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Abstract: In this paper, we extend the notion of E-convex sets to bi-(¢,)
convex sets and study some properties of this class of sets.

1. The notion of bi-(y , 1) convex set

Let X and Y be linear real spaces, ¢ : X - X and¢:Y =Y
two maps.
Definition 1.1. Let T C R, T # . A subset M of X x Y is said to be
bi-(p, 1) convez with respect to T, either if M = § or, if for all (z,v),
(z,v), (u,y) of M, and all t € T, we have

(1) ((z), 1 = t)Y(y) +tp(v)) € M
and
(2) (1 = t)o(z) + to(u),¥(y)) € M.

Example 1.1. Let X =Y =R, ¢ : R - R,
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o(z) = 2%, for allz € R,
and ¥ : R — R,

Y(z) = 2%, for allz € R.
Let

M =([0,1] x [0,1]) | J(-1,0] x [-1,0]) CR? and T =[0,1].

Obviously, if (z,v), (z,v), (u,y) € M and t € [0,1], we have
¢(35) € [07 1]7 d}(y) € [07 1]) (1 - t)?,b(y) +t¢(”) = (1 - t)yz +t’02 € [07 1];
(1=t)p(@)+tp(u) = (1 -t)z? +tu® € [0, 1]. Hence (p(z), (1 —t)1b(y) +
() € [0,1] x [0,1] C M, and (1 — Dp(z) + teo(u), () € [0, 1] x
x [0,1] € M. Therefore, M is bi-(¢,1)) convex with respect to [0, 1].
Evidently, the set M is not convex.
Remark 1.1. If M C X x Y is convex (in the classical sens), then M
is bi-(1x, ly) convex with respect to T' = [0, 1].

The converse is not necessarily true as seen in the following
Example 1.2. Let X =Y =R, and

M = {(z,0) |z € [0,1]} J{(.9) |y € [0,1]}.

We show that the set M is bi-(1g,1g) convex with respect to
T = [0,1]. Let (z,9), (z,v), (u,y) € M and t € [0,1]. It is easy to
see that, if © = u, or y = v, then (¢(x), (1 — t)w(y) + tv(v)) € M, and
(1 = t)o(x) + to(u),¥(y)) € M. Let now z # u, and y # v. It follows
that (2,y) = (1,0). Then (p(z), (1 — Hi(y) + t9(v)) = (1tv) € M,
and ((1 —t)o(z) + tp(uw),¥(y)) = (1 — t) + tu,0) € M. Therefore M
is bi-(1g, 1g) convex with respect to [0, 1]. But the set M is not convex
(we have (0,0) € M, (1,1) € M, and $(0,0) + £(1,1) = (3, %) ¢ M).
Remark 1.2. If M C X x Y is an affine set, then M is bi-(1x,1y)
convex with respect to T' = R. It follows that the notion of bi-(p,)
convex set with respect to T =R is a generalization of affine set.
Remark 1.3. Let us suppose that A C [0,1], with {0,1} C A. We
remember that a set M C R™ is said to be quasi-convex (see [4] ) if for
each z,y € M, one has {tx+ (1 —t)y |t € A} C M. It is easy to see that
if M C R™xR™, where n, m are natural numbers, is a quasi-convex set,
then M is bi-(1x, 1y) convex with respect to T'= A. For A = {0, 5,1}
we obtain the midpoint convexity (see [5]).

Remark 1.4. Let ¢ : X — X, ¥ : Y — Y be two functions and let
Tn CTy, CR, Ty #£ 0. Ifaset M C X xY is bi-(p,9) convex with
respect to 15, then M is also bi-(i, 1) convex with respect to T7.
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The converse is not necessarily true as seen in the following
Example 1.3. Let X =Y =R, and
‘ M = [0, +o00[x [0, +00].
It is easy to see that the set M is bi-(1g, 1g) convex with respect to
Ty =[0,1]. But M is not bi-(1g, 1g) convex with respect to Ty = [0, 2],
because if we take (z,y) = (1,1), (z,v) = (1,0), (u,y) = (0,1), and
t =2, we have (1 -2)1+2-0,1) =(-1,1) ¢ M.
Remark 1.5. Let AC X, BCY,andp: X — X, ¥:Y — Y be two
functions. If @(A) C A, ¥(B) C B, and the sets ¢(A) and ¢(B) are
convex, then the set A x B is bi-(¢, 1) convex with respect to T' = [0, 1].
Proposition 1.1. Let TCR, T # 0. If M C X XY 1is bi-(p,%) convex
with respect to T, then for each (z,y) € M we have (p(z),%(y)) € M.
Proof. Let be (z,y) € M, and ¢t € T. If we take u = z, v = y, from
Def. 1.1 we get

(p(x), ¥ () = (o), (1 —)p(y) +tY(v)) € M. O
Let M C X xY. We denote
M; = {z € X |3y € Y such that (z,y) € M},

My ={y € Y |3z € X such that (z,y) € M}.
Throughout the paper M; and M, will always have this meaning,
Proposition 1.2. Let T CR, withO e T, or1 € T, and let M C X xY.
If the set M is bi-(p, ) convex with respect to T, then

(3) (My) x Y(Ms) C M.

Proof. If M = (), then M; = (), and M5 = {). Therefore (3) is true. Let
now M # 0, and let (u,v) € @(M;) x ¥(Ms). Then there are z € M,
with u = p(z), and y € M, with v = ¥(y). If we taket =0, or t =1,
we obtain
(u,v) = (p(2), %)) = ((p(x), (1 = )Y(y) + t(y)) € M. ¢
In the following, for each x € M7, we put
M, ={y eY|(z,y) € M},
and, for each y € M, we put
M, ={z e X|(z,y) € M}.
Proposition 1.3. If the set M C X xY is bi-(p, ) convex with respect
to T and [0,1] C T, then
i) for each x € My, the set {(¢(z),¥(y)) |y € Mz} is convez;
ii) for each y € My, the set {(¢(x),¥(y)) |z € My} is convez.
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Proof. i) Let be z € My, y, v € My, and t € [0,1]. As (z,y) € M,
(z,v) € M, we get
(p(z), (1 — )Y (y) + tv(v)) € M, for each t € [0,1].

It follows that
(I-t)p(z)+to(z), 1-)9(y)+ty(v) = (o(2), 1-1)9(y)+th(v)) € M,
for each t € [0, 1]. Therefore, for each z € My, the set {(p(z),¥(y)) |y €
€ M,} is convex.

In the same way we can prove ii). ¢

We remark two particular cases: ¢ = 1x, and ¢ = ly.
Proposition 1.4. Let ¢ : X — X, and 9 : Y — Y, be two functions,
and let T CR, T # 0. If the set M C X x Y is bi-(1x,v) convezx with
respect to T' and bi-(p, ly) convex with respect to T, then M is bi-(p, 1)
convex with respect to T'.
Proof. If M = 0, then the conclusion is true. Let now M # . Let
(z,v), (z,v), (v,y) € M and ¢t € T. We have

(z, (1 =)y (y) +t(v)) € M, and ((1 — D)p(z) + tp(u),y) € M.
Then, applying Prop. 1.1, because M is bi-(¢, ly) convex, we obtain
(p(z), (1 = )p(y) + tp(v)) € M,
and, because M is (1x,v) convex, we have
(1 =t)eo(z) + to(u), P (y)) € M.

Therefore, the set M is bi-(p, 1)) convex with respect to T. ¢

The converse is not necessarily true as seen in the following
Example 1.4. Let X =Y =R, T=1[0,1], ¢ : R = R,

o(r) =1, for allz € R,

¥ = 1g, and

M ={(1,)) I AE [07 1]} U{<27 0)7 (2? 1)}
For each (z,y), (z,v), (u,y) € M , we have

ze{l,2}, ve{1,2}, y€[0,1], ve [0,1].
It follows that
(o), A=) (y)+tp(v)) = (1, (I-t)y+tv)) = (1, 2) € {1} x[0,1] € M,
and

(1 =t)o(z) + to(u), ¥(y) = (Ly)) €{1} x [0,1] € M.

Hence the set M is bi-(p,1) convex with respect to 7' But the set M

is not bi-(1x,%) convex with respect to T' = [0, 1], because (2,0) € M,
(2,1) € M, and
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1. 1
(2, 1+ -2-0) ¢ M.

Proposition 1.5. Let ¢ : X — X, and ¢ : Y — Y be two functions,
and let TCR, T # 0. If M=AxB C X xY, then M is bi-(v,)
conver with respect to T, if and only if M is bi-(1x,v) convex with
respect to T and bi-(p, ly) convex with respect to T.
Proof. The sufficiency results from Prop. 1.4. Now, let M = A x B
bi-(¢, 1) convex with respect to T. Let (z,v), (z,v), (u,y) € M and
t € T. We have (1) and (2). Then
(I =t)(y) + t(v) € B, and (1 — t)p(z) + to(u) € A.
From (z,y) € A x B, it results that
r e Aandy € B.
Therefore
(z, 1)y (y)+Hy(v)) € AxB =M, ((1-t)p(x)+tp(u),y) € AxB = M.
Hence M = A x B is bi-(1x,%) convex and bi-(¢,1ly) convex with
respect to T. ¢ ,
Remark 1.6. Let X and Y be linear real spaces, ¢ : X — X, and
Y Y =Y two maps. We take
S={{{zy), (z,v), (wy}|z,ueX, yve¥} C 27,

and we consider the functions s : § — 2X*Y,

s({(z,9), (z,v), (u,y)}) = |
= {(p(x), (1 = )Y (y) + t¥(v)), (1 = t)e(x) + to(u), ¥(y)) [t € T},
for each {(z,v), (z,v), (u,y)} € S. It is easy to see that a subset M of
X XY is bi-(p, 1) convex if and only if
s(D) C M, for all D = {(z,y), (z,v), (u,y)} € S, D C M.
In view of [3], §8.3, the bi-(p, ) convex convexity is a (S, s) convexity.

2. The connection with the E-convexity

The class of convex sets has been extended recently to the class of
E-convex sets. We recall the Youness definition (see [7]): aset M C R™
is said to be E-convex iff there is a map E : R™ — R”™ such that

(1-XNE(x)+ AE(y) € M, foreachz,y € M, and 0 < A < 1.
It is obvious that, according to this definition, each set M C R™ is E-
convex (the empty set is evidently E-convex for any map £ : R® — R",
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and, if M # (, and m € M, then we can take the map E given by
E(z) = m, for each x € R™). Therefore, we shall restrict this concept
to the following: let W be a linear real space, and E : W — W be a
given map; we say that a subset M of W is E-convex if

(1-XNE(z)+ AE(y) € M, foreachz, y€ M,and 0 < A < 1.
Remark 2.1. Obviously a subset M of W is E-convex if and only if
the set E(M) is convex.

A natural question, which arises concerning to the concept of bi-
(,%) convexity with respect to [0,1] is the following: is this notion a
new one or it is an E-convexity, with E a vectorial function. In this
short section we shall prove that the E-convexity, where E = (@, )
is a vectorial function, is a particular case of bi-(y, ¥)-convexity with
respect to T = [0, 1].

Remark 2.2. Let E = (E},E;): X XY — X xY be a given function.
IfMC X xYis E=(F,E,)-convex, then M is bi-(E;, E3) convex
with respect to [0,1]. The converse is not necessarily true, as seen in

the following example.
Example 2.1. Let be X =Y =R, and

M = {(z,0)]z  [0,1]} [ J{(,) |y € [0, 1]}.

The set M is (1,1) convex with respect to T = [0, 1], (see Ex. 1.2), but
it is not E-convex with respect to E = (1g,1gr) (we have (0,0) € M,
(1,1) € M, and £(0,0) + 3(1,1) = (£, 1) ¢ M).

There are cases when the converse of Remark 2.2 is true.
Proposition 2.1. If M = Ax B C X xY, then M is bi-(p,%) convex
with respect to [0,1] if and only if it is E-convez, where E = (p,)).
Proof. The sufficiency results from Remark 2.2. Let M be bi-(¢, %)
convex with respect to [0,1], and let (z,y) € M, (u,v) € M, t € [0,1].
Then (z,v) € M, and (u,y) € M. By applying Prop. 1.5, we get that
M is bi-(1x, 1) convex with respect to [0, 1] and bi-(¢, 1y) convex with
respect to [0,1]. It follows that

(z, (1= 1)9p(y) + ty(v)) € M, (u, (1 —t)(y) + t(v)) € M,
and so,

(1~ Dp(a) + tples), (1 — () + Bp(o)) € L.
Therefore the set M is E = (¢, ¢)-convex. ¢
Corollary 2.1. If AC X, BCY, and the set M = A x B is bi-(p, )
conver with respect to T and if [0,1] C T, then the set @(A) x (B) is
CONVET.
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Proof. From Remark 2.1 and Prop. 2.1, we get that the set M is E-
convex, where E = (¢, ). In view of Remark 2.1, E(M) is convex. But
E(M) = ¢(A) x (B). Therefore the set ¢(A) x ¥(B) is convex. {
Remark 2.3. It is obvious that, when M = A x B, there are bi-(y, )
convexity with respect to T that cannot be reduced to E-convexity. For
example, T' = Q(the set of rational numbers) is not isomorphic to [0, 1].
Therefore, a bi-(¢, 1) convexity with respect to T' = Q is not equivalent
to an E-convexity, for E = (p,1).

Using Remark 2.1 we can prove that the notion of E-convexity is a
particular case of induced 2-strongly convexity. For this, we remember
Defin. 6 of [2]. Let be U and V two arbitrary sets, A a nonvoid subset
of V, f: U — V a function, and s : 2V — 2V a set valued mapping. A
subset A of U is called 2-strongly convex with respect to s, f, and A if

s({f(ar), Fa)D [V € £(A), for any a1, az € A.

If W is a linear real space and if we take U =V = A =W, and
we suppose that the map s:2¥ — 2V has the property that
s({v1,v2}) = {(1 = t)vy + tva |t € [0,1]}, for any {vy, va} € 2V,
it is easy to see that a set M C W is 2-strongly convex with respect
to s, f, and V if and only if the set s(M) is convex. Therefore, from
‘Remark 2.1 we get that a subset M of W is B = f convex if and only
if it is 2-strongly convex with respect to s, f, and V.

3. Properties of bi-(y, 1) convex sets with reSpect
to T ‘

Let X and Y be linear real spaces, ¢ : X — X, and ¢ : ¥ — Y]
two maps.
Theorem 3.1. Let L and M be two subsets of X x Y, and T C R,
T # 0. If L and M are bi-(¢,v) convex sets with respect to T, then
LNM is a bi-(v,v) conver set with respect to T

The proof is obvious and is omitted.
Remark 3.1. Let L and M be two subsets of X x Y, and T' C R,
T # (. If L and M are bi-(p,1)) convex sets with respect to T, then
L J M is not necessarily a bi-(p, 1)) convex set, as seen in the following
example.
Example 3.1. Consider the functions ¢ : R — R, ¢ : R — R, defined
by @(t) = () = t, for all t € R, and consider the sets L = [1,2] x [0, 1]
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and M = [1,2] x [-2,-1].

Obviously, the sets L and M are bi-(p, ) convex with respect to
[0,1], but L UM is not bi-(p, %) convex with respect to [0, 1], because
for (z,y) = (1,0), (z,v) = (1,-1), (u,y) = (2,0) and t = 1/2 we have

(0@), (1 = )ep(y) + to(w)) = (1 ——) ¢ M.

Theorem 3.2. Let L, M C X xY, p: X - X, ¥ :Y — Y be two
additive functions, and T CR, T # 0. If L and M are bi-(¢, ) convex
with respect to T, then L+ M is bi-(v,v) convex with respect to T.

Proof. Let (z,y), (z,v), (u,y) € L+ M and t € T. Then there exist
(z1,v1), (z1,v1), (u1,91) € L and (z2,y2), (®2,v2), (u2,92) € M such

~ that

(z,y) = (z1,91) + (T2, 72), (z,v) = (z1,v1) + (72, v2),
(u,y) = (u1,91) + (u2,92).
Since the set L is bi-(ip, 1) convex with respect to T, we get that

(p(z1), (1 = )Y(y1) +td(v1)) € L, ((1 —t)p(w1) + to(ur), ¥(y1)) € L.

Analogously, since the set M is bi-(p, 1) convex with respect to
T, we have

(o(22), (1 =t)3p(y2) +1th(v2)) € M, ((1—t)p(z2) +tp(uz), ¥(y2)) € M.
From here and from the fact that ¢ and i are additive, we deduce

(o(z), (1 = 1)P(y) + t9p(v)) =

= (p(z1 + 22), (1 = )(y1 + y2) + t(v1 + 1)) =
= (p(21) + @(z2), (1 = ) [1h(y1) + P(y2)] + tlp(v1) + P(va)]) =
= (p(z1), (L=1)Y(y1) +1b(v1)) +(o(z2), (1-)1h(y2) +t(va)) € L+

and analogously

(1 =t)p(z) + to(u), ¥ (y)) = (1 — t)p(z1) + tw(ur), v(y))+
+((1 = t)p(w2) + t(ua),¥(ya)) € L+ M.

Hence the set L + M is bi-(p, 1) convex with respect to T. ¢
Theorem 3.3. Let M C X xY,acRandyp: X - X, ¥:Y =Y be
two homogeneous functions andT C R, T # 0. If M is bi-(¢,v) convex
with respect to T, then the set aM is bi-(p, ) convex with respect to T.
Proof. Let (z,y),(z,v),(u,y) € aM and t € T. Then there exist

(z,9), (z,7), (W,y) € M such that
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(z,9) = a(z,9) = (aZ,ay), (z,v)=a(F,V) = (aT,ad),
(u,y) = a(t, y) = (ati, ay).
Because the set M is bi-(¢, %) convex with respect to T, we have

(0(@), (1 = )9 (@) + (@) € M, ((1 —t)p(E) + te(@), (7)) € M.

From here and from the fact that ¢ and ¢ are homogeneous, we
deduce

(o(z), (1 = )Y(y) + t(v)) == ((aZ), (1 — t)3p(ay) + typ(a?)) =
= (ap(2), (1 = t)ayp(y) + tap(v)) = a(p(2), (1 — )Y (@) + 1y (V) € al,
and analogously

(A =t)o(z) +tow), ¥(y)) == a((l — t)e(@) + t(@),¥(y)) € al.
Hence the set aM is bi-(¢, %) convex with respect to T. ¢
Theorem 3.4. Let M C X xY, p,a: X — X, ¢,8:Y — Y, and
TCR, T#0. If M is bi-(p,v) convex with respect to T and bi-(a, 3)
convex with respect to T, then M is bi-(woa,1 o) convex with respect
to T and bi-(avo ¢, 01)) convex with respect to T.
Proof. Let (z,y), (z,v), (v,y) € M and ¢t € T. From Prop. 1.1 we have

(o(z),(y)), (p(z),¥(v)), (p(w),¥(y)) € M. Then, from the fact that
M 1is bi-(a, ) convex with respect to T, we have

(ap(z)), (1 = 1)B((Y)) + tB((v))) € M,
(L =t)a(p(z)) + tale(w), B (Y))) € M,

and hence

((ao@)(z), (1 =) (B o) (u) + H(BoY)(v)) € M,
(A=) (aop)(z) +t{aop)(u), (Boy)(y) € M,

which means that the set M is bi-(a o @, 0 9) convex with respect
to T.

Analogously, we prove that M is (¢o«, 10 3) convex with respect
toT. O

4. Other properties of bi-(¢ , 1) convex sets with
respect to T with consequences for E-convex sets

Let now (X, 4+, || - |]) and (Y,+,-,]| - || be real Hilbert spaces.
Theorem 4.1. Let o : X — X andy : Y — Y be two continuous
maps, and let T C R, T ().
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If the set M = Ax B C X XY is bi-(p,%) convex with respect to
T, then the set cl M, is also bi-(p, 1) convex with respect to T.
Proof. If c1 M = {}, then the proposition is true. Suppose that clM ##
# 0, and let (z,y), (z,v), (u,y) € clM. Then there are sequences
(@5, Y5)5en, (T5,v5)5en, (ug,95)jen, with (zj,y;) € M, (z5,v;) € M,
(uj,y;) € M, for each integer number 7 > 1, such that
Am (@5 ys) =(@y), Lm (z5,07) = (2,0), lm (u,35) = (u0,y).
?jjlce the set M is bi-(p, 1) convex, for each t € T and j € N we have
((I=t)ip(z;)+teo(uy), (y;)) € M, and (p(z;), (1-t)P(ys)+t(v;)) € M.
From the continuity of the maps ¢ and 1, it results

Jim (1= t)ip(z5) + to(uy), Plys)) = (1= t)e(@) + te(w), $(y)),

and

lm (p(z;), (1 = 8)1b(y;) + tb(v;)) = (p(x), (1 = )Y (y) + 1 (v)).

J—r00
Hence ’
(A=t)p(x)+te(u), Y(y)) € cl M, and (p(z), (1~t)1b(y)+tp(v)) € cl M,
for each t € T'. Therefore the set cl M is bi-(¢, 1) convex with respect
toT. O
Theorem 4.2. Let o : X — X, ¢ : Y — Y be two continuous maps,
and let T C R, [0,1] CT. Iftheset M = Ax B C X xY is bi-
(0,) convex with respect to T, then the sets int (p(4) x ¥(B)), and
cl (p(A) x ¥(B)), are convex.

Proof. From Cor. 2.1 we get that the set ¢(A) x ¥(B) is convex. Then,
the sets int (p(A) x ¥(B)), and cl (p(A) x ¥(B)), are convex.

Let (W,=+,-,]| - ||) be a real Hilbert space, V a nonempty subset
of W, w® € W. We remember that a point 2° € V is called an element
of the best approzimation of w® by elements of V if

(5) | w? =z [ <|w’—a|, foral zeV.

Theorem 4.3. Let (X, +,-,||-|]) and (Y,+,-,|]-|]) be two real Hilbert
spaces, v : X — X, and ¢y : Y — Y, two maps, and T CR, [0,1] C T.
If M =AxB CX XY isa bi-(p,9) convex set with respect to T, and
if w® is a given point of X x Y, then there exists at most one element
of the best approzimation of w° by elements of V = w(A) x ¢(B). If
in addition the set V is closed, then there is one element of the best
approzimation of w® by elements of V, and only one.
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Proof. From Cor. 2.1 we get that the set p(A) x ¢(B) is convex. Then
there exists at most one element of the best approximation of w® by
elements of V = ¢(A) x ¢(B).

If V is closed, then there exists one element of the best approxi-
mation of w® by elements of V, and only one. {

In view of Prop. 2.1, Ths. 4.1-4.3 highlight new properties of E-
convex sets. '

References

[{] ALEMAN, A.: On some generalizations of convex sets and convex functions,
Mathematica — Rev. d’Anal. Numér. de Théor. de U’Approz., Ser. L’Anal.
Numér. et la Théor. de ’Approz. 14 (1985), 1-6.

[2] BLAGA, L. and LUPSA, L.: Convexity space with respect to a given set,
in: Generalized Convexity, Generalized Monotonicity, J. P. Crouzeix, J. E.
Martinez-Legaz, M. Volle (Eds.), Kluwer Academic Publishers, Dordrecht-Bos-
ton—London, 1998, 199-208.

[3] CRISTESCU, G. and LUPSA, L.: Non-Connected Convexities and Applica-
tions, Kluwer Academic Publishers, Dordrecht—Boston—London, 2002.

[4] GREEN, J. W. and GUSTIN, W.: Quasiconvex sets, Canad. J. Math. 2 (1950),
489-507.

[5] JENSEN, J. L. W. V.: On Konvexe Funktioner og Uligheder mellem Middl-
vaerdier, Nyt. Tidsskr. Math. B. 16 (1905), 49-69.

[6] STOER, J. and WITZGALL, C.: Convexity and optimization in finite dimen-
sions, Springer-Verlag, Berlin-Heidelberg—New York, 1970.

[7] YOUNESS, E. A.: E-Convex sets, E-Convex Functions, and E-Convex Program-
ming, Journal of Optimization Theory and Applications 102 (1999), 439-450.





