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Abstract: A function f(z) = z + a2z% + azz3 + -+ which is regular in the
open unit disc D = {z“z] < 1} belongs to the class S* (4, B,b) if
' 1+ A4
L 1L ) LAt
b\ f(2) 14 Bw(z)
where w(z) is regular in D and satisfies the conditions w(0) = 0 |w(z)| < 1,
and A, B are real arbitrary fixed numbers such that -1 < A<1, -1< B <

< A. The aim of this paper is to give the Koebe domain under the Montel
type normalization of the class S*(A, B, b).
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1. Introduction

Let Q be the family of the functions w(z) regular in the unit disc
D and satisfying w(0) =0, jw(z)| < 1 for z € D.

Next, for the arbitrary fixed numbers 4,B,-1 < A <1, -1 <
< B < A, denote by P(A, B) the family of functions

p(z) =1+p1z+p2®+---,
regular in D such that
1+ A
p(z) € P(A,B) if and only if p(z) = 1—:——_—-—35—%3
for some function w(z) € {2 and every z € D.
Moreover, let S*(A, B,b) denote the family of functions

f(2) =24+ a9z +azz® + -+,
regular in D such that

. . e L )

f(z) € S*(A,B,b) if and only if 1+ 7 (z 5 1) = p(z)
for some p(z)in P(A, B) and all z in D.

We note that the class P(4, B) was introduced by W. Janowski
[10]. p(1,—1) is the class of Carathéodory functions p(z) for which
p(0) =1, Rep(z) > 0 in D. Therefore the set S*(A, B,b) contains the
following classes:
1. §*(1,—1,1) — the well-known class of starlike functions [1].
2. §*(1,—1,b) — the class of starlike functions of complex order, intro-
duced by P. Wiatrowski [7].
3. 8*(1,-1,1—B),0 < B < 1 — the class of starlike functions of order
B, introduced by M. S. Robertson [6].
4. S*(1,—1,e*cos)), |A| < § — the class of A-spirallike functions,
introduced by L. Spacek [5].
5. §* (l —1,(1—-B)e** cos A) 0<4<1, |A|<% - the class of A-spiral-
like functions of order 3, introduced by R.J. Libera [8].
6. S*(1,0,b) — the set defined by |ST(b) — 1| < 1, where ST'(b) = 1 +
+ %(ziféf)l —1). '
7. §%(3,0,b),0 < B < 1 — the set defined by|ST(b) — 1| < §.

8. §*(8,—0,0),0 < B <1 - the set defined by[‘gg(’g);ﬂ <B.

9. S*(1,(=1+ $5),b), M > 1 — the set defined by|ST(b) — M| < M.
10. 5*(1 — 2/6,—1 b),0 < B < 1 — the set defined by Re ST'(b) > (.
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2. Auxiliary lemmas

From the definition of the classes P(A, B) and S*(4, B, b) we eas-
ily obtain the following lemmas.
Lemma 2.1. f(2) = z + azz? + asz® + --- belongs to S*(4, B,b) if
and only if
b(A~B)
£(z) = z(1+ Bw(z))” B B#0
zebAw(2) B=20
where w(z) € Q.
Proof. We prove first the necessity of the condition.

Let B % 0 and
b(A~B)

f(z) =2(1+ Bw(z))” B .
- If we take logarithmic derivative, from this we obtain
1/ f(z) 2w (2)
—|z —1)=(A-B)————.
57 ) =4 B
Using Jack’s lemma [2] in this equality we obtain

IO gy (4Bl

fz) /) 1+ Bw(z)
It follows that
1/ F(z) 1+ Aw(z)
z —1) = T
L+ b (z f(2) ) 1+ Bw(z)
This means that f(z) € S*(A, B,b).
Let B =0 and

f(z) = 2z,
If we take logarithmic derivative we obtain
1 £ :
- —-1) =4 z).
b ("’ 72 > aw (2)
Using Jack’s lemma we deduce
L £
- —-1)=A :
b (z 7(2) > w(z)
This equality can be written in the form
1/ f(2) 14+ Aw(z)
= —1) =14 Aw(z) = ———=.
1+b<zf(z) 1) + Aw(z) T+ Bu(z)
This shows that f(z) € S*(4, B,b).
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The condition is also sufficient.
Let f(z) € S*(A,B,b) and B # 0. Then

L+ b( J;((z)) ) =7(2)

for some p(z) € P(A;B). On the other hand the boundary function
po(2)of P(A, B) with respect to this equality has the form

14 Az
14+ Bz

po(z) =

Therefore we have the equality

for every boundary function. After simple calculations we deduce
F(2) = 2(1 + B2) 5 = ) _ 4 Byt
z

If we use the subordination principle [1] to this equality we obtain
b(A-—B)

f(z) =z(1+ Bw(z))” T .
Let f(2) € S*(A,B,b) and B =0. Then

L+b<§é; ) =7(2)

for some p(z) € P(A, B) and so we obtain
f(z) = zetAw(®)

The assertion is also proved. ¢
Lemma 2.2. If f(2) € S*(4, B,b), then the function

aef (#2) B£0,aeD
] )z +a)( +an)TE 2t ’
f(2) = azf(_z_ﬂ)
Lraz B=0,aeD

f(a)(z + a)(1 4 az)**4—1
is in S*(4A, B,b).
Proof. Let B £ 0, a € D. We consider for real g,0 < g < 1,
azf (fz)
fo(2) = - BAZEY ) zeD.
fla)(z+ a)(1 + az)

Then
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1+l<zf;(z) —1> =

b\ fo(2)
B (z-i—a)?l-f—&z) (1~lal*) H% (g(lz—:ra )J;(gg((%))) _1> +
+ (% N 1) (z + a)?l Tt T [af) + [1 N % (z + a)?l Tag LT
B (n(AB— g B %) (z + a)?l + ELz)EL(z + a}}
Letting z = €* and w = g( ffat,zz) we obtain
-

1 1+ ge?

1-—
b |1+ ae—]?

-+

(1 —lal*) | — |af?
= |1:—al‘,‘w[2 { %( ]}(( )) - )} + (% -1) 11(1 a(li_lw)]2+
( B)

(A a(a + e')
e

1+ae™#)2 |

On the other hand, from Lemma 2.1 we have

(1=af) || 1/ () L_\_(-laf?)
|1+ae—|2 1+—< Flw) 1>}+(E— )ll—i—ae_*‘ﬂ2+

N 1_3 1+ ae® (—~(A—B) i) a(a+e) | 1+Aw(z)
b1+ ae~i B B " b)[1+ae"®2 | 1+ Buw(z)

It results from the last two equalities that
(z) 1) _ 14+ Aw(z)
f4(2) 1+ Bw(z)’

consequently f,(z) is in S*(A, B,b) for admissible g. Using also the
property of compactness of S*(A, B,b) we conclude that

1+(

is in S*(A, B, b).
Let B =0, a € D. We obtain similarly
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1+3(zf-‘;(z) —1) = —(—l—l‘fbfl—[ul(wf—l(—@—l)b

b\ f4(2) 14 ae~i)? b\ flw)
1N G=leP) 1 1dae?
+ (b 1) |1+ae—|? : b|l+ae=|?
1y a+e? | 14 Aw(z)
B (2A_ -I;) 1 +ae“i9|2} 1+ Buw(z)

and
fi(2z) = lim f,(2)
g—1
which ends the proof. ¢
Lemma 2.3. If f(z) = z + ag2% + a3z® + - -+ belongs to S*(A, B,b)
then the set of the values (sz_((,‘:‘))'> is the closed disc with the centre c(r)
and the radius g(r) where
_1-[B—-bAB - B?)|r? _bl(A~ B)r?
C(T) - 1— B2T2 3 g(r) - 1 — B2T'2 .

Proof. The images of the closed disc |z| < r under the transformation
p(z) = 1H4w(z) .16 contained in the closed disc with the centre cy(r)

1+ Bo(z)
and the radius g1(r) [10], where
1 — ABr? (A— B)r
al)=1gmz 00 =15
Therefore by Lemma 2.1 we have
1/ f(2) 1— ABr?| _ (A-B)
14~ -1) = < .
{ + b(zf(z) H 1— B2 | = 1— Bor2

After simple calculations we obtain the desired result of the Lemma
2.3. ¢

Theorem 2.1. If f(z) € S*(4, B,b), then
G(r,—A, =B, b)) < |f(2)] < G(r, 4, B, [b]),

where

r(1+ Br) HagR)

B+£0
G(r, A, B, |b]) = ’
,r,elb|Ar

B =0

Remark. This bound is sharp, because the extremal function is
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214 B2)"F2 B£0 7"(7“—\/%
fe(2) = A B and w=——+~,
z s b
ze 0. 1 — r\/;
Proof of Theorem 2.1. Since f(z) € S*(A, B,b), we have
L f@)
1+ a (z ) 1) = p(2),p(z) € P(A, B)

and after simple calculations we obtain

72) = B [ i b—“'i(—g%-‘—l—)df).

()] = |2lBxp (R( X b—“'i%:i)dg)).

Substituting £ = 2zt we obtain

51 = lelBs (Re( [ 1 =1 )).

On the other hand it follows from Lemma 2.3 that

(b<p<zt> - 1)) _ bla-B)r

Therefore

max

jzt|=rt t 1+ Brt

After integration we obtain the upper bounds for |f(z)|. Similarly we
obtain the lower bounds for | f(2)|, which shows that the proof of Th. 2.1
is complete. ¢

3. Koebe domain with Montel normalization for
the class §*(A, B, b)

In this section we shall give the sharp bound of the Koebe domain
with Montel normalization for the class S*(A, B, b). Therefore we shall
need the following definition.

Definition. The Koebe domain K(F') for a family F of regular func-
tions f(2) in D is the set of all points w contained in f(D) for every
function f(z) in F. In symbols

K(F)= () fD).
f(z)eFr

Supposing the set F is invariant under the rotation, so that
e’ f(e~*®z) is in F whenever f(z) is in F. Then the Koebe domain will
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be either the single point w = 0 or an open disc |w| < R. In the second
case R is often easy to find. Indeed supposing that we have sharp lower
bound M(r) for |f(re')| for all functions in F' and F contains only
univalent functions, then

R= lim M
g M)

gives the disc |w| < R as the Koebe domain for the set F' [see 1].

We can also impose a Montel type normalization. This means that
for some fixed 79,0 < 79 < 1, we consider the family of normalized
functions f(z) regular and univalent in D with f(0) = 0, ) =1,
f(’r’o) =To {3}

Theorem 3.1. If f(z) € S3 (A, B,b), then the Koebe domain of
S*(A, B,b) is
(1 . B) |b|(A—B) (1 . 7’3) —b(A—B!_*_l

(1~ 2rgcosf + rd) =243

e—IblA (] _ ;2)2b4
(1 — 2rp cos @ + r2)2A-3

Proof. Let B # 0. If we take a = v = ro, f(r0) = 70,
a-+z v+ z u—v
U = — = — = Z = -
1+ az 1+ vz 1—7u
then Lemma 2.2 gives

B+#0

R =
B =0.

_w(u— )1 - )T f(w)
O e - bl

Using Lemma 2.2, Th. 2.1 and the definition of the Koebe domain under
the Montel type normalization, after simple calculations we obtain

(1 - B) |b](A—B) (l . T%) —b(A—B) +1

—b(A=B) |, 1
Y - T )

(1 —2rgcosf +12)
Similarly for B = 0 we obtain
e~ 1PlA(1 —rd)

T (1—2rgcosf+ r2) A3

O

Corollary. If we take A=1, B=-1,b=1, 10 = 0 we obtain R =
= é—ll. This is the well-known Koebe domain for the starlike function.

Therefore the Koebe domains under the Montel normalization for the
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classes S*(1,—1, 1), §*(1,-1,b), S*(1,—-1,1-5), §*(1, -1, e~ cos A),
§*(1,-1,(1 = e ™cos)), S8*(1,0,8), S*(B,0,b), S*(8,—4,b),
S*(1, (=1 + 37),b), S*(1 — 28, —1,b) are obtained.
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