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Abstract: The object of the present paper is to study a type of non-flat
Riemannian manifolds called generalized projective 2-recurrent Riemannian
manifolds. At first we give a concrete example of generalized projective 2-
recurrent Riemannian manifold. In section 3, we obtain necessary and suffi-
cient condition for a generalized projective 2-recurrent Riemannian manifold
to be a generalized 2-recurrent Riemannian manifold. We also prove that a
generalized projective 2-recurrent Riemannian manifold is a generalized con-
formally 2-recurrent Riemannian manifold. In section 4, we prove that an
Einstein generalized projective 2-recurrent Riemannian manifold is of con-
stant curvature. Finally it is shown that an Einstein generalized projective
2-recurrent Riemannian manifold admitting a unit parallel vector field is a
generalized 2-recurrent Riemannian manifold.
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1. Introduction

As is well known, symmetric spaces play an important role in
differential geometry. The study of Riemannian symmetric spaces was
initiated in the late twenties by E. Cartan, who, in particular, obtained
a classification of those spaces.

Let (M™,g) be a Riemannian manifold of dimension n and let V
be the Levi-Civita connection of (M™,g). A Riemannian manifold is
called locally symmetric if VR = 0, where R is the Riemannian cur-
vature tensor of (M™,g). This notion has been generalized in many
ways by various authors, such as recurrent manifolds introduced by
A. G. Walker [1], weakly symmetric manifolds by L. Taméassy and T. Q.
Binh [2], pseudo symmetric manifolds introduced by M. C. Chaki [3],
conformally symmetric manifolds by Chaki and Gupta [4], projective
symmetric manifolds by G. Sods [5] etc. These notions have been further
generalized by E. M. Patterson [6] by introducing Ricci-recurrent mani-
folds, weakly Ricci-symmetric manifolds by L. Taméassy and T. Q. Binh
[7], 2-recurrent manifolds by A. Lichnerowicz [8], projective 2-recurrent
manifolds by D. Ghosh [9] and others.

In 1972, A. K. Roy [10] generalized the notion of 2-recurrent Rie-
mannian manifold. A non-flat Riemannian manifold (M™,g) is called
generalized 2-recurrent if the Riemannian curvature tensor I satisfies
the condition

(1) (VyVuR)(X,Y)Z =A(V)(VuR)(X,Y)Z+ B(U,V)R(X,Y)Z,

where A is a non-zero 1-form and B is a non-zero (0,2) tensor. Such
a manifold is denoted by G{2K,,}. In the same paper A.K.Roy intro-
duced the notion of generalized projective 2-recurrent Riemannian man-
ifold and generalized conformally 2-recurrent Riemannian manifold. In
a Riemannian manifold the projective curvature tensor is defined by

1
(2)  P(X,Y)Z=R(X,Y)Z - —=IS(Y,2)X - S(X, 2)Y],
where S is the Ricci tensor. A Riemannian manifold is called a gen-
eralized projective 2-recurrent Riemannian manifold if the projective

curvature tensor defined by (2) satisfies the condition

where A and B are as stated earlier, and such a manifold is denoted by
G{P(*Kn)}.
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In a Riemannian manifold the conformal curvature tensor is de-
fined by

O(X,Y)Z = R(X,Y)Z — ——[g(Y, 2)QX — g(X, Z)QY
(4) n— 4
LS(Y, 2)X ~8(X, Z)Y]+ m[g(y; Z2)X —g(X, 2)Y],

where (@ is the Ricci operator defined by ¢g(QX,Y) = S(X,Y) and r is
the scalar curvature.

A Riemannian manifold is called a generalized conformally 2-
recurrent Riemannian manifold if the conformal curvature tensor de-
fined by (4) satisfies the condition

(6) (VwVuC)(X,Y)Z =A(V)(VuCO)(X,Y)Z +B(U,V)C(X,Y)Z,

where A and B are as stated earlier, and such a manifold is denoted by
G{C(*Kn)}.

In a recent paper [11] U. C. De and S. Bondyopadhyay introduced
and studied generalized Ricci 2-recurrent Riemannian manifolds which
are defined as follows: A non-flat Riemannian manifold is called a gen-
eralized Ricei 2-recurrent Riemannian manifold if the Ricci tensor S is
non-zero and satisfies the condition

6) (VvVud)(X,)Y)=AV)(VuS)(X,Y) + B(U,V)S(X,Y).

Such a manifold is denoted by G(%R,,).

In the present paper we study some properties of generalized pro-
jective 2-recurrent Riemannian manifolds. At first we give a concrete
example of a G{P(?K,,)}. From (1) and (3) it follows that a G{?K,,}
is a G{P(%K,)}, but the converse is not true in general. In section
3, we obtain a necessary and sufficient condition for a G{P(%K,)} to
be a G{?K,}. Also we prove that a G{P(*K,)} is a G{C(?K,)}.
It is known [12] that a manifold of constant curvature is an Einstein
manifold, but the converse is not true, in general. The converse will be
true if the dimension of M™ = 3. In section 4, it is shown that an Ein-
stein G{P(?K,)} is a manifold of constant curvature, i.e. it is locally
isometric to a unit sphere. Finally we study an Einstein G{P(*K,)}
admitting a unit parallel vector field.
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2. Example of a G{P(%2K,)}

In this section we give a concrete example of a G{P(%K,,)}.

Let each Latin index run over 1,2,...,n, and each Greek index
over 2,3,...,n—1. We define the metric g on M™ (n>4) by the formula
(2.1) ds® = &(dzt)® + Kopdz®dP + 2dztda™
where ®(z!,2?,...,2™) = K,pdz*ds” and

10 .... O
o1 .... 0
Wagl = | =
o o0 .... 1

So &, = ZKaﬁe“’l, where (.) denotes partial differentiation. Since

Kop =0 for a#0, the non-zero components of & _, are & = 2 |
In the metric considered, the only non-vanishing components of

the curvature tensor Rp,;r and of the Ricci-tensor R;; are (see [13])

1 1
Riga1 = 5Q.M =e”
(2.2) )
1
Rll = SKQQQ_QD‘ = (’)’L— Q)Gm .
So the only non-zero components of ViRp;jk, Vi ViRhijk, ViRij,
VmViR;; and the relation between them are given by
1
Vl—Rlozacl = lelRlaal = Rlaal ="
1
VlRll = vllell = Rll - (n — 2)6:5 .

Here the expression for the projective curvature tensor in local coordi-
nates is given by

(2.3)

1
Prijk = Rhijk — m[QhkRz’j — ghiRik).

Since the non-zero components of g;; from (2.1) are g11 (= @), g1n,
9nl, Jaa, we get that, by virtue of (2.2) the only non-zero components
of P, are

1 1
Ri1, Puin=-—
S_pan 1

Now, on account of (2.3), the non-zero components of the covariant
derivatives of P,p.q satisfy the relation

(2.4) Piaai=Riaal, Pala1=-Riqa1+

R
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V1Vi1Pabed = V1Pabed = Paped.

Therefore we can write
1 1
ViViPobed = ?)'leabcd -+ ;Pabcd-

The above relation holds trivially for the components of Pk which is
zero. Hence the relation

Vi ViPrijk = B Vi Phijk + G Prijk
holds for fm (= £)50 and ajm (= 3)#0.
Therefore M™ with the metric g defined by (2.1) is a G{P(%K,,)}.

3. Generalized projective 2-recurrent Riemannian
manifolds

In this section we deduce a necessary and sufficient condition for
a G{P(*K,)} to be a G{?K,,}. We prove the following

Theorem 1. A necessary and sufficient condition for a generalized pro-
jective 2-recurrent Riemannian manifold to be a generalized 2-recurrent
Riemannian manifold is that the manifold is a generalized Ricci 2-
recurrent Riemannian manifold.

Proof. First we assume that a G{P(*K,)} is a G{?K,,}. Then from
(3) by virtue of (2) we get

(Vv Vo R)(X,Y)Z ~ (Vv Vu8)(¥; 2)X — (Vv VuS)(X, 2)Y]
= AV)(VuR)(X,Y)Z ~ ——{(Vu8)(¥, 2)X - (VuS)(X, 5)Y}]

+ BU,V)R(X,Y)Z — ;Lél—{S(Y, 2)X — 8(X, Z)Y)]

(3.1) (VvVuR)(X,Y)Z — A(V)(VuR)(X,Y)Z - B(U,V)R(X,Y)Z
= ;i—;[(VvVUS) Y, 2) X~ A(V)(VuS)(Y, 2) X-B(U,V)S(Y, Z) X]

—n—iT[(vvaS) (X, 2)Y—A(V)(VuS) (X, Z)Y—B(U, V)S(X, Z)Y]

and consequently, using (1), we obtain
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(33) = {(VyVuS)(¥, 2)g(X, W) ~ AV)(VuS)(Y; 2)g(X, W)

—B(U,V)S(Y, Z)g(X, W) — (Vv VuS)(X, Z)g(Y, W)
+AWV)(VuS)(X, Z2)g(Y, W) + B(U,V)5(X, Z)g(Y, W)} = 0.

Putting X =W =e; in (3.2), where {e;}, i =1,2,...,nis an orthonor-
mal basis of the tangent space at any point of the manifold and taking
summation over i, 1<i<n, we get

3-3) (VWwVud)(Y,2) - AV)(VuS) (Y, Z2) - B(U,V)S5(Y, Z) = 0.

That is, the manifold is a G{?*R,,}. Conversely, suppose that the con-
dition (3.3) holds. Then from (3.1) it follows that the manifold is a
G{?K,}. This completes the proof. ¢

Next we prove
Theorem 2. FEuvery generalized projective 2-recurrent Riemannian
manifold G{P(?K,)} (n > 3) is a generalized conformally 2-recurrent
Riemannian manifold G{C(>K,)} (n > 3).
Proof. Now we consider a generalized projective 2-recurrent Riemann-
ian manifold. Then we have (3.3). Putting in (3.3) again Y = Z =e;,
where {e;}, i=1,2,...,n is an orthonormal basis of the tangent space
at any point of the manifold and taking summation over i, 1<i<n, we
get

(3.4) VvVyr - A(V)Vyr — B(U,V)r =0.
Also, we have from (3.3)
(3.5) (VvVu@)(Y) — AV)(Vu@)(Y) - BU,V)Q(Y) =0,
where () is the Ricci operator defined by S(X,Y) = ¢g(QX,Y).
Using (4) in (5) we obtain
(Vv VuO)(X,Y)Z = (VyVuR)(X,¥)Z — ——[g(¥, 2)(VyVu@)X

—9(X, Z2)(VvVuQ)Y + (Vv VuS)(Y, 2)X — (Vv VuS)(X, Z2)Y]
4 (VvVur)
(n—1)(n-2)
With the help of (1), (4), (3.4) and (3.5) we get from the above equation
(VyVuC)(X,Y)Z = AV)(VuC)(X,Y)Z + B(U,V)C(X,Y)Z.
That is, the manifold is a G{C(?K,,)}. ¢

[9(Y, 2)X — g(X, 2)Y].
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4. Einstein generalized projective 2-recurrent
Riemannian manifolds

In this section we obtain
Theorem 3. An BEinstein G{P(*K,)} is of constant curvature.
Proof. Let us suppose that a G{P(%K,)} is an Einstein manifold.
Then the projective curvature tensor takes the form

r

41)  PXY)Z=R(X,Y)Z - (Y, 2)X — g(X, Z)Y]

n(n —1)

where r is the scalar curvature of the manifold.
Now from (4.1) it follows that

(4.2) (VuP)(X,Y)Z = (VyR)(X,Y)Z, since r is constant.
Using Bianchi’s 2nd identity we get
(4.3) (VuPY(X,Y)Z+ (Vx)Y,U)Z+ (VyP)(U,X)Z = 0.
Now covariant differentiation of (4.3) yields
4.4) (VyVuP)(X,Y)Z+(VyVxP)Y,U)Z+(VyVy P)(U, X)Z =0.
Using (4.1) and (4.3) we get from (4.4)
(4.5) B{UVYP(X,Y)Z+B(X,V)P(Y,U)Z+B(Y,V)P(U,X)Z = 0.
Contracting (4.5) we get

B(P(X,Y)Z,V) =0
that is
(4.6) g(P(X,Y)Z,LV) =0
where the associated (0,2) tensor B is induced by a linear endomor-
phism

L:Tp—Tp(M)
given by
(4.7) B(X,Y) =g(X,LY).
From (4.1) we find that
9(P(X,Y)Z,W) = —g(P(X,Y)W, 2)

(4.8) = —g(P(Y,X)Z,W) = —g(P(Z, W)X,Y).

Now using (4.7) and putting U =LV, expression (4.5) takes the form
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(4.9)
g(LV,LV)P(X,Y)Z+g(X,LV)P(Y,LV)Z+g(Y,LV)P(LV,X)Z = 0.
Using (4.6) and (4.8) it follows from (4.9) that

g(LV,LV)P(X,Y)Z = 0,
since g(LV,LV)#0, P(X,Y)Z = 0.

But it is known [11] that a projectively flat manifold is a man-
ifold of constant curvature and this completes the proof of the above
theorem. ¢

Next we obtain a necessary and sufficient condition for an Einstein
G{P(*K,)} to be a G{?K,,}

Theorem 4. The necessary and sufficient condition for an Finstein
G{P(2K,)} to be a G{?K,,} is that the scalar curvature r vanishes.
Proof.We suppose that an Einstein G{P(?K,,)} is a G{?K,}. Then
we have (4.1), (4.2) and also '

(4.10) (Vv VuP)(X,Y)Z = (VyVyR)(X,Y)Z.
Now applying (4.1), (4.2) and (4.10) in (3) we get

(VvVuR)(X,Y)Z — A(V)(VuR)(X,Y)Z — B(U,V)R(X,Y)Z
(4.11) + B(U, V)n(n—tf)-[g(Y, Z)X — g(X,Z)Y] =0.

Since the manifold is a G{?K,}, we get from (4.11) by applying (1)
that

B(U,V)- L [9(Y,2)X — g(X,Z)Y] =0,

(n—1)
But B(U, V)#0, and thus, for appropriately chosen X,Y, Z [¢(Y, Z)X —
—-g9(X,2)Y]#0,r=0.

Next suppose that 7 = 0. Then from (4.1) we get
P(X,Y)Z = R(X,Y)Z,

which means that G{P(?K,,)} is a G{?K,}. ¢

Finally we consider an Einstein G{P(2K,)} which admits a unit
parallel vector field, then we obtain the following theorem.
Theorem 5. If an Einstein G{P(%K,,)} admits a unit parallel vector
field, then manifold reduces to a G{*K,}.

We suppose that an Einstein G{P(%K,,)} admits a unit parallel
vector field V [14], [15]. Then
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(4.12) ‘ VxV =0.
Applying Ricci identity in (4.12) we get
(4.13) R(X, )V =0.

Contracting (4.13) we obtain S(Y,V) = 0. Therefore
(4.14) %g(Y, V) =0.

Putting ¥ = V in (4.14) we get r = 0, since V is a unit vector field.
‘Thus Th. 5 follows from Th. 4. $
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