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Abstract: In the papers [3], [4], we will study a way of extending the model
of interpolation from the real functions with simple nodes to the case of func-
tions defined between linear spaces, especially between linear normed spaces,
presenting a model of construction of the abstract interpolation polynomials
and of the divided differences based on the properties of multilinear mappings.
The aim of the present paper is the study of the conduct of the abstract inter-
polation polynomial, in the case when the interpolation function is an abstract
polynornial.

1. Introduction

In the papers [2], [4] we have defined the abstract interpolation
polynomial attached to the function f : E — Y, where E C X, X
is a linear space and Y is an algebra with a special structure. So a
connection between the ideas of Pavialoiu, I. [6], [7] and of Prenter, M.
[8] was realized.

In order to emphasize on some properties of these interpolation
polynomials we will recall the elements of the construction from the
aforementioned paper.
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Let us consider the real or complex linear spaces X and Y;we
note by £ (X,Y) the set of linear mappings from X to Y. For n >
> 2, L, (X,Y) represents the set of n— linear mappings from X" to Y.
We have £, (X,Y) = L(X,L,—1 (X,Y)),with £, (X,Y) = L(X,Y).
Particularly £ (YY) represents the set of the bilinear mappings from
YxY to?Y.

Let be fx and 0y the null elements of the space X and Y respec-
tively. We will note by ©,, the null element of the space £, (X,Y). For
n = 1 we will use the notation ©.

For U € L(X,Y) and B € Ly (Y,Y) we introduce the sequence
(An) e Where for any n € N, A, € L, (X,Y) with A; (u) = U (u) for
uwe X and

(1) A (ur, ..o up) = B(An—1 (U1, Un—1) , U (un))

for (u1,...,u,) € X" andn €N, n > 2.

We now suppose the next properties:

I) the mapping B € L(Y,Y) determines in ¥ a commutative
algebra, namely for any u,v € Y we have B (u,v) = B (v,u), and for
any u,v,w € Y we have B (B (u,v),w) = B (u, B (v,w));

IT) there exists Yy € U (X) C Y so that (Yp, B) is an abelian
group and the mapping U : U~ (Y)) — Y} is a bijective mapping.

Let now be the set D C X and a sequence (n),cy € D. For
kE,n e Nand for any i € {k,k+1,...,k+n} we consider the mapping
Wy, (2:) € L(X,Y) defined through

(2) w/k,n<$i)h:An+l<xi T Xy ey Xy T Lin 1, Ly T L 100y i — Thodemy h)-

In the papers [2], [4] we have shown that if for certain values

k,n € N and for any 4,7 € {k,k+1,...,k+n} with i # j we have

z;—z; € U™ (z0), then for i € {k,k+1,...,k + n} the restrictions at

U~ (Y5) of the mappings defined by (2) and denoted by [w}, ,, (:) ] :

U-1(Ys) — Y, are bijective, thus there exist the mappings
[Wh (@) ] 2 Yo — U™ (¥o).

Considering the set sp (Ys) which represents the linear cover of the

set Yp, the mapping mentioned before will be prolonged through linear-

. € L(sp (W), X),

ity at sp(Yp), obtaining the mapping [w}i’n (z:) ],
the restriction to Yo being [w}, , (z:) ];1 itself.

Let us consider n € N, D C X and the elements zg,z1,...,2n €
€ D, supposing that they satisfy the aforementioned hypothesis for the

spaces X,Y and for the mappings U € L (X,Y), B € Ly (Y,Y).
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We suppose that for any 4,7 € {0,1,...,n} with ¢ # j, z; —z; €
€ U™ (o) and so the mapping [w},, (:Lq,)}:l € L (sp (Yy), X) exists.

Let now be a function f: X —Y so that f(z1), f(z2),..., flza) €
€ sp(¥o).

In this way we can introduce the mapping L (zg,21,..., 2. f) :
: X — Y defined by

L(a:o,:cl,.--,xn;f) (T> =

(3) - -1
= ZAnH(a: — 0, |y T = T, [wp,, (Zl‘q,)L Fzs)),
1=0 *
where
(m—xo,...[...,:c—mn,)=(x—xo,...,x—xi_l,x—mH...,:1:~:Bn),
1
having

L(zo,%1,...,%n; f) (z:) = f (l’L)

for any 1 =0, n.

At the same time there exists Dy € Y and Dy, € £ (X,Y) for
any k = 1,n such that _

L (z0,%1,..,Zn; f) (&) = Dpz™ + Dpy_12™ 1 4+ -+ Dz + Dy,

Due to the aforementioned reasons the non-linear mapping defined
by the equality (3) will be called (U-B) abstract interpolation poly-
nomsal of the function f : X — Y corresponding to the nodes zp, z1, . ..
ey T

In the expression (3) of the abstract interpolation polynomial
a very important element is the coefficient of the term in 2™, namely the
mapping D, € L,(X,Y). This mapping will be denoted by
[0, %1, ..., 2Tn; f], and will be defined through

~1

@) [0, 21,00y Tny flhrehn = Y Apgr(ha, ooy by [wh o (23)] £ (22)).
t=1

This mapping is called generalized divided difference of order n of
the function f: D — Y on the nodes zg,z1,..., %y

The main results of the paper [4] are expressed through the fol-
lowing
Theorem 1.1. With the given facts and with the aforementioned hy-
potheses we have for any n € N and any xz € X the following equalities:
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(a)  [zo, 21, Tn; [l (Tn — T0) = [T1, ..., Zn; f]=[T0,. .- s Tn—1; f],
(the equality taking place between the elements of the space L,,—1 (X,Y));
(b> L('Tovxl)?xn)f) (IL‘):
= f(zo) + Z[$07$1,---,$i;f] (@ —w0) (z — 1) ... (2 —ziz1);
=1

(the Newton’s form (using the abstract divided differences) of the inter-
polation polynomial);

(c) f (@) =L(zo,21,...,2n; f) (z) +

+lzo, 21, s Tn,x fl(x—z0) (T — 1) ... (T — ) .

For the proof one can consult [2], [4].

As compared with other models, the one presented here offers
more exact definitions of the intervening mappings, especially of the
abstract divided differences. With the help of these differences we can
express the rest of a function’s approximation through the abstract
interpolation polynomial. This expression is necessary if one has in
mind the use of the model in the approximation of the functionals’
values or of the equations’ solutions in different spaces.

In order to establish different approximation formulas it is impor-
tant to study the conduct of the abstract interpolation polynomial and
of the divided difference in the case of their use for some special types
of functions. Such a study is the aim of the present paper.

For this purpose it is necessary to introduce the mappings that
will be defined hereafter.

We consider the sequence (2,),,cy € D and the numbers k,n € N.
Let there be afterwards p € N, p < n+1 and 41,19,...,% € N with the
verification of the inequalities k <41 <ia < - <ip < k+n.

For z € X we introduce the mappings W,&;’”""’m”] (x) € L(X,Y)
defined by

(5) Wi @) b= Anpra (b1, taprs B)
where
{t1, e stnepi1} ={2 = 2h,. ., T — Tppn N {2 — 24y, ...,z — T, }
keeping the succession order from the initial set.
It is evident that we have WE;’M’""Z’I’] (zs) = © for any s €

e {k,k+1,....,k+n} \ {i1,%2,...,9}, where © represents the null
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mapping of the space £ (X,Y), as well as W, lﬂb (z:) = wy, ,, (x;) for any
ie{k,k+1,...,k+n}.

It is also easy to notice that the restriction to the set U1 (Yp) is
bijective, so there exists the mapping

[W[“H ](:1:)]0 Yy UL (YY),

representing the inverse of the mapping defined by (5).

2. Some properties of the abstract interpolation
polynomial

Definition 2.1. Let be U € L(X,Y) and B € £, (Y,Y) such that B
determines on Y a commutative algebra and let the mappings sequence
(An),en be introduced by (1).

(a) The mapping M, : X —» Y, M, (z) = A,z™ is called (U-B)
monomial with degree n.

(b) A mapping P : X — Y for which there exist the elements
g, a1, ... ... ,0n, € Y so that

P(x) =ao+ » B (ar, M (),
k=1

where for any k = 1,n the mapping M} : X — Y represents the
monomial with the degree k, is called (U-B) polynomial of degree n.

Let us consider n,k€N; k > n and u{™ = [wh ,, ()] My (z) €
€X,i=0,n.
Lemma 2.2. For any k,ne N, k>n, p<n+1 and iy, is,...,ip €N
with 0 <11 <y < -+ < 14p <n we have

4
(6) Z % (k) = Z Ak_p_{_lilf;-lll . IL’;);p.

a1+ Fap=k—p+1
Proof. We will use induction according to p. Because for any 1 €
€{0,1,...,n} we have u( ) = [wh (:U»)}—l My, (z;), so
Wy, (T4) U (k )-Mk(x)—Akw

therefore the equality (6) is true for p = 1.
We suppose that this equality is true for p = s and we follow how
it is established for p = s + 1.




210 A. Diaconu

From the induction hypothesis we deduce that

3

s—1
Zvvéf‘;,---,is—lfis] (fUm'j) ( )+W[11, ls— 1,7«51( 7’3) Ek) —

= Z Ak_s_*_lw;lll .. ﬂ:iass .
ajt-Fas=k—s+1

Adding now the index isy1 to i1,...,%s € N so that 0 < 41 < --- <
<y < z's+1 < n, replacing is by is41 and o by o541 we have

ZWOH, ols—1,ts41] ($z1> (k)_l_WO[h, ols—1,tst1] ($2a+1)u(k) —

+1

. (s ,as—l Qg1
facad Z Ak_s+llel e :L'is-1 iLis_H .
aj+-Fas=k—st+1
It follows from the last two equalities that

s—1

(7) Z [W([);i;,...,is—his] (’E%) . I/V(gzl, bs—1,0541] (3%3)] ugc)_*_

1] 5eeenybg—1,sbs [ES T P k
—H’V(g ]($m> () - W e (Ting) =

Va1

Nes Qg =31 LXs1
E |:Ak—-s+la’i1 SRR AI\T*‘S-Fl‘Tq’,l ce lis-H } .
a1t das=k—s41

I

The first member of this equality can be written in the form

s41

(8) B(U( . Zv O[leL,w,...,is,isH] (:Eij> (j))

In what the second member of (7) is concerned, for any o1,...,qs €
€ Nwith a; + -+ as =k — s+ 1 the expression

o Qg1 xg [e4 2
Apmsr1zy ooy 2 — Apesa a2y

Ts—1 s

is equal with

ag—r, r—1
B(U( — T +1 g Ap_ qCI, oy 1£is 17,115+1>.

Thus the expression of the second member of the equality (7) will be
written
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(9)
BU(m—2), Y DAt afer ).
a1 +-Fas=k—s+1 r=1

But z;, —z;,,, € U™! (Yp), therefore U (a:is - xm_l) € Yy, while (Y, B)
is an abelian group. Thus from (7), (8) and (9) we deduce that
s+1

(10) ZW iz testoril (g ) 9 =

Zj

_ E : E : as 1 ozs—-v' r—1
- AI" Sx t rl's 1 'Ls :B'Ls+1

aij+Fas=k—s-+1r=1
Let there be the new indexes 1,0, ..., 0s, fsy1 introduced through

Oi=oaoq,...... Bs—1 = as_1, Bs = Qs fPs+1 = a—1, so the relation
(10) will be written
s+1 ] ]
a1 Y Wor wyul = 3 Al el
Jj=1 Bit B +Psr1=k~—s

which indicates that the equality (6) is true for p = s+ 1.

Therefore this equality is true for any p € N. ¢
Remark 2.3. One can see that for p = 1, denoting ¢; = i, the only
“value of j is 1, and in the second member the only possibility is a; = k,
therefore the equality (6) becomes [W'cg ]n ()] (k) — = ApzF.

Let us consider now the case p = n + 1. Because 0 < i1 < i3 <
< -+ <ipt1 < n the only possibility is zj = j — 1 for any j = I,n+1,

therefore the sum of the first member is Z I/VO ! (xj—1) uj_l
j=

Evidently however wg?nl - (z;—1) h = A; (h) = U (h), therefore
the equality (6) becomes

(12) iU (ugk)) = Z Ap—nzg®zi™ . zom,
j=1

agtaittan=k—n

for the summing indexes we have adapted this notation for symmetry
reasons.

We have the following
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Theorem 2.4. From the hypotheses and from the above mentioned con-
ditions, we have

On for k < mn,
(13) [0, 21y oory T Mi] = ¢ Am for k=mn,
> Apzg®zit . xir for k> n,
ag+tan=k-—n
Proof. From the definition of the divided difference it results that
[5130,{131, Ce ,CL'n;Mk] hl ce hn =

™

= An+l (h17 ey hn, Z [’LU/O’n (SE,L):I*_l Mk (a:m) )

i=0

Let us consider first the case k > n.

Because ul" = [wh (a:z)]*_1 My, (x;) for any i = 0,n, so
[120,331, Ce ,SUn;]V[k] hl Ce hn =

= Apt1 (hl, cevy B, iu@) = B(U(iugk)),An (hi,..., hn) > =
i=0 i=0

- B( 3 Apn®z 2% Ay (b, .. ) ) -
agtarttan=k—n
= Z Agzg®zt ..z hi .. hp.
agtar+-tan=k—n
Because hi,...,h, € X are arbitrary, we deduce that
[zo,Z1,. .., Tn; Mg = Z Apzg®zit ...z,

agtar+tan=k-n
In the special case k = n the only possibility for the choice of the
summing indexes is ap = - -+ = ay, = 0, therefore
[To,z1,. .., Tn; My = A,
Let us consider now the case k < n.

If we note p = k + 1 we deduce that p € {1,...,n}. For this p,
due to the relation (6), we have

(14) ZWO“’ Noy)uV =K ey

foranyil,...,z'pEvalthOSzl<...---<ip§n.
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We are in the framework of the relation (6) if we consider
Lo (X,Y) =Y. Therefore Ag € Lo (X,Y), thus Ag =K €Y.

If we introduce a new index ip41 with 0 <73 < -+ <ip < ipy1 <
< n the relation (14) will be true as well in the case when the indexes
are changed indéy,... tp—1,%4+1, 50

ZWOM, %pk 1yip+1] (3713) (R)—FWgz;’ ip— lﬂp-H] ($zp+1)u(-k) :K,

tpt1
ff()m which
p—1

[Wo[“’ vl (g) — Wi (x“‘f)] ui+
=1

i1yeeip—15ip] N k)
Ko < x"'P'H) u’ip+1 - HY’

o .

+W (k) [i1, sip—1,ipti] (

xz’p) u, —Won
- and so B(U (wip — 5Uz'p+1) ZWOZMZ’ rip+] (:mj) ugf)> = fy.
From z; ~x;,, , €U~ (YO) we have U(z; —z;,,,) €Yp and similarly

to the proof of Lemma 2.2, we deduce that ZWO”’% il (z;) uE? =

= Oy . In the special case g =n+ 1 we havé olg 1<ty < < i}b+1 <

< n and we obtain 4; = j — 1 for any j = 1,n+ 1, thus the previous

equality will be written i}VVé?,;l""’n]uy) = Oy, so f%U (ugk)> = Oy
j= =

and because of the linearity of U we have iug-k) = fx. In this way for

any hi,...,h, € X we have =

[1130, Ti1y---,Tn; M]ﬁ] hl R hn = An—}—l (hb R 7hn, Z’u,gk) =

50 [Zo, T1,- -, Tn; M) = Op. O

Let us establish now the following
Theorem 2.5. Let us consider the previously introduced elements, a
set D C X, the points zg,Z1,...,Zn € D, the function f : D — Y
so that f(zo), f(x1),...,f(zn) € sp(Yy). Let be a € sp(Yo) and the
mapping g: D — Y, g(z) = B(a, f (x)). Then
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(15) [zo,z1,..-,Zn;glh1...hn =B (a,[z0,%1,...,Zn; flh1... hn).

Proof. From the definition of the divided difference it results that

(16) [.fL‘(),LUl,.. IL’n,g ZATL—}-I hl) n7[w0n(a‘ )] lg(mz))

For any i € {0,1,...,n} we have evidently

(17) [wh o ()] " g (@) = [wh,p ()] Ba,g ().

For any i,j = 0,n; i # j we have z; — z; € U™} (Yp). We deduce that
for ¢ = A, (CB,L — X1y 3Ty ™ Lj1, Ty — T 1y v 5 Lf — SUn_|_1> € Yy there
exists ¢’ € Yp such that B (q,q¢") = uo (uo being the neutral element of
the group (Yo, B)). As well for any ¢ € Yy we have B (¢, uo) = ¢, that is
B(t,B(q,q") =t or B(q,B(d',t)) =1, namely

B(An(a:z-~—a:1, oy Ly—T4—1,Ti —T44-1, ...,$¢—$n+1),B(q/,t)) = t,

this is
Fr—1
An+1($¢—$1, sy LT, T~ Lih 150 oy Ty~ Tnt-1, U B(q/, t)) =

or B(¢,t)=U [wj, (mi)]_l t.

From this relation we notice that for b, z € Yy we have

(18) U [wh, ()] " B(,2) =B ([wé)n ()] " 2, b) .

The relation (18) will be extended, using the linearity of the map-

pings U, [w}, (azq;)]_l and B, as well to the case when the elements
b, z € Yy are replaced respectively by a,y € sp (Yp) -
Now, for ¢ € {0,1,...,n} we choose y = f (z;), and we obtain

(19) U [wh, (2] B (o, f (2)) = B (U [wh,, ()] 7 £ (22)a).

From the relations (17) and (19) we obtain for any ¢ € {0,1,...,n}
the equalities

Apnyi(hi, ... by, [w{)’n (zi)] ! g(x;)) =
= B(An (h,- - hn), U [wh, (22)] 7 B (a, f (2:) =
= B(An (h1,. .., hn), BU [wh, (2:)] 7 f (21), ) =
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~ -1
= A‘n+2(U* ! (CL) 7h'1) st 7h’n) [w(l),n (5131)] f (331)) =
—1
= B(a’a A‘n-i—l(h’l) R hﬂ? [w{),n (1137,)] f (x'L)))
In this relation U; tis the prolongation trough linearity of the mapping

UL to sp (¥5). |
According to the relation (17) we will have

[3:07 Z1,.--y T g] hlhnzB (CL, ZAn+l(hl7 teny hna [wé,n(m’b)]_lf(i%))) =
=0

=B(a,[z0, %1,y Tn; flA1---hn),

the theorem being in this way proved. ¢
Corollary 2.6. If fork e N, My : X — Y is a (U-B) monomial of the
degree k and we consider the mappingg: X — Y, g(z) = B (a, My (z))
with a € sp (Yo) and supposing that all the hypotheses of the previous
theorems are fulfilled, then we have the relation
(20) [Z0,Z1,.. . Tn;glh1 . hyp =

Oy, k <mn,

B(a7An (hlw":hn))? k:n,

Z B (a, Azg® ... 2% hy...h,), k>n.

ag+Fap=k—n

Proof. The conclusion of this statement is evident if we use Ths. 2.4
and 2.5. O

Theorem 2.7. If P: X — Y is a (U-B) polynomial of degree k (k < n)
with the coefficients in sp (Yp) and supposing that all hypotheses of the
. previous theorems are fulfilled, then for any xo,z1,...,Tn € X we have

(21) P =L(zo,z1,...,%n; P).

Proof. Th. 1.1-(c) indicates that for any z € X,
P (z) =L (zo, 21, ..., Zn; P) () +[z0, 21, ooy Tny T; Pl —20)... (T —2,).

Forie {0,1,...,n}, if we introduce g; : X — Y with go (z) = ao
and ¢; (z) = B (a;, M; (z)) for i > 1, we have

P(z)=ao+ » Blak, Mi(z)) = > gk (z),
k=0 k=0
and so
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T
[37073317' < )$n7$;P] = 2 [x();xla st 7$n;$;gk] .
k=0

In the divided differences from the second member, in the expres-
sion of the mappings gi, there appear monomials having a degree at least
two units smaller than the number of the nodes, so for any k = 0, n we
have [zo,T1,...,Tn,T;gk] = 0, therefore [zo,Z1,...,2%n,Z; P] = Ony1,
and the theorem is proved. ¢

For certain concrete examples, different from the case of the real
function’s interpolation, examples in which this construction is realized,
see paper [2].
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