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Abstract: Let f,g : G —~ G be two continuous maps defined on a finite
graph G. Denote by h4(f) the topological sequence entropy of f relative to
the sequence of positive integers A. We prove for any sequence A the formula

ha(fog)=ha(gof).

1. Introduction

Let (X, d) be a compact metric space and consider maps F : X X
x X — X x X defined by F(z,y) = (f(y),9(2)), (z,y) € X x X,
where f,g: X — X are continuous maps. These maps model economic
phenomena called duopoly games (see [4], [L2] or [11]). Notice that, for
any (z,y) € X x X, it holds that

F(x,y) = F(F(z,)) = (f o g(x),9 © f(9))-
S0, the dynamical behaviour of F must be connected in some sense with
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the dynamical behaviour of the maps f o g and g o f. Following this
idea, when X = [0, 1], some dynamical properties of F' were studied
in [10].

In this setting, in order to avoid unneccesary work, it is interesting
to study which is the relationship between the dynamical properties of
fogand go f. For instance, in the case of the topological entropy, it
is well known that h(f og) = h(go f) (see [4] and [9]) and hence it is
easy to see that h(F) = h(f og) = h(g o f). It is natural to think that
a similar situation is held for others topological invariants. However, it
was proved in [2] that the topological sequence entropy does not satisfy
this property: for the sequence A = (2%)$2; there are two continuous
maps f,g: X — X, with X a Cantor type set, such that ha(f o g) #
# ha(go f). This situation is impossible when one considers the spaces
X =1{0,1] or X = S*; for any pair of continuous interval or circle maps
f, g the formula h4(fog) = ha(go f) holds for any increasing sequence
of positive integers A (see [2]). In this paper we will extend this result
for maps defined on finite graphs.

2. Preliminaries

Let (X, d) be a compact metric space. Let us denote by C(X, X)
and Z the sets containing all the continuous maps f : X — X and all
the increasing sequences of positive integers, respectively. For all n €
€ N, f™ will denote the composition fo.?.o f (f° will be the identity).
Given an f € C(X,X) and A = (a;)2, € Z, the topological sequence
entropy (see [7]) is defined as follows. Let Z C X and let € > 0. A set
E C Z issaid (A, n, e, Z, f)-separated if for any z,y € E, ¢ # y there is
ake{l,2,...,n} with d(f*(z), f*:(y)) > €. Denote by s.(4,¢, Z, f)
the cardinality of any maximal (A, n, ¢, Z, f)-separated contained in Z.
It is easy to see that if Z; C Z5 C X, then

(1) sn(A e, 21, f) < sp(A e, 25, f).
It is also easy to check that for any Z;, Z, C X it holds that
(2) sn(A,e,Z1UZs, f) < sn(A,e,Z1, f) + sn(A, g, Za, ).
Let

s(Ae, Z, f) = limsupllogsn(A,e, Z, ).

n—oo 7N

The topological sequence entropy of f in Y is defined as the number
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ha(f,Y) = lim s(4,e,Y, f)

and the topological sequence entropy of f is

ha(f) = ha(f, X).
Clearly, when A = (7)32, this definition leads us to the classical topo-
logical entropy (see [3]). When one dimensional maps are consider, the
topological sequence entropy is a useful tool to check if a continuous
map is chaotic in the sense of Li-Yorke (see [6] and [8]).

Recall that a point € X is said periodic if there exists a positive
integer n such that f™(x) = z. The smallest positive integer satisfying
this condition is called the period of z. A point x is eventually periodic if
there exists a positive integer k such that f*(z) is periodic. Denote by
Per(f) and EPer(f) the sets of periodic and eventually periodic points
of f, respectively.

A finite graph (or simply a graph) G is a connected Hausdorff space
which has a finite subspace V' (points of V are called vertices) such that
G\ 'V is a disjoint union of finite number of open subsets e1,e2,..., ek
(called edges), each of them homeomorphic to an open interval of the
real line, and one or two vertices are attached at the boundary of each
edge. A graph G can be embedded in a closed ball of radius one, and
hence GG is a compact metric space. As usual, denote by d the metric
on G. For any edge e;, denote by |e;| its diameter. Since the number
of edges of G is finite, let

(3) A = A(G) = min{|e;| : e; is an edge of G}.

For z,y € e;, let [z,y] C e; be the arc of G connecting = and y. For
complementary information on graphs and dynamic properties of con-
tinuous maps defined on graphs see for instance [1].

3. Proof of the commutativity formula

The commutativity formula for the topological sequence entropy
is deeply connected with the surjectivity of the maps f and g. More
precisely, let X be a compact metric space and let f € C(X,X). Let
Y =(),>0 [M(X). Then, we have the following result (see [2]).
Theorem 1. If ha(fly) = ha(f) holds for any f € C(X,X) and any
AeZ, then

ha(fog)=ha(gof)
for any f,g € C(X,X) and any A€ T.
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- So, given a finite graph G, in order to prove the commutativity
formula for maps f,g € C(G,G) it suffices to prove that ha(fly) =
= ha(f) for any f € C(G,G) and any A € Z. Previously, we need
some useful definitions and several easy lemmas.

Notice that f™(@) is a finite graph for all n € N. Denote by V,, the
set of vertices of f™(G) for all n = 0,1,2,... Since f*(G) C f*(G)
for all n € N, it is clear that if v € V,, and v ¢ V41, then v ¢ Y.
Denote by Voo the set of vertices of Y = (1,5, /" (G). Here, we will
also consider as vertices of ¥ those points obtained as limit points of
sequences (v;)5°, with v; € V;. In order to illustrate this, consider the
following example. Let Y = {z € C: 2% € [0,1]}. Denote by B; the
branch of Y with vertices 0 and 1, that is, By = [0,1]. Denote by Bs
and Bj the others two branches of Y with vertices vy and vs. Define
f Y — Y as follows. If z € By, then let f(z) = z/2, and define
f on By U By satisfying that f(Bs U Bs) = By U By and continuous
(f(0) = 0). Notice that ¥ =1 <, f"(Y) = B2 U Bs and the vertices of
Y are vy, vs and 0. B

Let A be defined in (3). The following result is obvious.
Lemma 2. Let 0 < € < A\/2. Then, there is a positive integer ng such
that each connected component of f*°(G)\'Y has length smaller than
. Hence, each connected component of f*°(G)\Y is homeomorphic to
an interval of the real line.
Proof. It follows because f is uniformly continuous and the sequence
(f{(G))e2, decreases to Y. ¢

For n € N, n > ng, denote by C7,C¥,...,C" the connected
components of f™(G)\'Y. Notice that, for 1 < i < r, the closure of
Cr, CUCT) = [v,u] with v € Vi, and u € V,,. For any v € Vi, let
i1,%2,...,%s € {1,2,...,7} be such that v € Cl(C{;); 1 < j < s. Define
Cy = Uj—; CU(C}"). Notice that it is possible that C' = { for some
v € Voo. It is also clear that C2H C C™ for all n > ng. We distinguish
four types of vertices of Y in the following lemma.
Lemma 3. Let v € Voo. Under the conditions of Lemmna 2, there is a
no € N such that one and only one of the following possibilities holds:

(a) Cno = ).

(b) Cyo = {v}.

(c) Co° is infinite and f™o(C™0) C Y.

(d) Cpe is infinite and f™(C) €Y for all n > ng.
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Proof. By Lemma 2, there is an mo € N and some vertices u € V,, such
that C*° = Uyfv,u]. If CJ*° = @ or CJ* = {v}, then there is nothing
to prove. Assume that C}* = § and C]* s {v}. Clearly, C must be
infinite. Let VI° = {v € Vo : CJ™ is infinite}. For any v € V2 two
possibilities hold: either f*(C7) ¢ Y for all k € N or there is a k, € N
such that fF»(C™0) CY. Since V™0 is finite, let k., , . .., k.,; be positive
integers associated to v; € V20, 1 < < j, such that f* (C™) C Y for
1 <14 < j. Suppose also that if v € V70 \ {v1,...,v;}, then fF(Cr0) ¢
Z Y for all k € N. Let ng = max{ky,,,..., kv;,mo}. Notice that, since
Coo C e for all v € Voo and f(Y) =Y, it holds that fmo(C®) C Y
for all i =1,...,4. This concludes the proof. ¢

Let Vi = {v € V4 : v satisfies condition (d) in Lemma 3}.
Lemma 4. f(VL) C V.. Moreover, since V2 is finite, each v € V2,
s periodic or eventually periodic.
Proof. Let v € Vi. Then, there is a sequence of vertices v, € Vj,
v, 7 v for all n € N, such that lim,, ., v, = v and holding that, if n
is big enough, then f*[v, v,] Z Y for all k € N. Since f is continuous,
limn—eo f(vn) = f(v). |

Notice that f(v) ¢ Y\ Voo. In the contrary case, by the continuity
of f, it must exist a k € N with f(C*) € Y\ Ve, and this leads to a
contradiction. Using a similar argument it can be proved that f(v) ¢
¢ Voo \ V2. Finally, f(v) ¢ G\ Y because f(v) has infinite preimages
and any point in G\Y has a finite number of preimages. This concludes
the proof. ¢

Now, a general lemma on topological sequence entropy previously
proved in [2]. Let o : T — Z be the shift map defined by o(A) =
=0((a:)$2) = (ai41)2, forall A e 7.
Lemma 5. Let (X,d) be a compact metric space and let f € C(X, X).
Then, for any A€ T anye >0 and any k € N it holds that

s(A, 2, X, f) < s(0¥(A),e, X, f) < s(4,6,X, f).

Now, we are ready to prove our main theorem.
Theorem 6. Let f : G — G be continuous. Then, for any A € T it
holds that

ha(f) = ha(f,Y).

Proof. Fix a positive real number € < /2 (see (3)). Since V is finite,
by Lemmas 2, 3 and 4, there is a positive integer ng satisfying the
following conditions:
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) diam(Cp°) < € for all v € V.

) If v € Voo \ V2, then f(C70) C Y for all n > ng.

13) F(VE) C V& C Per(f) U EPer(f).

) Let v € Vo If f(v) = u € Vi, then there is a § > 0 such that if
U is a neighborhood of diameter smaller than § of some w € Vi,
v # u, then f(CM°)NU = (). We can clearly assume that € < 4.
Let k be the first integer such that a4 > no. By Lemma 5, it

holds that

(4) s(4,4¢e,G, f) < s(6"(A), 26, G, f).

In what follows, we will work with o*(A) instead of A.

Take a partition of f™°(G) \ Y by connected sets with diameter
smaller than € homeomorphic to intervals. Let Py = {P1, Ps,..., P}
be the partition covering 7 (G)\Y. Clearly, if P, € Py, then f7(F;) N
NP; = () for any j > ng. Let Py = {C7° : v € Vo }. So, we can construct
a partition of G\ 'Y by

P={P,P,,....,P.YU{C]® :veEVs}
Fix n € N. Any z € G\ Y has associated a code (C1,Cs,...,C;), [ <
< n, as follows; let [ be the first integer such that f*++1(z) € Y. For
1<i <, put C; =Cl0 if fo+i(x) € CI°. Notice that it is impossible
that f*+i(z) € P; for some 1 < j < 7. Let
Z(C1,Cy,...,C) ={z € G\ 'Y with code (C1,C,... ,CD '}

Let E be an (0F(A), n,¢,Y, f)-separated set of maximal cardinal-
ity. We claim that

(5) sn(c®(A),2¢, Z(Cy,Ca,...,C1), f) < Card(E) =sn(c"(4),e,7, f).

In order to see this, let F' be an (0%(4),n,2e, Z(Cy,Ca,...,C1), f)-
separated set of maximal cardinality. Since fly is surjective and E is
maximal, any z € F has associated a point y € FE such that
d(foe+i(z), f+i(y)) < € for [ < i < n. Notice that different z1,24 € F
have associated different points y1,y2 € E. This is due to the following
fact: if 1 and x5 have associated the same yi, then

d(f+i(z1), f9+ (22)) <
< d(f (wa), fH+(ya)) + d(f+ (va), F54 (22)) <
<e+e=2

for all [ < ¢ < n. Since z and y have the same code (Cy,...,C1),
d(f>+i(z), f*+i(y)) < 2e for 1 < 4 < [. Then, z1,z5 would not be
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(c®(A),n,2¢, Z(Cy,Cs, ..., C), f)-separated points. This proves our
claim.
Let G = {z € G: f*+1(z) € Y}. Notice that G = G}, U (UL, U
Uc,....c)Z2(Cu, ..., C1)). Notice also that
s(o®(4),2,Y, f) = s(c"(A), 2, Gy, ).
By (2) and (5),
sn(0P(4),2¢,G, f) <

Ssn(a’“(A),2e,Y,f)+Z Z sn(0®(A), 2, Z(C1,Ca,...,C0), )

I=1 (Ch,...,Cy)

< s,(0®(4), 2,7, f) <1+Z Y Card{(Cy,Ch, ..., C1) : Cs € 79}).
I=1 (C1,...,C1)

So, we must compute the cardinality of {(C1,Cs,...,C) : C; €
€ P} for some 1 <[ < n. First of all, notice that C; € P, for all
1 <4< Then

Card{(Cy,...,C1) : C; € P} = Card{(C4,...,C1) : C; € Pa}.

So, we will estimate Card{(C1,...,C}) : C; € P»}. Notice that if 1 </,
then, by (C2) and (C4), we must consider only codes C7° with v € V..
Notice also that, by (C2) and (C4), if C; = CJ°, then C; = C;}° with
foe+i(v) =u € VL. Then
Card{(Cy,...,C}) : C; € Py} = Card(VL).
If 1 = [, then obviusly Card{(C])} < Card(Vw). In any case
Card{(C1,...,C1) : C; € P} < Card(V).

Hence
ZCard{(Cl, 5,0 CiePr < ZCard(Voo) < nCard(Va).
=1 =1
50

6)  sn(0™(A),2,G, f) < (1+nCard(Veo))sn(0"(4),¢,Y, f).
Then, by Lemma 5 and (6), we have that
5(4,4¢,G, f) < 5(0™(4),22,G, f) =

— lim —log sn(0®(A), 2, G, f) <

n—00 71,

< lim Zlog ((1+ nCard(Veo))sn(0®(4),6,Y, f)) =

T n—oo 1
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= s(0t(4),6, Y, f) <
< s(A,e,Y, f).

Since obviously s(A4,e,Y,f) < s(4,¢,G, f), we obtain taking limits
when € tends to zero that

hA(f) Y) = h’A (f):
which ends the proof. ¢

Theorem 7. Let f,g : G — G be two continuous maps. Then for all
A €T it follows

ha(fog)=halgef).
Proof. It follows by Ths. 1 and 6. ¢

Final remarks

It seems that the commutativity formula for the topological se-
quence entropy is a one dimensional property. As we have mentioned
above, in [2] an example showing that Th. 7 does not hold for arbitrary
compact metric spaces has been constructed. We also conjecture that
Th. 7 does not hold in general in the case of two dimensional maps, for
example triangular maps (F : [0,1)> — [0, 1]? is said triangular if it has
the form F(z,y) = (f(z),9(z,y)), (z,y) € [0,1]?). Our conjecture is
supported by the following result.

Theorem 8. There is a triangular map F and an increasing sequence
of positive integers A such that ha(F,Y) =0 and ha(F) > 0.

Proof. By [5], there is a triangular map F,(z,y) = (az,9(z,y)), a €
€ (0, 1) satisfying that:

(a) F is non-chaotic in the sense of Li-Yorke (see [5] for the defi-
nition).

(b) There is an increasing sequence of positive integers such that
h4 (F ) > 0.

It is easy to see that (), ~q F™([0,1]%) € {0} x [0,1]. On the other
hand, the map go : [0, 1] — [0, 1] given by go(y) = F(0,v) is non-chaotic
(if go was chaotic, then F would be also chaotic). By Franzovd—Smital
Theorem (see [6]), ha(go) = 0. Then, we conclude that

ha(F,Y) < ha(go) =0 < ha(F),
which ends the proof. ¢
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