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Abstract: We consider quasi-conformally flat and quasi-conformally semisym-
metric Kenmotsu manifolds. We show that the following three statements
are equivalent: (a) M is quasi-conformally flat, (b) M is quasi-conformally
semisymmetric and (c) M is locally isometric to the hyperbolic space H™(—1).

1. | Introduction

In [3], B. Y. Chen and K. Yano defined the notion of an n-
dimensional Riemannian manifold (M™, g) of quasi-constant curvature
as a conformally flat manifold with the curvature tensor R satisfying
the condition '
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R(X: Y, Z, W) = p[g(Ya Z)Q(X’ W) - g(X, Z)g(Y’ W)]+
(1.1) +glg(X, W)T(Y)T'(Z) — (X, Z)T (Y )T (W)+
+9(Y, 2)T(X)T(W) — g(Y, W)T(X)T(Z)]

where R(X,Y,Z, W) = g(R(X,Y)Z,W), R is the curvature tensor of
M, p,q are scalar functions and T is a non-zero 1-form defined by

(12) o(X,U) = T(X),

where U is the unit vector field.

It can be easily seen that if the curvature tensor R is of the form
(1.1), then the manifold is conformally flat. On the other hand, in [13],
G. Vranceanu defined the notion of almost constant curvature tensor
by the same expression (1.1). Later in [8], A. L. Mocanu pointed out
that the manifold introduced by Chen and Yano [3] and G. Vranceanu
[13] are the same. The notion of the quasi-conformal curvature tensor
was defined by K. Yano and S. Sawaki (see [9]). According to them a
quasi-conformal curvature tensor is defined by '

C(X,Y)Z=aR(X,Y)Z+b[S(Y,Z)X -S(X, Z)‘YJ} g(Y, 2)QX—

(13) T a
~9(X, 2)Q¥] -~ | 25 +2b|[g(¥, 2)X ~g(X, 2)Y),

n—1

where a and b are constants, S is the Ricci tensor, () is the Ricci operator
and r is the scalar curvature of the manifold M™.

A Riemannian manifold (M™,g) (n > 3), is called quasi-conform-
ally flat if the quasi-conformal curvature tensor C=0 Ifa=1and
b= “'ﬁ%i’ then the quasi-conformal curvature tensor is reduced to the
conformal curvature tensor.

A Riemannian manifold is said to be semi-symmetric (see [12]) if
R(X,Y) -R=0,

where R is the Riemannian curvature tensor and R(X,Y") is considered
as a derivation of the tensor algebra at each point of the manifold for
tangent vector fields X,Y. If a Riemannian manifold satisfies

R(X,Y)-C =0,

where C is the quasi-conformal curvature tensor, then the manifold is
said to be quasi-conformally semi-symmetric manifold.
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2. Kenmotsu manifolds

Let M be an almost contact metric manifold (see [1]) equipped
with an almost contact metric structure (i, €, 7, g) consisting of a (1, 1)
tensor field ¢, a vector field £, a 1-form 7 and a compatible Riemannian

. metric g satisfying

(1) ¢ =-T+n®¢, n(E) =1, =0, nop=0,

(2.2) - 9XY) =g(eX, pY) +0(X)n(Y),

- (23) 9(X,0Y) = —g(pX,Y), g(X,§)=n(X) |
for all X,Y € TM. An almost contact metric manifold is called a

Kenmotsu manifold if it satlsﬁes (see [6])
(24) (Vxp)Y =g(pX,Y)E—n(Y)pX, XY eTM,

where V is Levi—Civita connection of the Riemannian metnc From the

‘above equation it follows that

(2.5) Vxt =X —n(X)¢,

(2.6) (VxmY =g(X,Y)—n(X)n().
Moreover, the curvature tensor R, the Ricci tensor S, and the Ricci
operator () satisfy (see [6])

(2.7) - RXY)E=n(X)Y —n(Y)X,
(2.8) S(X,§) =1 —n)n(X),
29 - Q=(1-nk.

The equation (2.7) is equivalent to

(2.10) R X)Y=n(Y)X —g(X,Y)¢,
which implies that

(2.11) R X){=X—-n(X)¢

From (2.10) we have

(212)  nREX)Y)=nX)n(¥) - g(X,Y).

Kenmotsu manifolds have been studied various authors. For example
see [2], 4, [5], [7], [11].
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A plane section IT in T, M of an almost contact metric manifold M
is called a w-section if II 1 £ and o(II) = II. If the sectional curvature
K(II) does not depend on the choice of the y-section II of T, M, then
M is of pointwise constant ¢-sectional curvature. A Kenmotsu manifold
of pointwise constant y-sectional curvature is called a Kenmotsu space
form. '

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of
v equals —2dn ® &) but not Sasakian. Moreover, it is also not compact
since from the equation (2.5) we get divé = n—1. In [6], K. Kenmotsu
showed (1) that locally a Kenmotsu manifold is a warped product Ix N
of an interval I and a K&hler manifold N with warping function f (¢) =
= se’, where s is a nonzero constant; and (2) that a Kenmotsu manifold
of constant (p-sectional curvature is a space of constant curvature —1,
and so it is locally hyperbolic space. Examples of Kenmotsu manifolds
of strictly pointwise constant y-sectional curvature are not known so
far and, according to D. Blair, one doubts that there are any, since the
warped product structure of a Kenmotsu manifold involves a Kahler
structure. Thus, one has to be careful for further study of Kenmotsu
space forms with strictly pointwise constant ¢-sectional curvature.

An almost contact metric manifold is said to be an n-Einstein if
the Ricci tensor S satisfies the condition

(2.13) S(X,Y) =ag(X,Y) + bn(X)n(Y)

where a,b are certain scalars. If b = 0 then the manifold M is an
Einstein manifold.

3. Quasi-conformally flat Kenmotsu manifolds

Assume that M™ is a quasi-conformally flat Kenmotsu manifold.
Then from (1.1) we have

(3.1)

R(X,Y,Z, W) = b[S(X, 2)g(Y, W) —S(Y,Z)g(X,W)+

a

+ S(K W)Q(X, Z) - ‘S’(X: W)g(Ya Z)]_

_ % [nf -+ Zb] 9(Y, Z)g(X, W) — g(X, Z)g(Y, W].

Putting Z = £ in (3.1) and using (2.3), (2.7) and (2.8) we obtain
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9, Wn(X) = (X, W)(Y) = ~{(1 = m)g(Y, W)n(X)~

(32) = (1= n)g(X, Win(¥) + S(¥, W)n(X) = S(X, W)n(¥ )]+
[ 2t 26) [, Wn(¥) — g(¥, Wm(X)

Now putting ¥ = £ in (3.2) and using (2.3), (2.7) and (2.8) it follows
that

33 ZSGGW) = Ag(X, W) + Ba(X)n(W),
where . ' | |

(3.4) A=[1—-§(1‘—n)+%(nii+2b)]
and ‘
R B

Hence M™ is an n-Einstein manifold. ‘By a contraction of the equation
(3.2) we have

(3.6) | r=nA+B.
In view of (3.4) and (3.5) we get
b 1
: 2e-n) 1| |———rr1] =0
(3.7) L( n) 1} [n(n_l)r-l—l} 0
Hence either
a
(3.8) b= 5o
or
(3.9) r=n(l—n).
If b = 5%~ then putting (3.8) into (3.7) we get
(3.10) C(X,Y)Z =aC(X,Y)Z,

where C(X,Y)Z denotes the Weyl conformal curvature tensor. So the
quasi conformally flatness and conformally flatness are equivalent in
this case. But from [5] we know that a Kenmotsu manifold M™ is con-
formally flat if and only if it is locally isometric to the hyperbolic space
H™(—1). So in this case M™ is is locally isometric to the hyperbolic
space H™(-1). ~
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If » = n(1—n) then putting (3.9) into (3.4) and (3.5) the equation
(3.3) turns into the form

(3.11) S(X, W) = (1 —n)g(X, W).

This implies that M™ is an Einstein manifold. So putting (3.11) into
(3.1) we obtain

R(X,Y,2,W) = g(X, 2)g(Y, W) — 4(¥, Z)g(X, 7).
Then M™ is of constant curvature —1 and hence it is locally isometric to
the hyperbolic space H™(—1). If M’ " ig locally isometric to the hyper-
bolic space H™(—1) then it is easy to see that M™ is quasi-conformally
flat. This leads to the following theorem:
Theorem 3.1. Let (M™,g) (n > 3) be a Kenmotsu manifold. Then
M™ is quasi-conformally flat if and only if M™ is locally isometric to
the hyperbolic space H™(—1).

4. Quasi conformally seml-symmetrlc Kenmotsu
manifolds - 2

Let us consider a quasi conformally semi—symmetric KemﬁotSu
manifold (M™,g), (n > 3). Then the condition

R(X,Y)-C=0
holds on (M™, g) for every vector fields X,Y. Hence we have
0= (R(X,Y) - O)(U,V,W) =
= R(X,Y)C(U, V)W — C(R(X, YU, V)W—
~ C(U,R(X,Y)V)W — C(U,V)R(X,Y)W.
So for X = § we get
R(£,Y)C(U, V)W — C(R(E,Y)U, V)W -
—~ C(U, R, Y)V)W — C(U,V)R(¢, YW.
In view of (2.10) the equation (4.1) can be written as
0 =n(C(U, VW)Y — C(U,V,W,Y)t — n(U)C(Y, V)W+
@) +g(V,U)BE VIW—n(V)EW,YIW +g(¥, VI, )W
—n(W)C(U, V)Y +g(Y,W)C(U, V), |
where C(U,V,W,Y) = g(C(U,V)W,Y). Taking the inner product of

(4.1)
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(4.2) with £ we have
0 = n(C(U, V)W)n(Y)~C(U, V, W,Y)—n(U)n(C(Y, V)W)+
43) 49, UnCE,VIW)—n(VIn(CU,YIW)+
+ (Y, V)n(C(U, W) — n(W)n(C(U, V)Y).
Putting ¥ = U the equation (4.3) turns into the form
0=—C(U,V,W,U) + g(U,U)n(C(,V)W)+
+ g(U, V)n(C(U, & )W) — n(W)n(C (U, V)U).

Let {e;}, 1 <4 < n, be an orthonormal basis of the tangent space at
any point. Then in view of the equations (1.3), (2.7), (2.8), (2.10) and
(2.12) the sum for U = ¢;, 1 <1 < mn, of the relation (4.4) gives us

.4r_m£;f;+dl—@}ﬂﬁun+

+Fwﬁfﬁ”qmmmwy

So contracting the last equation we find the scalar curvature r of M™
as '

ﬂwm=[
(4.5)

(4.6) r=n(l—n).
Hence putting (4.6) into (4.5) we obtain
(4.7) SV, W) = (1 - n)g(V, W)

Then M™ is an Einstein manifold. So in view of (4.6), (4.7) and (1.3)
the equation (4.2) is reduced to the form -

2nb —
(48) ROV, WY) = | =5

] (9(V, W)g(U, ¥) - (U, W)g(V, ¥).

Hence by a suitable contraction of the last equation we find

: 2nb —a
(49) S, w) = [T2=2 | (n = g(v,W).
Comparing the right-hand sides of the equations (4.7) and (4.9) we
obtain 2"“’ & — —1, which gives us b = 0. So the equation (4.8) turns

into the form R(U V W,Y) =g(UW)g(V,Y)—g(V,W)g(U,Y). Then
M™ is locally isometric to hyperbolic space H™(—1). Hence in view of
Th. 3.1 we get that M™ is quasi-conformally flat. Then it is trivially
quasi-conformally semisymmetric. So we have the following result:
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Theorem 4.1. Let (M™,g) (n > 3) be a Kenmotsu manifold. Then
M™ is quasi conformally semisymmetric if and only if M™ s locally
isometric to the hyperbolic space H™(—1).

In view of Th. 3.1 and Th. 4.1 we have the following corollary:
Corollary 4.2. A Kenmotsu manifold (M™,g) (n > 3) is quasi con-
formally flat if and only if M™ is quasi conformally semisymmetric.
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