COMMUTATIVITY OF THE TOPO-LOGICAL SEQUENCE ENTROPY ON FINITE GRAPHS

J. S. Cánovas

Departamento de Matemática Aplicada, Universidad Politécnica de Cartagena, Paseo de Alfonso XIII, 34-36; 30203 Cartagena, Spain

Received: February 2002

MSC 2000: 37 B 40, 37 E 25, 37 B 10

Keywords: Dynamical systems, topological sequence entropy, commutativity formulae, graph maps.

Abstract: Let $f,g:G\to G$ be two continuous maps defined on a finite graph G. Denote by $h_A(f)$ the topological sequence entropy of f relative to the sequence of positive integers A. We prove for any sequence A the formula $h_A(f\circ g)=h_A(g\circ f)$.

1. Introduction

Let (X,d) be a compact metric space and consider maps $F: X \times X \to X \times X$ defined by $F(x,y) = (f(y),g(x)), (x,y) \in X \times X$, where $f,g: X \to X$ are continuous maps. These maps model economic phenomena called duopoly games (see [4], [12] or [11]). Notice that, for any $(x,y) \in X \times X$, it holds that

$$F^{2}(x,y) = F(F(x,y)) = (f \circ g(x), g \circ f(y)).$$

So, the dynamical behaviour of F must be connected in some sense with

E-mail address: Jose.Canovas@upct.es

The author has been partially supported by the grants BFM 2002–03512 from Ministerio de Ciencia y Tecnología of Spain and PI–8/00807/FS/01 from Fundación Séneca (Comunidad Autónoma de Murcia).

the dynamical behaviour of the maps $f \circ g$ and $g \circ f$. Following this idea, when X = [0, 1], some dynamical properties of F were studied in [10].

In this setting, in order to avoid unneccesary work, it is interesting to study which is the relationship between the dynamical properties of $f \circ g$ and $g \circ f$. For instance, in the case of the topological entropy, it is well known that $h(f \circ g) = h(g \circ f)$ (see [4] and [9]) and hence it is easy to see that $h(F) = h(f \circ g) = h(g \circ f)$. It is natural to think that a similar situation is held for others topological invariants. However, it was proved in [2] that the topological sequence entropy does not satisfy this property: for the sequence $A = (2^i)_{i=1}^{\infty}$ there are two continuous maps $f, g: X \to X$, with X a Cantor type set, such that $h_A(f \circ g) \neq h_A(g \circ f)$. This situation is impossible when one considers the spaces X = [0,1] or $X = S^1$; for any pair of continuous interval or circle maps f, g the formula $h_A(f \circ g) = h_A(g \circ f)$ holds for any increasing sequence of positive integers A (see [2]). In this paper we will extend this result for maps defined on finite graphs.

2. Preliminaries

Let (X,d) be a compact metric space. Let us denote by C(X,X) and \mathcal{I} the sets containing all the continuous maps $f:X\to X$ and all the increasing sequences of positive integers, respectively. For all $n\in\mathbb{N}$, f^n will denote the composition $f\circ n\circ f(f^0)$ will be the identity). Given an $f\in C(X,X)$ and $A=(a_i)_{i=1}^\infty\in\mathcal{I}$, the topological sequence entropy (see [7]) is defined as follows. Let $Z\subset X$ and let $\varepsilon>0$. A set $E\subset Z$ is said (A,n,ε,Z,f) -separated if for any $x,y\in E, x\neq y$ there is a $k\in\{1,2,\ldots,n\}$ with $d(f^{a_k}(x),f^{a_k}(y))>\varepsilon$. Denote by $s_n(A,\varepsilon,Z,f)$ the cardinality of any maximal (A,n,ε,Z,f) -separated contained in Z. It is easy to see that if $Z_1\subset Z_2\subseteq X$, then

(1)
$$s_n(A, \varepsilon, Z_1, f) \leq s_n(A, \varepsilon, Z_2, f).$$

It is also easy to check that for any $Z_1, Z_2 \subseteq X$ it holds that

(2)
$$s_n(A, \varepsilon, Z_1 \cup Z_2, f) \leq s_n(A, \varepsilon, Z_1, f) + s_n(A, \varepsilon, Z_2, f).$$

Let

$$s(A, \varepsilon, Z, f) := \limsup_{n \to \infty} \frac{1}{n} \log s_n(A, \varepsilon, Z, f).$$

The topological sequence entropy of f in Y is defined as the number

$$h_A(f,Y) := \lim_{\varepsilon \to 0} s(A,\varepsilon,Y,f)$$

and the topological sequence entropy of f is

$$h_A(f) := h_A(f, X).$$

Clearly, when $A = (i)_{i=0}^{\infty}$ this definition leads us to the classical topological entropy (see [3]). When one dimensional maps are consider, the topological sequence entropy is a useful tool to check if a continuous map is chaotic in the sense of Li-Yorke (see [6] and [8]).

Recall that a point $x \in X$ is said periodic if there exists a positive integer n such that $f^n(x) = x$. The smallest positive integer satisfying this condition is called the period of x. A point x is eventually periodic if there exists a positive integer k such that $f^k(x)$ is periodic. Denote by Per(f) and EPer(f) the sets of periodic and eventually periodic points of f, respectively.

A finite graph (or simply a graph) G is a connected Hausdorff space which has a finite subspace V (points of V are called vertices) such that $G \setminus V$ is a disjoint union of finite number of open subsets e_1, e_2, \ldots, e_k (called edges), each of them homeomorphic to an open interval of the real line, and one or two vertices are attached at the boundary of each edge. A graph G can be embedded in a closed ball of radius one, and hence G is a compact metric space. As usual, denote by d the metric on G. For any edge e_i , denote by $|e_i|$ its diameter. Since the number of edges of G is finite, let

(3)
$$\lambda = \lambda(G) = \min\{|e_i| : e_i \text{ is an edge of } G\}.$$

For $x, y \in e_i$, let $[x, y] \subseteq e_i$ be the arc of G connecting x and y. For complementary information on graphs and dynamic properties of continuous maps defined on graphs see for instance [1].

3. Proof of the commutativity formula

The commutativity formula for the topological sequence entropy is deeply connected with the surjectivity of the maps f and g. More precisely, let X be a compact metric space and let $f \in C(X,X)$. Let $Y = \bigcap_{n \geq 0} f^n(X)$. Then, we have the following result (see [2]).

Theorem 1. If $h_A(f|_Y) = h_A(f)$ holds for any $f \in C(X,X)$ and any $A \in \mathcal{I}$, then

$$h_A(f \circ g) = h_A(g \circ f)$$

for any $f, g \in C(X, X)$ and any $A \in \mathcal{I}$.

So, given a finite graph G, in order to prove the commutativity formula for maps $f, g \in C(G, G)$ it suffices to prove that $h_A(f|_Y) = h_A(f)$ for any $f \in C(G, G)$ and any $A \in \mathcal{I}$. Previously, we need some useful definitions and several easy lemmas.

Notice that $f^n(G)$ is a finite graph for all $n \in \mathbb{N}$. Denote by V_n the set of vertices of $f^n(G)$ for all $n = 0, 1, 2, \ldots$ Since $f^{n+1}(G) \subseteq f^n(G)$ for all $n \in \mathbb{N}$, it is clear that if $v \in V_n$ and $v \notin V_{n+1}$, then $v \notin Y$. Denote by V_{∞} the set of vertices of $Y = \bigcap_{n \geq 0} f^n(G)$. Here, we will also consider as vertices of Y those points obtained as limit points of sequences $(v_i)_{i=0}^{\infty}$ with $v_i \in V_i$. In order to illustrate this, consider the following example. Let $\mathbb{Y} = \{z \in \mathbb{C} : z^3 \in [0,1]\}$. Denote by B_1 the branch of \mathbb{Y} with vertices 0 and 1, that is, $B_1 = [0,1]$. Denote by B_2 and B_3 the others two branches of \mathbb{Y} with vertices v_2 and v_3 . Define $f : \mathbb{Y} \to \mathbb{Y}$ as follows. If $x \in B_1$, then let f(x) = x/2, and define f on $B_2 \cup B_3$ satisfying that $f(B_2 \cup B_3) = B_2 \cup B_3$ and continuous (f(0) = 0). Notice that $Y = \bigcap_{n \geq 0} f^n(\mathbb{Y}) = B_2 \cup B_3$ and the vertices of Y are v_2, v_3 and 0.

Let λ be defined in (3). The following result is obvious.

Lemma 2. Let $0 < \varepsilon < \lambda/2$. Then, there is a positive integer n_0 such that each connected component of $f^{n_0}(G) \setminus Y$ has length smaller than ε . Hence, each connected component of $f^{n_0}(G) \setminus Y$ is homeomorphic to an interval of the real line.

Proof. It follows because f is uniformly continuous and the sequence $(f^i(G))_{i=0}^{\infty}$ decreases to Y. \Diamond

For $n \in \mathbb{N}$, $n \geq n_0$, denote by $C_1^n, C_2^n, \ldots, C_r^n$ the connected components of $f^n(G) \setminus Y$. Notice that, for $1 \leq i \leq r$, the closure of C_i^n , $\operatorname{Cl}(C_i^n) = [v, u]$ with $v \in V_{\infty}$ and $u \in V_n$. For any $v \in V_{\infty}$, let $i_1, i_2, \ldots, i_s \in \{1, 2, \ldots, r\}$ be such that $v \in \operatorname{Cl}(C_{i_j}^n)$, $1 \leq j \leq s$. Define $C_v^n = \bigcup_{j=1}^s \operatorname{Cl}(C_i^n)$. Notice that it is possible that $C_v^n = \emptyset$ for some $v \in V_{\infty}$. It is also clear that $C_v^{n+1} \subseteq C_v^n$ for all $n \geq n_0$. We distinguish four types of vertices of Y in the following lemma.

Lemma 3. Let $v \in V_{\infty}$. Under the conditions of Lemma 2, there is a $n_0 \in \mathbb{N}$ such that one and only one of the following possibilities holds:

- (a) $C_v^{n_0} = \emptyset$.
- (b) $C_v^{n_0} = \{v\}.$
- (c) $C_v^{n_0}$ is infinite and $f^{n_0}(C_v^{n_0}) \subseteq Y$.
- (d) $C_v^{n_0}$ is infinite and $f^n(C_v^n) \nsubseteq Y$ for all $n \geq n_0$.

Proof. By Lemma 2, there is an $m_0 \in \mathbb{N}$ and some vertices $u \in V_{m_0}$ such that $C_v^{m_0} = \bigcup_u [v, u]$. If $C_v^{m_0} = \emptyset$ or $C_v^{m_0} = \{v\}$, then there is nothing to prove. Assume that $C_v^{m_0} \neq \emptyset$ and $C_v^{m_0} \neq \{v\}$. Clearly, $C_v^{m_0}$ must be infinite. Let $V_{\infty}^{m_0} = \{v \in V_{\infty} : C_v^{m_0} \text{ is infinite}\}$. For any $v \in V_{\infty}^{m_0}$ two possibilities hold: either $f^k(C_v^{m_0}) \nsubseteq Y$ for all $k \in \mathbb{N}$ or there is a $k_v \in \mathbb{N}$ such that $f^{k_v}(C_v^{m_0}) \subseteq Y$. Since $V_{\infty}^{m_0}$ is finite, let k_{v_1}, \ldots, k_{v_j} be positive integers associated to $v_i \in V_{\infty}^{m_0}$, $1 \leq i \leq j$, such that $f^{k_{v_i}}(C_{v_i}^{m_0}) \subseteq Y$ for $1 \leq i \leq j$. Suppose also that if $v \in V_{\infty}^{m_0} \setminus \{v_1, \ldots, v_j\}$, then $f^k(C_v^{m_0}) \nsubseteq Y$ for all $k \in \mathbb{N}$. Let $n_0 = \max\{k_{v_1}, \ldots, k_{v_j}, m_0\}$. Notice that, since $C_v^{n_0} \subseteq C_v^{m_0}$ for all $v \in V_{\infty}$ and f(Y) = Y, it holds that $f^{n_0}(C_{v_i}^{n_0}) \subseteq Y$ for all $i = 1, \ldots, j$. This concludes the proof. \Diamond

Let $V_{\infty}^{i} = \{v \in V_{\infty} : v \text{ satisfies condition (d) in Lemma 3}\}.$

Lemma 4. $f(V_{\infty}^i) \subseteq V_{\infty}^i$. Moreover, since V_{∞}^i is finite, each $v \in V_{\infty}^i$ is periodic or eventually periodic.

Proof. Let $v \in V_{\infty}^i$. Then, there is a sequence of vertices $v_n \in V_n$, $v_n \neq v$ for all $n \in \mathbb{N}$, such that $\lim_{n \to \infty} v_n = v$ and holding that, if n is big enough, then $f^k[v, v_n] \not\subseteq Y$ for all $k \in \mathbb{N}$. Since f is continuous, $\lim_{n \to \infty} f(v_n) = f(v)$.

Notice that $f(v) \notin Y \setminus V_{\infty}$. In the contrary case, by the continuity of f, it must exist a $k \in \mathbb{N}$ with $f(\mathcal{C}_v^k) \subset Y \setminus V_{\infty}$, and this leads to a contradiction. Using a similar argument it can be proved that $f(v) \notin V_{\infty} \setminus V_{\infty}^i$. Finally, $f(v) \notin G \setminus Y$ because f(v) has infinite preimages and any point in $G \setminus Y$ has a finite number of preimages. This concludes the proof. \Diamond

Now, a general lemma on topological sequence entropy previously proved in [2]. Let $\sigma: \mathcal{I} \to \mathcal{I}$ be the shift map defined by $\sigma(A) = \sigma((a_i)_{i=1}^{\infty}) = (a_{i+1})_{i=1}^{\infty}$ for all $A \in \mathcal{I}$.

Lemma 5. Let (X, d) be a compact metric space and let $f \in C(X, X)$. Then, for any $A \in \mathcal{I}$ any $\varepsilon > 0$ and any $k \in \mathbb{N}$ it holds that

$$s(A, 2\varepsilon, X, f) \le s(\sigma^k(A), \varepsilon, X, f) \le s(A, \varepsilon, X, f).$$

Now, we are ready to prove our main theorem.

Theorem 6. Let $f: G \to G$ be continuous. Then, for any $A \in \mathcal{I}$ it holds that

$$h_A(f) = h_A(f, Y).$$

Proof. Fix a positive real number $\varepsilon < \lambda/2$ (see (3)). Since V_{∞} is finite, by Lemmas 2, 3 and 4, there is a positive integer n_0 satisfying the following conditions:

- (C1) diam $(\mathcal{C}_v^{n_0}) < \varepsilon$ for all $v \in V_{\infty}$.
- (C2) If $v \in V_{\infty} \setminus V_{\infty}^{i}$, then $f^{n}(\mathcal{C}_{v}^{n_{0}}) \subset Y$ for all $n \geq n_{0}$.
- (C3) $f(V_{\infty}^i) \subset V_{\infty}^i \subset \operatorname{Per}(f) \cup \operatorname{EPer}(f)$.
- (C4) Let $v \in V_{\infty}$. If $f(v) = u \in V_{\infty}$, then there is a $\delta > 0$ such that if U is a neighborhood of diameter smaller than δ of some $w \in V_{\infty}$, $v \neq u$, then $f(\mathcal{C}_v^{n_0}) \cap U = \emptyset$. We can clearly assume that $\varepsilon \leq \delta$.

Let k be the first integer such that $a_{k+1} > n_0$. By Lemma 5, it holds that

(4)
$$s(A, 4\varepsilon, G, f) \le s(\sigma^k(A), 2\varepsilon, G, f).$$

In what follows, we will work with $\sigma^k(A)$ instead of A.

Take a partition of $f^{n_0}(G) \setminus Y$ by connected sets with diameter smaller than ε homeomorphic to intervals. Let $\mathcal{P}_1 = \{P_1, P_2, \dots, P_r\}$ be the partition covering $f^{n_0}(G) \setminus Y$. Clearly, if $P_i \in \mathcal{P}_1$, then $f^j(P_i) \cap P_i = \emptyset$ for any $j > n_0$. Let $\mathcal{P}_2 = \{\mathcal{C}_v^{n_0} : v \in V_\infty\}$. So, we can construct a partition of $G \setminus Y$ by

$$\mathcal{P} = \{P_1, P_2, \dots, P_r\} \cup \{C_v^{n_0} : v \in V_{\infty}\}.$$

Fix $n \in \mathbb{N}$. Any $x \in G \setminus Y$ has associated a code (C_1, C_2, \ldots, C_l) , $l \leq n$, as follows; let l be the first integer such that $f^{a_{k+l+1}}(x) \in Y$. For $1 \leq i \leq l$, put $C_i = \mathcal{C}_v^{n_0}$ if $f^{a_{k+i}}(x) \in \mathcal{C}_v^{n_0}$. Notice that it is impossible that $f^{a_{k+i}}(x) \in P_j$ for some $1 \leq j \leq r$. Let

$$Z(C_1, C_2, \dots, C_l) = \{x \in G \setminus Y \text{ with code } (C_1, C_2, \dots, C_l)\}.$$

Let E be an $(\sigma^k(A), n, \varepsilon, Y, f)$ -separated set of maximal cardinality. We claim that

(5)
$$s_n(\sigma^k(A), 2\varepsilon, \mathcal{Z}(C_1, C_2, ..., C_l), f) \le \operatorname{Card}(E) = s_n(\sigma^k(A), \varepsilon, Y, f).$$

In order to see this, let F be an $(\sigma^k(A), n, 2\varepsilon, \mathcal{Z}(C_1, C_2, \ldots, C_l), f)$ separated set of maximal cardinality. Since $f|_Y$ is surjective and E is
maximal, any $x \in F$ has associated a point $y \in E$ such that $d(f^{a_{k+1}}(x), f^{a_{k+1}}(y)) < \varepsilon$ for $l < i \le n$. Notice that different $x_1, x_2 \in F$ have associated different points $y_1, y_2 \in E$. This is due to the following
fact: if x_1 and x_2 have associated the same y_1 , then

$$d(f^{a_{k+i}}(x_1), f^{a_{k+i}}(x_2)) \le$$

$$\le d(f^{a_{k+i}}(x_1), f^{a_{k+i}}(y_1)) + d(f^{a_{k+i}}(y_1), f^{a_{k+i}}(x_2)) <$$

$$< \varepsilon + \varepsilon = 2\varepsilon$$

for all $l < i \le n$. Since x and y have the same code (C_1, \ldots, C_l) , $d(f^{a_{k+i}}(x), f^{a_{k+i}}(y)) < 2\varepsilon$ for $1 \le i \le l$. Then, x_1, x_2 would not be

 $(\sigma^k(A), n, 2\varepsilon, \mathcal{Z}(C_1, C_2, \dots, C_l), f)$ -separated points. This proves our claim.

Let $G_k = \{x \in G : f^{a_{k+1}}(x) \in Y\}$. Notice that $G = G_k \cup (\bigcup_{l=1}^n \cup \bigcup_{(C_1,\ldots,C_l)} \mathcal{Z}(C_1,\ldots,C_l))$. Notice also that

$$s(\sigma^k(A), 2\varepsilon, Y, f) = s(\sigma^k(A), 2\varepsilon, G_k, f).$$

By (2) and (5),

$$s_n(\sigma^k(A), 2\varepsilon, G, f) \le$$

$$\leq s_n(\sigma^k(A), 2\varepsilon, Y, f) + \sum_{l=1}^n \sum_{(C_1, \dots, C_l)} s_n(\sigma^k(A), 2\varepsilon, \mathcal{Z}(C_1, C_2, \dots, C_l), f)$$

$$\leq s_n(\sigma^k(A), 2\varepsilon, Y, f) \left(1 + \sum_{l=1}^n \sum_{(C_1, ..., C_l)} \text{Card}\{(C_1, C_2, ..., C_l) : C_i \in \mathcal{P}\}\right).$$

So, we must compute the cardinality of $\{(C_1, C_2, \ldots, C_l) : C_i \in \mathcal{P}\}$ for some $1 \leq l \leq n$. First of all, notice that $C_i \in \mathcal{P}_2$ for all $1 \leq i \leq l$. Then

$$\operatorname{Card}\{(C_1,\ldots,C_l):C_i\in\mathcal{P}\}=\operatorname{Card}\{(C_1,\ldots,C_l):C_i\in\mathcal{P}_2\}.$$

So, we will estimate $\operatorname{Card}\{(C_1,\ldots,C_l):C_i\in\mathcal{P}_2\}$. Notice that if 1< l, then, by (C2) and (C4), we must consider only codes $\mathcal{C}_v^{n_0}$ with $v\in V_\infty^i$. Notice also that, by (C2) and (C4), if $C_1=\mathcal{C}_v^{n_0}$, then $C_i=\mathcal{C}_u^{n_0}$ with $f^{a_{k+i}}(v)=u\in V_\infty^i$. Then

$$\operatorname{Card}\{(C_1,\ldots,C_l):C_i\in\mathcal{P}_2\}=\operatorname{Card}(V_\infty^i).$$

If 1 = l, then obviously $Card\{(C_l)\} \leq Card(V_{\infty})$. In any case

$$\operatorname{Card}\{(C_1,\ldots,C_l):C_i\in\mathcal{P}\}\leq\operatorname{Card}(V_\infty).$$

Hence

$$\sum_{l=1}^{n} \operatorname{Card}\{(C_1, \dots, C_l) : C_i \in \mathcal{P}\} \leq \sum_{l=1}^{n} \operatorname{Card}(V_{\infty}) \leq n \operatorname{Card}(V_{\infty}).$$

(6)
$$s_n(\sigma^k(A), 2\varepsilon, G, f) \le (1 + n\operatorname{Card}(V_\infty))s_n(\sigma^k(A), \varepsilon, Y, f).$$

Then, by Lemma 5 and (6), we have that

$$s(A, 4\varepsilon, G, f) \leq s(\sigma^{k}(A), 2\varepsilon, G, f) =$$

$$= \lim_{n \to \infty} \frac{1}{n} \log s_{n}(\sigma^{k}(A), 2\varepsilon, G, f) \leq$$

$$\leq \lim_{n \to \infty} \frac{1}{n} \log \left((1 + n \operatorname{Card}(V_{\infty})) s_{n}(\sigma^{k}(A), \varepsilon, Y, f) \right) =$$

$$= s(\sigma^k(A), \varepsilon, Y, f) \le$$

$$\le s(A, \varepsilon, Y, f).$$

Since obviously $s(A, \varepsilon, Y, f) \leq s(A, \varepsilon, G, f)$, we obtain taking limits when ε tends to zero that

$$h_A(f, Y) = h_A(f),$$

which ends the proof. \Diamond

Theorem 7. Let $f, g: G \to G$ be two continuous maps. Then for all $A \in \mathcal{I}$ it follows

$$h_A(f \circ g) = h_A(g \circ f).$$

Proof. It follows by Ths. 1 and 6. \Diamond

Final remarks

It seems that the commutativity formula for the topological sequence entropy is a one dimensional property. As we have mentioned above, in [2] an example showing that Th. 7 does not hold for arbitrary compact metric spaces has been constructed. We also conjecture that Th. 7 does not hold in general in the case of two dimensional maps, for example triangular maps $(F:[0,1]^2 \to [0,1]^2$ is said triangular if it has the form $F(x,y) = (f(x),g(x,y)), (x,y) \in [0,1]^2$). Our conjecture is supported by the following result.

Theorem 8. There is a triangular map F and an increasing sequence of positive integers A such that $h_A(F, Y) = 0$ and $h_A(F) > 0$.

Proof. By [5], there is a triangular map $F_{\alpha}(x,y) = (\alpha x, g(x,y)), \alpha \in (0,1)$ satisfying that:

- (a) F is non-chaotic in the sense of Li–Yorke (see [5] for the definition).
- (b) There is an increasing sequence of positive integers such that $h_A(F) > 0$.

It is easy to see that $\bigcap_{n\geq 0} F^n([0,1]^2) \subset \{0\} \times [0,1]$. On the other hand, the map $g_0: [0,1] \to [0,1]$ given by $g_0(y) = F(0,y)$ is non-chaotic (if g_0 was chaotic, then F would be also chaotic). By Franzová–Smítal Theorem (see [6]), $h_A(g_0) = 0$. Then, we conclude that

$$h_A(F, Y) \le h_A(g_0) = 0 < h_A(F),$$

which ends the proof. \Diamond

References

- [1] ALSEDA, Ll., LLIBRE, J. and MISIUREWICZ, M.: Low-dimensional combinatorial dynamics, *Internat. J. Bifur. Chaos Appl. Sci. Engrg.* 9 (1999), 1687–1704.
- [2] BALIBREA, F., CÁNOVAS, J. and JIMENEZ LOPEZ, V.: Commutativity and non-commutativity of the topological sequence entropy, *Ann. Inst. Fourier* (Grenoble) 49 (1999), 1693–1709.
- [3] BOWEN, R.: Entropy for group endomorphism and homogeneous spaces, *Trans. Amer. Math. Soc.* **153** (1971), 401–414.
- [4] DANA, R. A. and MONTRUCCHIO, L.: Dynamic complexity in duopoly games, Journal of Economic Theory 44 (1986), 40–56.
- [5] FORTI, G. L., PAGANONI, L. and SMITAL, J.: Strange traingular maps of the square, *Bull. Austral. Math. Soc.* **51** (1995), 395–415.
- [6] FRANZOVA, N. and SMITAL, J.: Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083–1086.
- [7] GOODMAN, T. N. T.: Topological sequence entropy, *Proc. London Math. Soc.* **29** (1974), 331–350.
- [8] HRIC, R.: Topological sequence entropy for maps of the circle, *Comment. Math. Univ. Carolinae* 41 (2000), 53–59.
- [9] KOLYADA, S. and SNOHA, L.: Topological entropy of nonautononous dynamical systems, *Random and Comp. Dynamics* 4 (1996), 205–233.
- [10] LINERO, A.: Cuestiones sobre dinámica topológica de algunos sistemas bidimensionales y medidas invariantes de sistemas unidimensionales asociados, PhD Thesis, Universidad de Murcia, 1998.
- [11] PUU, T.: Chaos in duopoly pricing, Chaos, Solitons & Fractals 1 (1991), 573–581.
- [12] RAND, D.: Exotic phenomena in games and doupoly models, J. Math. Econ. 5 (1978), 173–184.