conditions (2).

In order to prove the sufficiency of the two conditions, assume
that A is an algebra satisfying these conditions. It is easy to observe
that then the Kleene algebra A** is affine complete. Indeed, if F is an
almost principal filter of the lattice (A**)Y then by Lemma 3.2 F is
also an almost principal filter of the lattice AV, so by our assumption
there is k € A such that F = F** =1k N (A**)V. Since Tk N (A**)Y =
= Tk** N (A**)V, we see that Th. 1.7 applies to show that A** is affine
complete.

Let now f be an arbitrary n-ary compatible function on A. As
in the proof of Th. 2.5, we have that f**| 4+« is a compatible function
of the Kleene algebra A**. Since A** is affine complete, there is a
polynomial ¢ of A** such that f(x)** = ¢(x) for every x € (A**)™.
But then f(x)** = ¢(x**) for every x € A", showing that f(x)** is a
polynomial function of A.

Now Lemma 1.1 implies that f is a polynomial function if and
only if so is the function h = fV f*. Note that the range of h is
contained in AY and in view of the above proof we know that h** is a
polynomial function of A.

For every a € Q let F, = The(AY). By Lemma 3.1 F, is an
almost principal filter of the lattice AV, for every a € Q. Thus there
exist constants ka, So € A satisfying conditions (a) and (b) of (2) for
F =F,, for any o € Q. Then by Lemmas 3.3 and 3.1 we have

(8) ha(z) = ha(z)™ A (sq V) A ha(l)
for every z € AV.

Note that the constants s, are not uniquely determined, in gen-
eral. In particular, if & = (a1, a2) € Q is such that a; U ay = n then
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the function h is the constant function and therefore we may choose
So = ha(1l). We introduce an order relation on @ by ao < fiff a1 C 51
and as C (3. Now we are going to show that the constants s, can be
chosen so that

(9) a<fanda; =01 = s. < s3.

Obviously, condition (9) is satisfied for all o, § such that |a; Uas| =n.
Suppose it is satisfied for all a, 8 with |a; U ag| > j. Then it suffices
to show that for every o with |ag U an| = 7, the constant s, may be

replaced by
Ta = /\ Sg .

axf, a1=p1
Clearly T(sa Au) N[ule € T(ra Au) N [ule, for every u € F3*. Thus
we have to show the opposite inclusion. Take an arbitrary element
z € T(raAu) Nule. Now zV (sg Au) € T(sgAu) N [ule for every
g € Q. Since h preserves the uncertainty order, o < 0, a; = f; implies
Fg C F,, and hence
T(spAu)yNfule CT(saAu)Nule.

Consequently, zV (sg Au) € T (sa Au)N[u]e for every § € Q such that
-~ a<f,a; = . Since T(sq Au)Nulg is a filter of the lattice [u]g, the
meet Aygp a=p, (T V (sg A ) is also a member of T(sa Au) N [uls.
However, because of © > ro A u and the distributivity of A, this meet
is precisely z. Thus in what follows we may assume that the constants
So satisfy the condition (9).

Next we will show that
(10) axp = ha(y)"™ <sgVy™

for every y € AY. Let v = (a1, 02). Since h preserves the uncertainty
order, it follows that h}" < hX*. The equality (8) implies that we have
ha(y)** V y** < spVy** for every y € A,

So it remains to prove that

(11) hoy (W)™ < ha(y)™ vV y™*
for every y € AV. Here we again need to use the embedding (7). Clearly

(11) holds in Stone factors A; = S3 because y¥* = 1 there, but in Kleene

T

factors A; = K3 the inequality (11) takes the form
(12) (hy)ilya) < (hp)i(ys) V i,

where we may assume that y; = a. Now observe that
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(y Ay E(y Ay
This follows because v, = ff3 and 0 C y Ay* for every y € AV. Since h
preserves the uncertainty order, this implies

ha(y Ay™) = h((y Ay*)P) ER((y Ay*)T) = hy(y Ay™).
Thus hy(yAy*) < he(yAy*) implying (hy)i(a) < (hg)i(a). This proves
(12) but then also (11) and (10).
To finish the proof we are going to show that the polynomial

px) = hx)* A\ (50 VT()
139
coincides with h(x). Lemma 3.4 implies that we only need to show
Pa(y) = ha(y) for any o € Q and any y € AV. Note that if for some
f € Q we have o £ 3 then TP (y®) = 1. Thus

Pay) =ha@®)*™* A N\ (spVTP(y).
BEQ, axp
Now, if oy U ag = n then TP (y®) # 1 only if 8 = «. In this case
T*(y*) =0, sa = ha(y) and thus Pa(y) = ha(y)*™ A ha(y) = ha(y).
Assume that a; Uas # n. Note that in this case T%(x) € AV. Let

Qi={fecQ|fi=aanday TP Cn\ao},
7 Q={fecQ|a; CPrand as C fa}.
Then

pa(y) = hoz(y)** A S(aq,n\ar) A /\ (Sﬁ Vy) A /\ (5ﬁ \% y**) .
BeQ; BeEQs
In view of conditions (9) and (10), the right hand side of the latter
formula is hq (y)™ A (80 V ¥) A hiay n\ar) (1) which, by (8), is equal to
ha(z). O
Corollary 3.5.1. Let A € KV S. If AV is affine complete in the lattice
A then A is affine complete.
Proof. Let AY be affine complete in the lattice A. Th. 1.6 implies that
AY has no nontrivial Boolean intervals. Let F' be an almost principal
filter of AY. By Th. 1.6 there exists k € A such that F = TkNAY. It
is not difficult to see that then F** =Tk n (4**)V.
Let s = k. We show that F'N [ule = 7(k Aw) N [u]s, for every

u € F**. Note that F** = Tk N (A**)Y implies u > k. If z € F N [us
then z > k and 2** = u. Thus z € T(kAu)Nuls and F N [uls C

C T(kAwu) N [ule. To prove that also the opposite inclusion holds let
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z€T(kAu)N[uls. Then z >k and z € A implies x € F. Thus by
Th. 3.5 the algebra A is affine complete. {

Corollary 3.5.2. The direct product of a (locally) affine complete
Kleene algebra and a (locally) affine complete Stone algebra is a (lo-
cally) affine complete algebra in the variety KV S.

Proof. Let A be the direct product of a locally affine complete Kleene
algebra K and a locally affine complete Stone algebra S. Obviously,
AY =KY xSV,

Assume that the lattice AV contains a nontrivial Boolean interval
I{z,y) and let © = (zx,zs), v = (Yk,ys). If 2** = y** then zx =
=y and I(zg,ys) is a nontrivial Boolean interval in SV. If z** # y**
then zx # yx and I(zx,yx) is a nontrivial Boolean interval in K.
Thus the local affine completeness of S and K imply the local affine
completeness of A.

Assume now that K and S are affine complete. Let F be an
almost principal filter of the lattice AY. Then Fg = {z | (z,1) € F}
and Fs = {y | (1,y) € F} are almost principal filters of the lattices
KV and SV, respectively. Moreover, F = Fg x Fg. Since K and S
are affine complete, there exist k € K, s € S such that Fx = TkN KV
and Fs = T8N SY. Then (k,s) € A and F = T(k,s) N AY. Thus AV
is affine complete in the lattice A and by Cor. 3.5.1 the algebra A is
affine complete. ¢
Example 1. An affine complete algebra A € KV S such that the lattice
AY is not affine complete in the lattice A.

Let K be an affine complete Kleene algebra such that K = KV U
U K” and KV does not have a smallest element. (For an example of
such an algebra see [7], Ex. 1.) Let S be an affine complete Stone
algebra such that SV is bounded, |SY| > 1 and S = SV U {0}. By Cor.
3.5.2 we know that the direct product A = K xS € KLV S is affine
complete.

Consider B = (KY x SY)U (K" x S"). It is easy to check that B
is a subalgebra of A. Observe that

BY=KYx8Y, (B*)Y ={(z,1) |z € K}
and for every (ug,us) € BY we have [(ur,us)le = {(ur,y) |y € S¥}.
Since BY = AV, the algebra B is locally affine complete. To see that B
is affine complete consider an almost principal filter F' of BY. Again,
as in the proof of Cor. 3.5.2, we have that F' = F X Fg, where Fg =
={z|(z,1) € F} and Fs = {y | (1,y) € F'} are almost principal filters
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of lattices KV and SV, respectively. Since SV is bounded, there exist
s € S such that Fg = 1s. Take any u € F**. Then u = (ug, 1), where
ug € Fig and
Fnlule ={(uk,z) | z € Fs} =1 (uk,s) N[ule = 1((1,s) Au) N [u]s.
Further, since the algebra K is affine complete, there exists k& € K such
that Fx = TkNK". Note that there exists y € S such that (k,y) € B.
Now F** = {(z,1) |z € Fr} = 1(k,y)N(A;*)V. Thus (k,y)A(1, s) and
(1, s) satisfy the condition (2) of Th. 3.5 and hence B is affine complete.
Finally, assume that the lattice BY is affine complete in the lattice
B. Then there exists (zx,xg) € B such that

(B*)Y =1 (zx,z5) N B".
Now, since |SY] > 1, we must have zg = 1 and thus (zx,zs) € BY,
implying zx € KV. Hence 2k is the smallest element of KV, a contra-
diction. Thus the lattice BY is not affine complete in the lattice B.
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