ON QUASI-CONTINUOUS ITERA-TION GROUPS ON THE UNIT CIRCLE

Anna Piekarska

Pedagogical University, Institute of Mathematics, Podchorażych 2, PL-30-084 Kraków, Poland

Received: April 2002

MSC 2000: 39 B 12; 20 F 38, 30 D 05, 39 B 32

Keywords: Iteration group, quasi-continuous iteration group.

Abstract: The aim of this paper is to give a characterization of iteration groups defined on the unit circle S^1 , continuous with respect to the iterative parameter. Such groups are named quasi-continuous. The problem of the embeddability of a given function $T:S^1\longrightarrow S^1$ into quasi-continuous iteration groups is also considered.

Let $S^1=\{x\in\mathbb{C}:|x|=1\}$ be the unit circle. A set $L\subset S^1$ is said to be an open arc if

$$L = (x_1, x_2) := \{e^{2\pi it} : t \in (t_1, t_2)\},\$$

where $t_1, t_2 \in \mathbb{R}$ are such that $t_1 \leq t_2 \leq t_1 + 1$ and $x_1 = e^{2\pi i t_1}$, $x_2 = e^{2\pi i t_2}$. Similarly we define $(x_1, x_2]$, $[x_1, x_2)$, $[x_1, x_2]$, but with one different detail: $t_1 < t_2 < t_1 + 1$. Each of these four will be called an arc in this paper.

Let L be an arc or $L=S^1$ or L be a singleton. Let us introduce the following:

Definitions (see [3], also [6]). A family $\{T^t, t \in \mathbb{R}\}$ of functions $T^t: L \longrightarrow L$ is said to be an iteration group on L if

$$T^t \circ T^s = T^{t+s}$$
 for $t, s \in \mathbb{R}$.

If for every $x \in L$ the mapping $h_x : \mathbb{R} \longrightarrow L$ given by $h_x(t) := T^t(x), t \in \mathbb{R}$ is continuous then the iteration group is said to be quasi-continuous.

If, moreover, all functions T^t are continuous then the quasi-continuous iteration group will be called a continuous iteration group.

The general construction of quasi-continuous iteration groups of real functions is given in [6]. On the base of these results we give a construction of quasi-continuous iteration groups on the unit circle.

Given an iteration group $\{T^t, t \in \mathbb{R}\}$ on S^1 and $x \in S^1$ put

$$C(x) := \{ T^t(x), t \in \mathbb{R} \},$$

$$B(x) := \{ t \in \mathbb{R} : T^t(x) = x \},$$

and

$$p(x) := \inf\{t > 0 : T^t(x) = x\}, \quad (\inf \emptyset := \infty).$$

p(x) is called the period of the point x.

For any mapping $T: S^1 \longrightarrow S^1$ we also put

$$A_T := \{ x \in S^1 : T(x) = x \}.$$

We begin with some elementary properties of iteration groups on the circle.

Proposition 1 (see also [2]). Let $\{T^t, t \in \mathbb{R}\}$ be an iteration group on S^1 , then

- (i) for $x, y \in S^1$ we have C(x) = C(y) or $C(x) \cap C(y) = \emptyset$,
- (ii) $T^0[S^1] = T^t[S^1]$ for $t \in \mathbb{R}$,
- (iii) $T^0|_{T^0[S^1]} = Id|_{T^0[S^1]}$.

Proof. To prove (i) fix $t \in \mathbb{R}$, $x, y \in S^1$ such that $x \neq y$. Suppose that $C(x) \cap C(y) \neq \emptyset$, i.e. there exist $t_1, t_2 \in \mathbb{R}$ such that $T^{t_1}(x) = T^{t_2}(y)$. Then

$$T^{t}(x) = T^{t-t_1+t_1}(x) = T^{t-t_1}(T^{t_1}(x)) =$$

$$= T^{t-t_1}(T^{t_2}(y)) = T^{t-t_1+t_2}(y) \in C(y).$$

Thus, $C(x) \subset C(y)$. In the same way we can show that $C(y) \subset C(x)$.

In order to prove (ii), fix a $t \in \mathbb{R}$. First, take an $x \in T^0[S^1]$ and let $y \in S^1$ be such that $x = T^0(y)$. Then

$$x = T^{0}(y) = T^{t-t}(y) = T^{t}(T^{-t}(y)) \in T^{t}[S^{1}].$$

If $x \in T^t[S^1]$, then there exists a $y \in S^1$ such that $x = T^t(y)$, and consequently

$$x = T^{t}(y) = T^{0+t}(y) = T^{0}(T^{t}(y)) \in T^{0}[S^{1}].$$

The proof of (iii) is trivial. ◊

Remark 1. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 . Then for every $x \in S^1$, C(x) is either a singleton or the circle or an arc.

Proof. Since for every $x \in S^1$, $C(x) = h_x[\mathbb{R}]$ and the function $h_x : \mathbb{R} \longrightarrow S^1$ is continuous, the set C(x) is connected, and our assertion follows. \Diamond

The following lemmas are similar to Th. 1.13 in [2] but these ones give more facts and work with another assumptions.

Lemma 1. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 and $x \in S^1$. Then

- (i) the following three conditions are equivalent
 - (a) p(x) = 0,
 - (b) $C(x) = \{x\},\$
 - (c) $B(x) = \mathbb{R}$;
- (ii) the following three conditions are equivalent
 - (a) $0 < p(x) < \infty$,
 - (b) $C(x) = S^1$,
 - (c) B(x) is a nontrivial cyclic subgroup of \mathbb{R} .

Proof. First, note that if $B(x) \neq \emptyset$ then B(x) is a closed additive subgroup of \mathbb{R} , so it is either \mathbb{R} or a cyclic subgroup of \mathbb{R} . This together with the definitions of C(x) and p(x) gives (i).

Next, we prove (ii). To do this, let us first assume that $B(x) = \{nt_0, n \in \mathbb{Z}\}$ for a positive t_0 . Then $h_x|_{(0,t_0)}$ is one-to-one. Indeed, assuming $h_x(s) = h_x(p)$ for some $p, s \in (0, t_0)$ we get

$$x = T^0(x) = T^{s-s}(x) = T^{-s}(T^s(x)) = T^{-s}(T^p(x)) = T^{p-s}(x),$$

since $0 \in B(x)$. Then $p - s \in B(x)$, so $p = s$. Next, note that $h_x(0) = h_x(t_0) = x$. From this, Remark 1 and the fact that $h_x|_{(0,t_0)}$ is a

continuous injection we have

$$C(x) = h_x[\mathbb{R}] = h_x[\langle 0, t_0 \rangle] = S^1.$$

Conversely, assume that $C(x) = S^1$. Then $B(x) \neq \mathbb{R}$, and there exists a $t \in \mathbb{R}$ such that $x = T^t(x)$. Therefore $B(x) \neq \emptyset$. If $B(x) = \{0\}$, then h_x is easily seen to be one-to-one, which contradicts the known fact that there does not exist a continuous injection from \mathbb{R} onto S^1 (see for instance [2]). Consequently, B(x) is a nontrivial cyclic subgroup of \mathbb{R} . The rest of the proof is immediate. \Diamond

Lemma 2. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 . If $x \in S^1$ and $p(x) = \infty$ then one of the following conditions occurs:

- (H1) $x \neq T^{0}(x)$ and $B(T^{0}(x)) = \mathbb{R}$,
- (H2) $x \neq T^0(x)$ and $B(T^0(x)) = \{0\},\$
- (H3) $x = T^0(x)$ and $B(x) = \{0\}.$

Proof. Let us assume that $x \in S^1$ and $p(x) = \infty$. Then $B(x) \cap \mathbb{R}^+ = \emptyset$. Thus, $B(x) = \emptyset$ or $B(x) = \{0\}$. Assuming $B(x) = \emptyset$ we have $T^t(x) \neq x$ for every $t \in \mathbb{R}$, so $x \notin C(x)$. Note that for $y = T^0(x)$, C(x) = C(y). Obviously, $T^0(y) = y$, so $0 \in B(y)$. If B(y) is a cyclic nontrivial subgroup of \mathbb{R} , then by Lemma 1, $S^1 = C(y) = C(x)$, contrary to $x \notin C(x)$. Hence $B(y) = \mathbb{R}$ or $B(y) = \{0\}$. If $B(x) = \{0\}$, then $x = T^0(x)$. \Diamond

Lemma 3. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 . Let $x \in S^1$, then

- (i) if (H1) then $C(x) = \{T^0(x)\}, p(x) = \infty$ and the function h_x is constant,
- (ii) if (H2) then C(x) is an arc such that $x \notin C(x)$ and $p(x) = \infty$,
- (iii) if (H3) then C(x) is an arc such that $x \in C(x)$ and $p(x) = \infty$. Moreover, the following three conditions are equivalent
 - (a) (H2) or (H3) occurs,
 - (b) h_x is a homeomorphism,
 - (c) C(x) is an arc.

Proof. Fix an $x \in S^1$ and put $y := T^0(x)$. Let us first assume that $x \neq T^0(x)$. Then $B(x) = \emptyset$ and, by Lemma 1, $p(x) = \infty$. If $B(y) = \mathbb{R}$ then, by Lemma 1, $\{T^0(x)\} = C(y) = C(x)$, and consequently h_x is also constant. If $B(y) = \{0\}$, then $h_x(s) = h_x(p)$ implies $h_y(s) = h_y(p)$, and consequently s = p. Therefore h_x is one-to-one, and Remark 1 now shows that C(x) is an arc with $x \notin C(x)$. Next, assume that (H3) holds true. Then h_x is an injection, and consequently C(x) is an arc with $x \in C(x)$. Moreover, Lemma 1 now shows that $p(x) = \infty$.

From Lemmas 1, 2 and the proved part of Lemma 3 it follows that conditions (a) i (c) are equivalent. Moreover, it is obvious that (b) implies (c). To complete the proof let us assume that (c) holds true. Then there is an open arc L such that $C(x) \subset L$. Let g be a homeomorphism from L onto \mathbb{R} . Since h_x is one-to-one, the mapping $f:\mathbb{R} \longrightarrow \mathbb{R}$ given by $f:=g \circ h_x$ is a continuous injection, and consequently f is a homeomorphism. Therefore so is h_x . \Diamond

Corollary 1. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 and $x \in S^1$. If C(x) is an arc, then it is an open arc.

From Lemma 1, Prop. 1 and Remark 1 we have

Remark 2. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 . If there exists an $x_0 \in S^1$ such that $0 < p(x_0) < \infty$, then $0 < < p(x) < \infty$ for every $x \in S^1$.

We can now prove the following

Theorem 1 (see also [2]). If $\{T^t, t \in \mathbb{R}\}$ is a quasi-continuous iteration group on S^1 , then for every $x \in S^1$, $\{T^t|_{C(x)}, t \in \mathbb{R}\}$ is a continuous iteration group on C(x).

Proof. Fix $x \in S^1$ and $t \in \mathbb{R}$. First, suppose that $0 < p(x) < \infty$. By Lemma 1 we see that $C(x) = S^1$. Moreover, from Prop. 1(iii) we conclude that $T^0 = Id_{S^1}$. Therefore, by Th. 1.19 in [2], we deduce that $\{T^t, t \in \mathbb{R}\}$ is a continuous iteration group on S^1 .

Now, assume that p(x) = 0 or $p(x) = \infty$. The proof is completed by showing that $T^t|_{C(x)}$ is continuous. If the orbit contains only one point our assertion follows. By Lemma 1 we only need to show the continuity of $T^t|_{C(x)}$ in the case when the orbit is an arc.

Since C(x) is a metric space, it is sufficient to show that for every sequence $(y_n)_{n\in\mathbb{N}}$ of elements of C(x) such that $y_n\to y\in C(x)$, we have $T^t(y_n)\to T^t(y)$. Fix such a sequence and an $n\in\mathbb{N}$. Since C(x)=C(y), we can find $s,s_n\in\mathbb{R}$ such that $y_n=T^{s_n}(y)$ and $y=T^s(x)$. Thus

$$y_n = T^{s_n}(y) = T^{s_n}(T^s(x)) = T^{s_n+s}(x).$$

Since $y_n \to y$, we have $T^{s_n+s}(x) \to T^s(x)$, i.e. $h_x(s_n+s) \to h_x(s)$. By Lemma 3 we see that h_x is a homeomorphism, so $s_n \to 0$. Hence and from the fact that h_y is continuous we obtain

$$T^t(y_n) = T^t(T^{s_n}(y)) = T^{t+s_n}(y) \to T^t(y). \diamond$$

The general form of continuous iteration groups on the unit circle is well known (see for instance [5]), but we will remind it. We first need to prove

Theorem 2. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 . If there exists an $x_0 \in S^1$ such that $0 < p(x_0) < \infty$ then

- (i) for every $t \in \mathbb{R}$, either $T^t \equiv Id_{S^1}$ or $T^t(x) \neq x$ for $x \in S^1$,
- (ii) $T^0 \equiv Id_{S^1}$,
- (iii) T^t is a homeomorphism for $t \in \mathbb{R}$.

Proof. Assume that $A_{T^a} \neq \emptyset$ for an $a \neq 0$. Fix an $x' \in A_{T^a}$. Then $T^a(x') = x'$. We claim that $C(x') \subset A_{T^a}$. Indeed, let $y \in C(x')$. Then there exists a $u \in \mathbb{R}$ such that $y = T^u(x')$. Thus

$$T^{a}(y) = T^{a}(T^{u}(x')) = T^{u}(T^{a}(x')) = T^{u}(x') = y,$$

and consequently $y \in A_{T^a}$. By Remark 2 we see that $0 < p(x') < \infty$ and Lemma 1(ii) now shows that $S^1 = C(x') \subset A_{T^a}$. Consequently, $A_{T^a} = S^1$.

Next, by Lemma 1(ii), $T^0[S^1] = S^1$, since $S^1 = C(x_0) \subset T^0[S^1]$. By Prop. 1(ii) and (iii), $T^0 \equiv Id_{S^1}$ and $T^t[S^1] = S^1$ for every $t \in \mathbb{R}$. Hence $T^{-t} \circ T^t = Id_{S^1}$, so T^t is invertible. Consequently, by Th. 1, every T^t is a homeomorphism from S^1 onto S^1 . \Diamond

Th. 2 lets us to use Th. 2 in [5]. Thus, the general form of quasicontinuous iteration groups $\{T^t, t \in \mathbb{R}\}$ on S^1 such that $0 < p(x_0) < \infty$ for an $x_0 \in S^1$ is given by

$$T^t = \Phi^{-1} \circ Q_{at} \circ \Phi, \quad t \in \mathbb{R},$$

where $\Phi: S^1 \to S^1$ is an orientation preserving homeomorphism, $a \in \mathbb{R}$ and

$$Q_a(x) := e^{2\pi i a} \cdot x, \qquad x \in S^1.$$

From now on we assume that

(1)
$$p(x) = 0$$
 or $p(x) = \infty$ for an $x \in S^1$.

Lemma 4. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 satisfying condition (1). If there exists an $s \neq 0$ and an $x_0 \in S^1$ such that $T^s(x_0) = x_0$, then $T^t(x_0) = x_0$ for every $t \in \mathbb{R}$.

Proof. From Remark 2, Lemmas 1, 2 and 3 it follows that either $C(x_0)$ is an arc or $C(x_0) = \{x_0\}$ or $C(x_0) = \{T^0(x_0)\}$. Clearly,

$$T^{s}(x_{0}) = T^{s+0}(x_{0}) = T^{0}(T^{s}(x_{0})) = T^{0}(x_{0}),$$

since $T^s(x_0) = x_0$, so h_{x_0} is not a homeomorphism. Thus, by Lemma 3, $C(x_0)$ is not an arc. Finally, $C(x_0) = \{x_0\}$. \Diamond

Put

(2)
$$A := \{ x \in S^1 : \forall t \in \mathbb{R} \ T^t(x) = x \}.$$

By Lemma 4 we have

Remark 3. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1 and let condition (1) hold true. Then for every $t \in \mathbb{R} \setminus \{0\}$, $A_{T^t} = A$. Moreover, $A \subset T^0[S^1]$.

We can now formulate

Theorem 3. Let $\{T^t, t \in \mathbb{R}\}$ be an iteration group on S^1 satisfying (1) and let A be given by (2). Then $\{T^t, t \in \mathbb{R}\}$ is quasi-continuous if and only if either $T^0[S^1] = A$ or there exists a family of open pairwise

disjoint arcs $\{L_n : L_n \cap A = \emptyset, n \in \mathcal{M}\}$, where $\emptyset \neq \mathcal{M} \subset \mathbb{N}$, such that

(3)
$$T^{0}[S^{1}] = \bigcup_{n \in \mathcal{M}} L_{n} \cup A$$

and for every $n \in \mathcal{M}$, $\{T^t|_{L_n}, t \in \mathbb{R}\}$ is a continuous iteration group on L_n such that all $T^t|_{L_n}: L_n \to L_n$ are bijections.

Proof. Suppose that $\{T^t, t \in \mathbb{R}\}$ is a quasi-continuous iteration group. In view of Lemmas 1, 2, 3, Remark 2 and Cor. 1, condition (1) shows that C(x) is an open arc or a singleton for every $x \in S^1$. Assume that $T^0[S^1] \neq A$ and fix $x \in T^0[S^1] \setminus A$, $t \in \mathbb{R}$. By Lemmas 1, 2, 3 and Prop. 1, C(x) is an arc with $x \in C(x)$, and therefore h_x is a homeomorphism. Thus, for every $y \in C(x)$ there exists an $s \in \mathbb{R}$ such that $s = h_x^{-1}(y)$. Moreover,

$$T^{t}(y) = T^{t}(h_{x}(s)) = T^{t}(T^{s}(x)) = T^{t+s}(x) = h_{x}(t+s),$$

and consequently $T^t(y) = h_x(t + h_x^{-1}(y))$. Hence we infer that $T^t|_{C(x)}$ is continuous and one-to-one. Clearly, $T^t[C(x)] = C(x)$. Consequently, putting

$${L_n, n \in \mathcal{M}} := {C(x), x \in T^0[S^1] \setminus A},$$

we obtain, in view of Prop. 1(i), a family of open pairwise disjoint arcs such that for every $n \in \mathcal{M}$, $A \cap L_n = \emptyset$ and (3) holds true.

Conversely, we show that h_x is continuous for every $x \in S^1$. Indeed, we see at once that this is true for $x \in T^0[S^1]$. If $x \in S^1 \setminus T^0[S^1]$ then we have $h_x = h_y$ with $y := T^0(x) \in T^0[S^1]$. \Diamond

Now, on the base of Th. 3 we give the general construction of quasi-continuous iteration groups on S^1 satisfying condition (1).

Theorem 4. The following construction gives the general form of quasicontinuous iteration groups on S^1 satisfying condition (1).

- 1° Let $\{L_n, n \in \mathcal{M}\}$, where $\mathcal{M} \subset \mathbb{N}$ (we admit $\mathcal{M} = \emptyset$) be a family of open pairwise disjoint arcs.
- 2° For every $n \in \mathcal{M}$ let $\{F_n^t, t \in \mathbb{R}\}$ be a continuous iteration group on L_n such that all functions F_n^t are one-to-one and $F_n^0(x) = x$ for $x \in L_n$. (Such groups are given by the formula:

$$F_n^t(x) = h(t + h^{-1}(x)), \quad x \in L_n, \quad t \in \mathbb{R},$$

where $h: \mathbb{R} \to L_n$ is a homeomorphism (see [1], p. 248-9).)

3° Let A be an arbitrary (if $\mathcal{M} = \emptyset$ then, moreover, non-empty) subset of $S^1 \setminus \bigcup_{n \in \mathcal{M}} L_n$.

4° Put

$$J:=\bigcup_{n\in\mathcal{M}}L_n\cup A$$

and let a be an arbitrary function defined in S^1 such that $a[S^1] = J$ and a(x) = x for $x \in J$.

5° Define

(4)
$$T^{t}(x) := \begin{cases} a(x) & \text{for } x \in a^{-1}[A], \quad t \in \mathbb{R}, \\ F_{n}^{t}(a(x)) & \text{for } x \in a^{-1}[L_{n}], \quad t \in \mathbb{R}, \quad n \in \mathcal{M}. \end{cases}$$

Proof. It is easy to check that the family of functions T^t defined by (4) is a quasi-continuous iteration group on S^1 for which (1) holds.

Conversely, we will show that every quasi-continuous iteration group satisfying (1) can be obtained in the above manner. Assume that $\{T^t, t \in \mathbb{R}\}$ is such a group and define A by (2) and $a := T^0$. From Th. 3 it follows that either $A = T^0[S^1] \neq \emptyset$ or there are a non-empty set $\mathcal{M} \subset \mathbb{N}$ and a family of open pairwise disjoint arcs $\{L_n, n \in \mathcal{M}\}$ such that (3) holds true and $A \subset S^1 \setminus \bigcup_{n \in \mathcal{M}} L_n$. If $T^0[S^1] = A$, then $T^t = T^0$ for $t \in \mathbb{R}$. Therefore (4) holds true with $\mathcal{M} := \emptyset$. In the later case, we put $F_n^t := T^t|_{L_n}$ for $t \in \mathbb{R}$, $n \in \mathcal{M}$. Prop. 1(iii) and Th. 3 complete the proof. \Diamond

We can now consider the problem of the embeddability of a given function into quasi-continuous iteration group. Recall that a function $T: L \to L$, for $L \subset S^1$, is said to be embeddable into a quasi-continuous (continuous) iteration group if there exists a quasi-continuous (continuous) iteration group, defined on L, $\{T^t, t \in \mathbb{R}\}$ with $T^1 = T$.

Theorem 5. A function $T: S^1 \to S^1$ is embeddable into a quasicontinuous iteration group if and only if one of the following occurs

- (i) T is an orientation preserving homeomorphism and either $T^m = Id_{S^1}$ for a positive integer m or the set $\{T^n(x), n \in \mathbb{N}\}$ is dense in S^1 for every $x \in S^1$,
- (ii) there exists a non-empty set $\mathcal{M} \subset \mathbb{N}$ and a family of open pairwise disjoint arcs $\{L_n : L_n \cap A_T = \emptyset, n \in \mathcal{M}\}$ such that

$$T[S^1] = \bigcup_{n \in \mathcal{M}} L_n \cup A_T$$

and for every $n \in \mathcal{M}$, $T|_{L_n} : L_n \to L_n$ is a continuous bijection, (iii) $T[S^1] = A_T$.

Proof. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group such that $T^1 = T$. First, suppose that $0 < p(x_0) < \infty$ for an $x_0 \in S^1$. By Th. 2

we infer that the iteration group $\{T^t, t \in \mathbb{R}\}$ is continuous and T is either without fixed points or the identity mapping. Th. 3 in [5] now shows that (i) holds true. Next, assume that (1) is satisfied. By Prop. 1(ii), Remark 3 and Th. 3 we see that (ii) or (iii) holds true.

Conversely, assume first (i). Then, by Th. 3 in [5], T is embeddable into a continuous iteration group on S^1 . Assume now that (ii) or (iii) occurs. In the first case fix, moreover, an $n \in \mathcal{M}$ and note that since $T|_{L_n}$ is a continuous bijection, $T|_{L_n}$ is embeddable into a continuous iteration group $\{F_n^t, t \in \mathbb{R}\}$ such that all functions F_n^t are one-to-one (see [1], p. 248–9, and [4]). In the later case, we define $\mathcal{M} := \emptyset$. Put $J := T[S^1]$ and $A := A_T$. Clearly, $T|_J : J \to J$ is a bijection and, if (iii) occurs, A is non-empty. Defining $a := (T|_J)^{-1} \circ T$ we see that a maps S^1 onto J and a(x) = x for $x \in J$. By Th. 4 the family $\{T^t, t \in \mathbb{R}\}$ of functions T^t given by (4) is a quasi-continuous iteration group such that, as one can check, $T^1 = T$. \Diamond

Acknowledgements. The author wishes to express his thanks to Professor Marek Cezary Zdun for suggesting the problem and for his helpful comments, to the referee for valuable remarks.

References

- [1] ACZÉL, J.: Lectures on functional equations and their applications, Academic Press, New York, 1966.
- [2] BECK, A.: Continuous flows in the plane, Grundlehren 201, Springer-Verlag, Berlin-New York-Heidelberg, 1974.
- [3] KUCZMA, M.: Functional equations in a single variable, PWN Polish Scientific Publishers, PAN Monografie Matematyczne t. 46, Warszawa, 1968.
- [4] MIDURA, S.: Sur les solutions de l'équation de translation, Aequationes Math. 1 (1968), 77-84.
- [5] ZDUN, M. C.: On embedding of homeomorphisms of the circle in a continuous flow, Iteration Theory and its functional equations, (Proceeding, Schloss Hofen, 1984), Lecture Notes in Mathematics 1163, Springer-Verlag, Berlin-Heidelberg-New York, 1985, 218–231.
- [6] ZDUN, M. C.: On quasi-continuous iteration semigroups and groups of real functions, *Colloquium Mathematicum* 58/2 (1990), 281–289.