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Abstract: This paper considers the problem of extending the notion of an
IFS, respectively IFS with probabilities, to the case of countable iterated
function system (abbreviated CIFS), respectively with probabilities (CIFSp).
We prove that, in the case of CIFS, the attractor and the invariant measure
are continuous with respect to a parameter, the proof being a variant of that
presented in [5]. Furthermore, we show that, if a CIFS is approximated by
a sequence of CIFS then the attractor will be respectively approximated.
Finally, we show that if the system of probabilities of an CIFSp is the limit of
a sequence of systems of probabilities, then the invariant measure is the limit
of corresponding invariant measures of these CIFSp.

1. Preliminaries

We shall present some notions and results used in the sequel (more
complete and rigorous treatments may be found in [1], [4], [6], [7]).

E-mail address: secelean@mail.ulbsibiu.ro



238 N. A. Secelean

1.1. Hausdorff metric. Let (X,d) be a complete metric space and

K(X) be the class of all compact non-empty subsets of X.
The function ¢ : £(X) x £(X) — Ry,

0(4, B) = max{d(4, B), d(B,A)},
where d(A, B) = sup(inf d(z,y)), VA, B € K(X)
zcA YEB

is called the Hausdorff metric.

The set K(X) is a complete metric space with respect to this
metric §. The following obvious lemma will be necessary in the sequel:
Lemma 1. If (E,)n, (Fp)n are two sequences of sets in K(X), then

(U En, | J F ) < sup §(En, Fr).

n>1 n>1

Proposition 1. [6, Th.1.1] Let (E,)n>1 be a sequence of sets in K(X).

If B, CEpyq for allneN* and the set |J B, is relatwely compact, then
n>1

lim E,, = U En.
n>1

the limit is taken with respect to the Hausdorff metric and the bar means
the closure.
1.2. Tterated Function Systems (see [4], [1], [ ]). Let (X,d) be a
complete metric space. A set of contractions (wy,)2_;, N > 1, is called
according to M. Barnsley ([1]) an iterated function system (IFS) Such
a systemni of maps induces a set function S : K(X) — KC(X),

N

S(E) = |J wn(B)
n=1
which is a contraction on K(X) with contraction ratio r <  J2x, T,
T, being the contraction ratio of w,, n=1,...,N. According to the

Banach contraction principle, there is a unique set A € K(X) which is
invariant with respect to S, that is
N
A=35(4) =] wn(4).
n=1
We say the set A € K(X) is the attractor of IFS (wy,)_;.
1.3. The invariant measure of an IFS with probabilities (see [1],
[4]). Let (X,d) be a compact metric space and (w,)]\_; an IFS of X.
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Let p1,...,pn € (0,1) such that z Dn = 1. Then ((wn)n_l, (pn)fy 1)

is called iterated function system W|th probabrhtles (IFSp). We define the
support of a measure p on X to be the closed set
suppp = X \U{V : V open, u(V) =0}.

Let 1 be a Borel measure on X. If u(X) =1 then pu is said to be
normalized. Let B(X) denote the family of Borel subsets of X and B
the set of normalized Borel measures on X. The map dy : BxB — R,

du (1, v) = sup fdp— [ fdv:f:X —R, |f(z) = fly)]
X X ‘
< d(z,y),Vz,y ex}

for all u,v € B, is a metric, namely the Hutchinson metric (or the
Monge—Kantorovich metric). (B,dgy) is a compact metric space ([1,
ch. IX, Th. 5.1]). ~

The Markov operator associated with IFSp is the function M :
: B — B defined by

M(v) =P1V0w1_1+p21/0w2_1+~-+pNz/ow;,1; YveB.

Definition 1. We reserve the notation x4 for the characteristic func-
tion of a set A C X. It is defined by

1, forze A
Xal®) = {D, forze X\ A

A function f: X — R is called simple if can be written in the form

N
T) =) UiXa,

i=1
where N is a positive integer, 4; € B(X) and y; e Rfori=1,..., N,
N
UA=Xoand A,NA; =0fori#j.
1=1
Lemma 2. [1, ch. IX, L.6.1] Let f : X — R be either a simple func-
tion or a continuous function. Choose v € B. Then [, fd(M(v)) =

N

= zlpnfxfowndv.

The associated Markov operator with the IFSp is a contraction
mapping with respect to the Hutchinson metric on B. In particular,
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there is a unique measure p € B such that M(u) = u. u is called the
invariant measure or the Hutchinson measure of the IFSp.
Moreover, the support of y is the attractor of the IFS (w,)2_;.

We consider further a metric space (7', dr). Foreachn=1,..., N,
we define wy, : T'X X — X, r, : T — [0,1) such that supr,(t) < 1
teT

and
dwn(t, ), wn(t,y)) < Ta(t)d(z,y),

forallt e T and z,y € X.

For every t € T, we denote y; the Hutchinson measure associated
with the IFSp ((wn(ta '))'fzv:h (pn)’)]'LV:l)'
Theorem 1. [2, Th. 3.4] We assume that, in the conditions above, for
each n € {1,...,N} and for all z € X, the maps t — w,(t,z) are
continuous. Then the function

it Ht

is continuous as a map from (T,dr) to (B,dg).
1.4. Countable Iterated Function Systems (more details for this
section may be found in [6]). Suppose that (X, d) is a compact metric
space.

A sequence of contractions (wy,),>1 on X whose contraction ratios
are, respectively r,, r, > 0, such that supr, < 1 is called a countable

iterated function system, for simplicity Cﬁ*‘S.
Let (wn)n>1 be a CIFS.
We define the set function S : K(X) — K(X), by

S(E) = | wa(®),
n>1
where the bar means the closure of the corresponding set. Then S is
a contraction map on (K(X),d) with contraction ratio r < supr,. Ac-

n
cording to the Banach contraction principle, there exists a unique non-
empty compact set A C X which is invariant for the family (w,)n>1,
that is

A=8(4) = | wn(4).
n>1

The set A is called the attractor of CIFS (wp)n>1.

We denote by Ay and, respectively, by Si the attractor and the

contraction associated to the partial IFS (w,)k_,, for k > 1.
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Theorem 2. [6, Cor. 2.2] The attractor of CIFS (wy)n>1 is

A= Ak = lim Ak,

the limit being taken in (K(X),4).

Hence, the attractor of CIFS (wn)n>1 is approzimated by the at-
tractors of partial IFS (wn)k_,, k> 1.

We note that each IFS (w,)®_; can be considered like an CIFS
according to
Proposition 2. [6, Prop. 2.2] The set Ag, k € N*, is the attractor of
IFS (wn)E_, if and only if Ak is the attractor of CIFS (wn)n>1, where
wn, = €1 (the fized point of wy), for alln > k.
1.5. The associated invariant measure of an CIFS with prob-
abilities (see [7]). Let (X,d) be a compact metric space and (wy)n>1
a CIFS on X. We consider a sequence of probabilities (p,)n,>1 with

o]
0<p, <1, anzl
=1

The palr ((wn)n>1,(pn)n>1) is called countable iterated function
system with probabilities and we will denote it by CIFSp. We define the
map M : B — B,

M(v) = anu owt for all v e B.
n=1
M is called the Markov operator associated with CIFSp ((wpn)n>1,
(pn}nzl)-
Lemma 3. [7, Lemma 3] Let f : X — R be a continuous function and

veB. Then
/X FAOA) = . /X (f 0 wn)dv

Theorem 3. [7, Th. 2] With the above notations, M is a contraction
map with the contraction ratio not greater than r with respect to the
Hutchinson metric on B. That is
de(M@),M(p)) < rdu(v,pu), Yv,pe€B.
In particular, there is a unique measure u € B which is invariant
for M, M(u) =
The unique normalized Borel measure which exists according to

the above theorem is called the Hutchinson measure associated with
CIFSp.



242 N. A. Secelean

Now, we consider for every k > 2, the partial iterated function

systems (wn)®_, with the probabilities p1,ps, . .., Pr—1, Z Dn. The as-
n=k
sociate Markov operator is

k—1
Mk(y):an-yown (an) VOwk , VEB.
n=1

By 1.3 it follows that, for every k > 2, there exists uniquely ux €
€ B such that My (ug) =

Theorem 4. [7, Th.3] With the above notations, on has ik LR p with
respect to the Hutchinson metric dy.

2. Continuity of attractors for CIFS

In this section (T, dr), (X,d) are two metric spaces, the second
being compact. We consider further the sequences of functions

wp T x X — X, respectively, r, : T — [0,1), n € N*,
with the following property: for each £ € T', one has

a) Awn(t, z),wn(t,y)) < rp(t)d(z,y) Vz,y € X;
b) supr,(t) < 1.

We define S : T' x K(X) — K(X),

S(t,B) = | Jwn(t,B), Vt €T, B € K(X).
n>1 ’
By 1.3 it follows that, for each t € T, S(¢,) is a contraction map
on K(X) with the contraction ratio r(t) < supr,(t) < 1.

Theorem 5. Assume that there is a constant C > 0 so that
(1) Hwn (t, ), wn(s,x)) < Cdrp(t, s),

forallz e X, t,s€T, ne N*.
Then, for every B€ K(X), one has §(S(t, B),S(s, B)) <Cdr(t, s),
and hence S(-, B) is uniformly continuous on T'.
Proof. Choose t,s € T and B € K(X). Then, for each n € N*, one
has
0(wn(t, B),wn(s,B)) < Cdr(t, s).

Indeed, by symmetry, it is sufficient to prove that
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d(wn (t, B),wn(s,B)) < Cdr(t,s).
If y € wy(t, B), then there exists z € B such that y = w, (¢, 7).
Put z = wy(s,z). It follows

d(y, 2) = d(wn(t, z),wn(s,z)) < Cdr(t,s)

hence sup inf d(z,y) < Cdr(t,s).
yEwn@.B)zewn@ B)

Now, using Lemma 1, we deduce

5(S(t, B),S(s,B)) = 5<U wa(t, B), | wn(s,B)> <

n>1 n>1
< sup d(wn(t, B), wn(s, B)) < Cdr(t, s). O

Remarks. 1° If we assume, like in the case of IFS, only the condition
that the maps t — wy (¢, B), n > 1, are continuous for every B € K(X),
it did not follow that the function ¢t — S(t,B) is continuous, as it
follows by the following counter-example:

Let us consider T' = [0, 1], X = [-2,2] and the contraction maps

1 t
wp(t,z) = 3% + sin n_27r7 n>1.

It is clear that the conditions a) and b) hold with r, =

that wy (-, x) is continuous for all z € X, n > 1.
Choosing z € X and B = {z}, we will show that S(-, B) is not
continuous in {g = 0.

and

b

1
Thus, we consider the sequence t, = 7 0. We have

S(ty, {z}) = U{f;—l—&ﬂ—}z[%x——l,%x-{-l},‘v’kEN,

st 9 - O} - (3
but 8(S(ty, {z}), S(to, {z})) =1, Vk € N*.
2° Since, in (K(X), ), we have that (see Prop. 1) for each ¢t € T,
k [
Sk(t,B) = | J wn(t, B) = | J wn(t, B) = S(t, B), VB € K(X),

n=1 n>1

it follows that, if the maps w,(,z), n > 1 are only continuous but
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they do not verify condition (1), the convergence of the sequences of
functions (Sk(t, )k is not uniform.
We will use the following elementary lemma:
- Lemma 4. Let (Y, p) be a complete metric space and (fi)r>1 a sequence
of contractions on'Y with the contraction ratios, respectively ri € [0,1),
such that r = supry < 1. We assume that (f)k>1 is pointwise conver-
k

gent to f:Y — Y. Then

a) f is a contraction with ratio less than or equal to r;

b) liingsz (&, resp. € are the fized points of fi, resp. f).
Theorem 6. Assume that the condition (1) is fulfilled. For eacht € T
we denote A(t) the attractor of CIFS (wn(t,))n>1. Then the function

t— A(t)
is continuous from T to K(X) .
Proof. Let to € T and (tx)r>1 C T, tx, — to. Then, by Th. 5, we
deduce that the sequence of contraction mappings (S(¢k, -))x having the
ratios, respectively r(t;) < supr,(tx) is pointwise convergent to S(to, -)

on the complete metric space (K(X),9).
On the other hand, for each k € N*, A(ty) is the fixed point of
contraction map S(tk, -), respectively A(to) is the fixed point of S(to, -)-
By applying Lemma 4 and using the fact that supr(tg) < 1, it
k

follows that
Aty) = Alto). O
In the following example one can see the continuous dependence

of the attractor of an CIFS.
Example 1. (The CIFS of Sierpinski-infinite type [6].) We denote

X={(z,y) eR?*: 0<2<1,0<y<1—2z}
the plane surface of the closed triangle having its vertices in the points
(0,0), (0,1), (1,0).
Let p e N, p > 2, and consider the maps

1t £ 1 3
ot @) = (5= 5) o+ Ty -1 3+t
N 1+3 N pP—1 N 1 t
10T\ =1 7)) T 10)
p'—1

1=1,2,..., 5=1,2,..., o t € [0,1]. In Fig. 1 are presented the
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images for p=2t=1,t=3"1 t=10"1 t =10"5.
) . '
%?’r V ¥ fr/w V”

3 .ng g‘ it % Vp" V ;{
. i q\ % g v P 'y F
3% ‘ ‘g E‘VV g:%'g’ 4
% ?\g 4
Wl

Fig. 1. The evolution of attractors of CIF'S Sierpinski-infinite type

for different values of parameter

Theorem 7. Suppose that T = X and that the sequences of maps
(Wn)n>1, (Tn)n>1 satisfy the condition (1) for C € (0,1).

Then, for each B € IC(X), there exists a point xg € X such that
zp € S(zp,B).

In particular, if A(z) is the attractor of CIFS (wn(z,-))n, there
exists a point xg € X with o € A(xzg).
Proof. Choose B € K(X). By Th. 5 it follows that

(2) 0(S(z, B),S(y, B)) < Cd(z,y), Ya,yeX.
Let po € X be a fixed point and p; € S(po, B). Then, from (2),

5(8(1}0, B)) S(plv B)) < Gd(p())pl>7

and hence sup _inf  d(p,q) < Cd(po,p1)-
PES(po,B) qeS(p1,B)

Thus, for p; € S(po, B), there is ps € S(p1, B) such that

d(p1,p2) < Cd(po,p1)-

When proceeding in this way, we obtain a sequence (p;)i>0 C X
which has the following properties:

@) pit1 € S(ps, B);

B) d(pi, piy1) < Cd(pi—1,p:)
fori=1,2,..

We deduce that d(p;,pir1) < C*d(po,p1), i =1,2,..., hence

d(pi, Piss) < (E+ T+ + Y d(po, p1) =
¥)

1—¢f . .
1_cd(po,pl), Vi,j € N*.

It follows that the sequence (p;); is a Cauchy sequence. Put zp :=
= hmm Di-

)
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By (2) we deduce that (S(p;, B)): converges to S(xzp,B) and,
since p; € S(pi—1, B), it follows that zp € S(zp, B).

The second assertion is obvious by taking into account that for
each z € X, A(z) = S(z, A(z)). ¢
Proposition 3. Let wp : X — X, k,n € N* be contraction maps

with contraction ratios rp € [0,1), r := supry < 1 which constitutes
n,k

a sequence of CIFS, the system (wi)n>1 having the attractor Ap for
every k =1,2,....

We accept that there is a sequence of functions (W™)n>1, where
w”: X — X, n e N* are such that for each z € X,

(3) sup d(wf (¢), " (2)) £ 0.

Then (w™), is an CIFS, whose attractor A is approzimated by
(Ax)x. That is

Ay 2 4
in the Hausdorff metric.
Proof. By (3) it follows immediately that, for each n € N, one has
wp — w™ (pointwise) and hence, using Lemma 4, w™ is a contraction
map with contraction ratio not greater than r.
We will prove that §(Ag, A) *,0.
First we check that

(4) sup 6(wf. (4), " (4)) 0.

Suppose that the relation (4) did not hold and let € > 0 such that
supd(wp (A),w™(4)) > ¢, forany k> 1.

Then, for each k > 1, there is a ny > 1 so that §{w*(A4),w™ (A)) > €.
Taking, eventually, a subsequence, we distinguish two cases:
A. d(wp*(A),w™ (A)) = sup inf d(z,y) >e.
z€w, K (A) YEw™k (A)
It follows that there exists a point z; € A such that for every
y' € A, we have

(5) d(wi* (1), w™ (¥") > €, Yk e N.
Since the sequence (z})r is contained in the compact set A, we

deduce that it contains a convergent subsequence which, for simplicity,
will be denoted in the same way. Thus 2 — 2’ € A.
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Then, by taking y' = 2’ in (5), we obtain
e < d(wg*(zy), w™ (') < d(wi* (21), wp* (z7)) + d(wi* (z), w™ (z')) <

<rd(z},z') + sup d(wp(z'), w™(z")), Vk € N*,

This inequality contradicts (3) and the fact that z} — z'.

B. The case d(w™ (A),w;*(A)) > € may be treated in an analo-
gous way.

Now we can write, using Lemma 1,

s, 4) = 3 {J a0, U wn(@)) < sup 6 (4e), 7 (4) <

n>1 n>1
< sup §(wi (Ar), wi (A)) + sup 8(wi (A), wn(4)) <

< ré(Ak, A) + sup §(wi (A), wn(4)).

It follows, using (4),
1
6(Ar, A) < 7

- T

sup §(w(A), wn (A)) = 0. ¢

We will show that the condition (3) from the above proposition is
not necessary.

Thus, we consider a CIFS (w™),>; on X, the contraction maps
having the contraction ratios, respectively r,,, n > 1. We denote e; the
unique fixed point of w!. Assume that there are C > 0 and N € N* so
that

(6) d(er,w™(z)) > C,

foralln>Nandallz € X.
The following example shows that there exists an CIFS as above.
Example 2. (The CIFS of Cantor-infinite type [6].) We work in the

compact metric space X = [0,1] with the Euclidean metric. Let g €

1

0,=1.

. ( .

We define, for each n € N*, the sequence of contractions w,, :
:[0,1] — [0, 1],

wn(:);) = qnw + Ol
2

n—1
where a1 =0, o, = ¢ + (%E—gg) + ap—1,n > 2.

: 1
Thus, for this CIFS, we have C € (O, -3;), N>2 e =0.
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Now we define a sequence of CIFS ((w})n)r as follows:
wp =w", if n <k and wy =e; forn> k.

That is (wP)n = ( Lw? . wherer,...), k=1,2....
Proposition 4. In the above conditions, we have

a) Vn>1, Vz e X, wi(z) —E—*w‘”‘(x);

b) sup d(wf(z),w" (@) 0, Ve € X;

¢) A = 4,
where, for each k > 1, we have denoted by Ay the attractor of
CIFS (wl), and A means the attractor of CIFS (w™)n, the conver-
gence being taken in the space (K(X),6).
Proof. a) If z € X and n > 1, then for each & > n, we have by
definition

wi; (z) = w"(x)

and hence the convergence is trivially.

b) The assertion results taking into account that for each k € N*,
there is a number ny, > max{k, N} such that

d(wp* (z),w™ (z)) = d(e1,w™ (z)) > C, Vr € X,
by the hypothesis (6). v
¢) By using Prop. 2 we deduce that, for each k > 1, Ay is the
attractor of IFS (w™)k_,.
Now, the conclusion follows from Th. 2. {

3. The dependence on parameter of the invariant
measure of a CIFS

In this section we will assume the same context like in the above
section. Let (pn)n be a sequence of probabilities p, € (0,1), n € N*,

o0
> pn=1
n=1
For some k € N, k > 2, we denote ¢1 =p1,...,;qk—1 = Pk—1, 9k =
o0
= 5 pn, k probabilities and, for each ¢ € T', we will denote M?F and,
n=k
respectively uF the Markov operator, respectively the Hutchinson mea-
sure associated of the countable iterated function system with probabil-
ities ((wn(t,))E_1, (gn)E_1). We also denote for every t € T by 4 the
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Hutchinson measure associated of CIFSp ((wn(t,)2 1, (pr)S;) and we

n=1
will suppose further that r := supsup r,(t) < 1.
teT neN
Theorem 8. Suppose that for each £ € X and n € N* the function

t > wy(t,x) is continuous. Then the map
t = Ly
from T to (B,dm) is continuous.
Proof. By Th. 4 it follows that for all £t € T,

(7) Hf = Mt
with respect to the metric dy.
Next, from Th. 1 it results that the map ¢ — uf is continuous.
We will prove that the convergence in (7) is uniformly (with re-
spect to t).
Choose € > 0 and K, € N such that, for every k > K,

1
1—7r

(8)

- diam(X) - Z Pn < E,
n=k+1

where diam(X) is the diameter of the set X.
Let £k > K. and f : X — R be continuous with Lipf < 1
(Lipf = sup Ji%%;%ﬂ being the Lipschitz constant of f).
z#y ’

Denoting by M; the Markov operator associated of CIFSp
((wn(t, ))n, (Dn)n), and using lemmas 2 and 3, we have for all t € T,

[ sty = [ gaudy =
X X
k—1 oo
=nz::lpn/Xfown(t,-)d,u’f+n§::kpn/Xfowk(t,.)dﬂf_
k—1 .
o : ke o . k—
—;pn/Xf wn(t7 )d:ut ’,;Cpn</xf wn(t, )d,u,t

- Z pn/X(fowk(t,') — fouwn(t,)) duF <

n=k+1

<A ph(X) Y pa<ell=1)

=1 n=k+1
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according to (8) and using the inequalities
| fowk(t,z) — fown(t z) [< dw(t ), wn(t, z)) < diam(X),

forallt € T, z € X (we have use also the inequality Lipf < 1).
Thus one obtains

(9) A (MF(uF), My (1) < e(1 = 7), YVt € T and k > K..
Next, for k > K, and t € T one has
dar(pf, i) = dg (MF(uF), My (1)) <
< A (M (F), Ma () + dir (M (), My (122)) <
< dpr(MF(uf), Mo(pf)) + rda (uf), ).

Hence, using (9), we have

dHW?M)Sl

1
_T-g(l—'r)=67 ViteT, Vk > K.,

and consequently uf *, p¢ uniformly. Thus ¢ — p; is a continuous
map. ¢

4. A new approximation for Hutchinson measure

We will study the dependence of Hutchinson measure associated
to a CIFSp in the case when the system of probabilities is the limit of
a sequence of systems of probabilities.

Write C(X) = {f : X — R : f continuous} and let M be the
family of Borel measures on X. The convergence in the weak topology
on M will be, for (ux)s C M, p e M,

w2t e [ pdw— [ L0, v e o,
X X

Clearly, X being compact, all measures in M have a compact
support.

It is a standard fact that the dy topology and the weak topol-
ogy coincide on the space of Borel normalized measures with compact
support.

Let us consider a CIFS (wn)n>1 with ratios r,, n > 1, with r =
= supr, < 1 and for each k = 1,2,... the system of probabilities

T

(p*)n>1 which has the following properties:
a) pj € (0,1), Y,k > 15



Some continuity and approximation properties of a CIFS 251

b) SpF =1, Vk=1,2,...;
n=1

¢) there exists a sequence (p,), C (0,1) such that |pf — p,| <
yforallk=1,2,...,n=1,2,....

Lemma 5. In the above conditions,

<

ok L pn, V21, and an =1.

n=1
Thus (pn)n is a system of probabilities which is approzimated by

((pﬁ)k)n

Proof. We have: | p’fb — D |<

1 Lk
o implies pr N Dp, V1.
Next, for any k,n € N* we have
1

P ST S o

and, summing with respect to n,

e o]

1
_Z k- 2“_219"—‘21?“ zk on A —E_l_ZPnSE,Vk-

n=1

Hence Z pn = 1. 0

n=1

For each k > 1 we denote uF, respectively M* the Hutchin-
son measure, respectively the Markov operator associated to CIFSp
((Wn)n>1, (PF)n>1). We denote further y, respectively M the Hutchin-
son measure, respectively the Markov operator associated of the system
((wn)n?_ly (pn)nZl)
Theorem 9. Under the above conditions and using the same notations,
we have

uF s

with respect to the Hutchinson metric dy.
Proof. For an arbitrary k > 1, we have

dpr (u*, 1) = dg (MP ("), M(p)) <
< dg (MF(u?), M () + di (MP (1), M(p)) <
< rdr(pF, p) + d (MP (1), M(1)).
It follows
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drr ¥, 1) < T (M*(), M()

To establish that dg(M* (), M()) *, 0, it is sufficient to prove

that M (u) -, M(u) with respect to the weak topology.
Take some f € C(X). Then, using Lemma 3 and the condition c),

/deM’“(u)-/deM(u)
;Pﬁ/}(fowndu—gpn/xfowndui <

o0
SZH?ﬁ—pnl-/ | fown |du <
n=1 X

=1 1k
S sup [ f@) [uX)- 2 5mgm = swp [ F@) |- =0

Consequently it follows M*(1)(f) LN ME(w)(f), Y f € C(X). O
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