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In [4] it is shown that each triangle ABC in an isotropic plane
can be set, by a suitable choice of the coordinate system, into the so-
called standard position, in which its vertices are of the form A = (a, a?),

= (b,b?), C = (¢, c?) and its circumscribed circle K has the equation

(1) | y =z,
where a + b+ ¢ = 0. With the labels p = abc, q bc + ca + ab some
useful equalities hold as for example g = bc —a?, ¢ = —(b° +bc + c?),
a® + b +c? = —2g, (c—a)(a—b) = 2q — 3bc.

Indeed, we have

b2 +bc+c? = (b+c)? —bec=a®—bc=—q,

(c—a){a—b) = —a® — bc+ ca + ab = —(bc — q) — 2bc + g = 2g — 3bc.
If the point Ty = (z1,z;?) is any point on the circle K, then the
line 77 with the equation

(2) ; Y =2212 — z1”

is the tangent of that circle at the point T) because the equation z2 —
— 2z1z + 22 = 0 with the double solution z = z; from (1) and (2)
follows. The tangents 77 and 73 with the equation y = 2z2z — z52 to
the circle K at the point T, have the intersection point

1 .
Tis = (;(731 + $2),1E1332>
because, for example

1
2z §(z1 + z3) — 112 = 2125,

The tangents A, B, C to the circle K at the points A, B, C de-
termine the triangle A;B;C; with the vertices A; = BNC, By =CN A,
C; = AN B, the so-called tangential triangle of the triangle ABC. Be-
cause of a + b+ c =0 we get

3) A= <—g,bc>, B, = (—g,ca), C; = (-‘—S—,ab) .

In [4] it is shown that the centroid of the triangle ABC in the
standard position is given by

(4) G= (0, —gq)

and that its related line H with the equation
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q
(5) y=—7

is the orthic axis of the trlangle ABC. .
Theorem 1. If A;B:C; is the tangential triangle of the t’mangle ABC,
then the lines AAs, BBy, CC; are symmetric with respect to the bisec-
tors of the angles A, B, C to medians AG, BG, CG of the triangle
ABC. The lines AA;, BB;, CC; meet at one point K.

Proof. The line with the equation

, 2qg q
6 ' = rtpe— =
(6) y=-—getbe—3

passes through the points A and A; because for them the nght side of |
(6) becomes ;

_2q 2 g q
A L be— 2 —pe— 2 2 —_2_
3—|—c 3 = be =a”, 3—{—bc 3 be, :
and (6) is the equation of the line AA;. The line with the equation
3bc—q  2q
7 = |
() E

passes through the point A and centroid G from (4) of the triangle
ABC because of
3bc—q 2q
32 -a—?——bc q=ad?
and then (7) is the equation of median AG. Adding (6) and (7) we get
the equation

2y = bca_q:c—!-bc——q,

i.e. the equation 2y = az + a2, and that same equation will be obtained
by the addition of the equations of the lines CA and AB (see [4]), i.e.
y=—-br—ca, y=-—czx—ab
so it is the equation of the bisector of the angle A. The line (6) passes

through the point

(8) K= (29

2¢g° 3

because 1—? = bc, and that point also lies on the analogous lines BB;
and CC;. <>

The lines AA;, BB; and CC; from Th. 1 are called symmedians
of the triangle ABC, and the point K is called the symmedian center of
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that triangle. The isotropic line through the symmedian center will be
called Brocard diameter of the considered triangle.

In [5] the symmedians were defined in a different way and it was
proved [5, Th. 1] that three symmedians meet at a point.
Corollary 1. For the triangle ABC in the standard position the sym-
median center K is given by the formula (8), Brocard diameter is defined

3
by the equation x = 2—p, symmedian AK is given by the equation (6)

and the symmedians BK and CK appear in the same form.
Corollary 2. The symmedian center of the triangle lies on its orthic
azis.

Theorem 2. The corresponding sides of the triangle and its tangential

triangle meet at three points which lie on one line ﬁ
Proof. The point

' f a9
ﬁ____b>
) ; ( 3a’ 3 ¢
lies on the line BC with the equation 37 = —az — be, and also lies on
the tangent line of the circumscribed circle of the triangle ABC at the

point A which has the equation y = 2az — a? owing to
5 ,

———?;q—a? ——§q+q—bc—— —3-—bc
The point (9) also lies on the line with the equation
: 3p_ . a
1 = = 1
(10) y qug
because of
P, qa 9.
~—4+=Z==—b
a + 3 3 . R
The symmetry of the equatlon (10) of a, b, c proves the statement of the
theorem. ¢ , ‘
The line £ from Th. 2 will be called Lemoine line of the considered
triangle.

Corollary 3. The Lemoine line of the triangle from Cor. 1 is given by
the equation (10).

The meaning of Ths. 1 and 2 is actually that the triangles ABC
and A;B;C; are homologous with the center of homology K and the
axis of homology L.

The polar line of the point T' = (z,,¥,) With respect to the cir-
cumscribed circle of the triangle ABC with the equation y = z? is given
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by the equation y+y, = 2z,z. In the case of the point K from (8) this
equation has got the form (10), i.e. it is valid:
Theorem 3. The Lemoine line of the triangle is the polar line of its
symmedian center with respect to its circumscribed circle.
Theorem 4. The symmedian center of the triangle lies on the lines
which join the midpoints of its sides and the corresponding altitudes.
Proof. The midpoint A,, of the side BC has the coordinates

a

1
5(1)-{-0) e i

5 50" +c)=—5(g+bo),

so we find out
.

(11) A, = (—5, S+ bc)) |

The feet Ay of the altitude from the vertex A has the abscissa a and
the ordinate —a? —bec = g— 2bc, and then the midpoint A, of the points
A = (a,a?) and A, has the ordinate

1 o 1
§(a2 +q—2bc) = —§bc,

i.e. we have

w a= (o).

The points A,, and A lie on the line with the equation

q qg - bc
V=337 2
because we get for them ;
A URLCRE S B
namely '
b g
V35T 33

The symmedian center K from (8) lies on that line too, because we get
for it . :

Theorem 5. [8, Th. 6.] The spans of the symmedian center of the

triangle to its sides are proportional to the lengths of its szdes
Proof. We find that
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; a a2 1 ;
2A =2area(ABC)=1b b 1|=(b—c)(c—a)(a—Db),
, &2

c

—t

BC? + CA* + AB* = (b—cP + (c—a)* + (a—b)’ =
L= 2((12 + b2 + Cz) — 2(bc—|— ca + (Lb) — ___Gq,

b v 1
2 area(BCK) = 3p Cz 1 =§£( A+ = (b——c)—bc(b—c)
20 3
=(b—c) —q——B@—bc ztg(?z—gap;ﬁbcq):
3 g 6g 2
b—c BC? BC?
6q (b—c)*(c—a)(a—0b) 6q A= BC?2+CA%2+AB? A

owing to

(- (c—a)(a~b) = (a—b)(b—0) - (b—c)(c—a) =
= (2q — 3ca)(2q — 3ab) =
= 4¢% — 6a(b+ c)q + 9a’bc = 4¢? + 6a%q + 9ap =
=4q® + 6(bc — q)q + 9ap = —(2q2—9ap—6bcq).

Therefore

BC?
" BC2? + CA? + AB?

If d, is the span of the point K to the line BC, then 2area(BCK )
= BC - dg, so it implies that

area(BCK) =

2A

= porror A U¢
Similar expressions are got for the spans dp and d. of the point K to
the lines CA and AB, so it follows dg : dg : d. = BC : CA: AB.
Corollary 4. If K is the symmedian center of the triangle ABC, then
the triangles BCK, CAK, ABK Ahcwe the areas BC?k, respectively,

2 2 _

CA*k, AB k,wherek-BCz+CA2+AB2. ‘
Theorem 6. The lines which are parallel to the lines BC, CA, AB
and moved away off it for the distances proportional to the lengths of the

sides BC, CA, AB, determine the triangle A’ B'C’ which is homothetic
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to the triangle ABC, and the center of homothecy is the symmedian
center K of the triangle ABC.
Proof. The considered lines have the equations of the form

y = —az — be + (b — c)t,
y = —bzx —ca + (c — a)t,
y = —czx —ab+ (a — b)t.

v 3at 5 2qt
A—<a b—c’a+b—c

The point

lies on the last two lines because for example

2qt :
a? + 2 —t—b(a—ia—?—) +ca—(c—a)t=

b—c b—ec
= a(a—i—b{c)—i—t (a—c—|— 2%__3:b) =1 [a_c_k_(b_—bc):(?zl} - 0.

Besides that, the point A’ lies on the symmedian AK with the equation
(6) owing to ' i
bzﬁtc+-§§ <a—— fi) +%—bc=a2+Q—,bc=O. 0
The statements of the past theorems and Cor. 4 are valid in the eu-
clidean plane and there they are well-known properties of the symme-
dian center (see for example Johnson [3]).
Theorem 7. If A, and Cy, are the midpoints of the sides CA and
AB, then the circles ABB,, and ACCy, meet again at the point T' on
the symmedian AK of the triangle ABC.

If the point T is the second intersection (except A) of that sym-
median and the circle ABmCr, then AT : AT =2 : 3 is valid.
Proof. The circle with the equation

(13) 3by = 2(b —c)z® + cla— )z + db(a —c)

a®+

passes through the points A(a,a?), B(b,b?), By = (—-g—, —%(q + ca)>
because for them we get on the right side of (13) the following

20%(b — c) + ac(a —c) + abla —c) =

=2a%(b—c) —a’(a—c) = d2(2be a—c)=23b-a’

2b%(b — c) + be(a — ¢) + abla — ¢) =
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=20 (b—c¢) = b*(a—c) =b*(2b—a —c) = 3b: b7,

1 1
ibz(b —c)— abc(a —c)+abla—c) = 2(20,2 + 0% + % — bc — 3ca) =

o

1
= 5(0'2 —2q — bc— 3ca) = g(—Bq —3ca) =—3b- 3(q+ ca).

Analogously, the circle ACC,, has the equation
(14) 3cy = 2(c — b)z? + b(a — b)z + ac(a — b).
Adding equations (13) and (14) we find out the equation of the potential
axis of these two circles. Because of 3b + 3¢ = —3a and
cla—c)+bla—b)=ca+ab—b%—c? =q—be—b>— 2 = 2g,
ab(a —c)+acla—b) =a’(b+c)—2p=—a®—2p=
= —a(a® + 2bc) = —a(3bc — q) = —3a (bc - %)

after dividing by —3a the equation of that potential axis gets the form
(6) i-e. it is the equation of the symmedian AK. If we add the equations
(13) and (14) previously multiplied by ¢ and —b, we get for the abscissa
of the point of intersection of these two circles the following equation

2(b+c)(b—c)z® + [c*(a—c) ~ b*(a — b)]z + abe(b—c) = 0
which, because of b+ c = —a and ~
cz(a—~c)~b2(a;b)—b3—c a(d® — ) =
=(b-c)(b®+bc+c*—ab—ca)=(b—c)(—q+ a®) = (b— C)‘(QCL?' —be)
after dividing by —2a(b — c) can be written in the form

‘—!— E—a’ x—b—c"—‘O
2a ’ ’ 2
bc

This equation has the solutions £ = a and z = z7 = 5 = = 0. The

second solution is the abscissa of the common point T of these two
circles on the line AK.
The circle with the equation

(15) y = 2z? — 2az + o

passes through the point A and through the points B,, and C,,, too
because of, for example for the point B,, on the rlght side of (15) we
get the following
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2

&

, N e 1
E+ab+a —-z-(ca~q)—ca——§(q_-{—ca).

For the abscissas of the points of intersections A and T’ of the circle
AB;,Cp, and the line AK, accordmg to (6) and (15) we get the equatlon
q
e o) e -
—+ 350 z+a? — b+ 3 =0,
which, because of

g_ 2q
ot =
RS C+3 q+3 3

and after leldmg by 2 it gets the form -

T +(3a a,)a:’—-%’:‘()%

and it has the solutions x = and z =z = _§%; Now, we get
: | 1 -
AT = gy — __i_ SRl 2y
Tr—a=—g-—a " 3 (g+3a ),
be ‘ 1 ‘
AT = Ly el e 2 s 9.2
T=zp—a= 5o a’ ’ (bc—l— a®) = " (q + 3a )

and so, finally AT' : AT =2:3. ¢ ‘

In the euclidean case the first statement of Th. 7 can be found at
Bradley [2], and the second statement at Herzig and Kovac 2.
Theorem 8. If G is the centroid of the triangle ABC, then the pomt
T such that

(16) Z(AG,AB) = Z(BA,BT), Z4(AG,AC)=Z(CA,CT)
lies on the symmedian AK of that triangle. (In the euclidean case
d’Ocagne [6] has this statement without proof.)
. ~ 2

Proof. Let T = (z,y) be the point. With A = (a,a?), G = (O, —-§q)
the lines AG and BT have the slopes
' 2 2, 2 12

a” + 3q —a+ _C_Z, y___b__

a 3a° z—b

and the line AB has the slope —c, so we get

E]

Z(AC. AB) = 29 _,_ 2
(4G, AB) = —C—‘?“az" 30’
2

£(BA,BT) =YL= +c.

After multiplying by 3a(z — b) the first ‘eyquation (16) gets the form
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3a(y — b%) + 3ca(z — b) = 3ab(z — b) — 2q(z — d),

ie.

(17) 3ay = (3ab — 3ca — 2q)z + 3p + 2bq.
Analogously, the second equality (16) can be written in the form
(18) 3ay = (3ca — 3ab — 2¢)z + 3p + 2cq. -

By the addition of these two equations and dividing the result by 6a
we get the equation (6) of the symmedian AK. ¢
Subtracting (17) and (18) we get, for the abscissa of the point T

the equation 6a(b — c)z + 2(b — c)g = 0 with the solution z = ——.~

Because of that the point T from Th. 8 coincides with the point T" from
Th. 7, and this is exactly the vertex A, of the second Brocard triangle
A3 B5Cs of the triangle ABC.

Theorem 9. Let B’ and C' be the feet of the perpendicular lines from
the point B and C to the bisector of the angle A. The parallel lines to
the lines AB and AC through the points B’ and C' meet at the point,
which lies on the symmedian AK of the triangle ABC (d’Ocagne [6]
has the Euclidean case) and it also lies on the bisector of the side BC
and this is in fact the vertez A; of the tangential triangle A;B:Cy of the
triangle ABC. '

Proof. The bisector of the angle A has, according to the proof of Th. 1,

the equation
_a_, a
From the previous equation with ¢ = b it follows

ca
y=7 (a+b) — 5

B = (b —929) .

ca

y—-—cx-i—bc——T)—

obviously passes through the point B’ and it is parallel to the line
AB. Tt passes through the point A; from (3) too, which because of the
symmetry of b and c lies on the parallel line to the line C A through
the point C’. It also lies on the bisector of the side BC, and on the

symmedian AK with the equation (6). ¢

so we get

The line with the equation
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The intersection of the symmedian of the triangle from its one
vertex and its opposite side will be called the foot of that symmedian
on that side.

Theorem 10. The foot of the symmedian on the side of the triangle
divides that side in the ratio of the squares of the lengths of the adjacent
sides of that triangle. ,

Proof. From the equation (6) and the equatlon y = —az — bc of the
line BC' we get for the abscissa of the foot Ay of the symmechan AK

the following equation :
——lz==-—2b
) (a 3a> T=3 c,

i.e. the equation (3a2 — 2q)m = aq — 6p with the solution
aq — 6p
1 = ——
(19) TT 32 2q
which represents the abscissa of the point Ax. Now, we get
BAy - (3a® — 2q) = (z — b)(3a® — 2¢) = ag — 6p — 3ab + 2bq =
- =a(bc — a,z) — 6p — 3a%b + 2b(ca — b*) =
= —3p —a®—3a%— 2% =
= 3ab(a +b) — a® — 3a%b — 263 = —a®+ 3ab® — 2° =
~(a=b)*(a+20) =—(a—b)*(b—c),
and similarly it follows CAk(3a —2g) = —(a — ¢)*(c — b), wherefrom
" BAr:CAy=—(a—b)?:(a—c)*=—AB*: AC?. ¢
Theorem 11. The intersections of the medians of the triangle and
the corresponding sides of its orthic triangle are the points parallel to
the feet of the corresponding symmedians of the given triangle. (In the
euclidean case cf. Mineur [6].) ;
Proof. The line with the equation
(20) . y = 2az + 2bc —

passes through the feet Bj, = (b,q — 2ca) and Ch = (¢, q — 2ab) of the
altitudes from the vertices B and C of the triangle ABC, analogous to
the foot Ap from the proof of Th. 4, because of, for. example for the
point By we get : :
; 2ab+2bc——q = q—2ca,
and (20) is the equation of the side By C}, of the orthic triangle Ay By Ch.
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From the equation (20) and the equation (7) of the median AG it follows
for the abscissa of their intersection the following equation
Bc—q 2 -
3a 3’ , ,
i.e. the equation 6a2z 4+ 6p — 3aq = (3bc'— q)T — 2aq, which, because of,
6a® — 3bc + g = 6a* —3(q+a“)+q—3a ~2q
has the solution (19). ¢
Theorem 12. If m, and k, are the lengths of the median AA,, and
symmedian AAy of the triangle ABC, then the following equality
me C’A2 + AB?
k.,  2-CA-AB

20z +2bc — g =

is valid.
Proof. Firstly we have
a 3
» ma—AAm———i—a——é-a,
and then, because of (19), we get '

ko = AA, — aq —6p _3aq—‘6p—3a(bc—q):

3a2 —2q o= 3a? — 2q
_ 3(2ag ~3p)  3a(2q — 3bc)
"~ 3a2-2¢  3a2—-2¢
Therefore ‘ ;
(21) | Me _ __30 g

ke  2(2q—3bo)’
However owmg to - : )
2g — 3bc = (c—a)(a——b) CA-AB,
CA’ + AB®> = (a—c)® + (a—b)? =
=20+ (b+c)® — 2bc — 2ca — 2ab = 3a — 2g,

the statement of the theorem follows. ¢

Alasia ([1], p. 296) has the statement in the euclidean plane: If
ACEE' and ABFF' ‘are such rthombuses that the points E’ and F’
lie on the extensions of the segments BA and CA through the vertex
A, then the point D = BE N CF lies on the symmedian AK, where
AD : AgD = —(CA? + AB?%) : (CA+ AB). In the isotropic plane the
feet Cp, and By, of the altitudes of the triangle ABC from the vertices
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C and B will have the role of the points £’ and F". The corresponding
statement is given by the following theorem. :
Theorem 13. If B; and Cs are the midpoints of the altitudes BB,
and CC}, of the triangle ABC and if E and F are the points symmetric
to the point A with Tespect to the points Cs; and B, then the point
D = BENCF lies on the symmedian AAy of the triangle ABC while

AD  CA*+AB*  (CA  AB

4D CA-AB (ZE“Lﬁ)

Proof. Analogously to the formula (12) we have the formula Cs =

1
= (c —;ab) The point E = (2¢ — a,ac) is symmetric to the point

A = (a, a®) with respect to the point C; because of —ab— a® = ac. The
line with the equation

S o q 2 bg
22 = b

(22) Y=gz +b - =
passes through the point B = (b,b?) and it also passes through the
point E because of ‘
ba _ 2q—i(a,—l—b)-{—b2 = gq—}—g—{—‘ac—q:ac
3c 3 3c 3 3 T
From the equation (6) of the symmedian AK and the equation (22) of
the line BE we get for the abscissa of the mtersectlon of these lines the
following equation

g .2\ _ _, 4 .5 bg
<3c+3a)m_bc'3 RN

éq—c(2c——a,) +b? —

i.e. the equation
%(a + 2c)z = (3bc — q)(c — b),
which, because of a 4 2¢ = ¢ — b, has the solution z = d giveh by
d="22 _
q
The symmetry of b and ¢ proves that the line CF passes through the
point D, too. According to the proof of Th. 12 we get the equality
. 2q—3bc
AAk = 3am,

and now
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AD=d—a= 3—p—2a:—2(2q~3b6),
q q
so it follows ;
, /1 3 B
AkD =AD — AAk = —a(2q — 3bc) (E + m) =
_a(2g - 3bc) V
~ g(3a —2¢)
and because of (21) finally :
AD 3a®—2q¢ 3a®—2¢ 2m, CA*+ AB? o
ArD  3a24+q  3bc—2q ko CA-AB
Theorem 14. The lines through the point A, which are antiparallel
to the symmedian AK of the triangle ABC with respect to the angles
B and C of that triangle, meet the line BC at the points B’ and C’,
whose midpoint is the midpoint of the side BC' while Z(AB', AC") =
= /(AB, AC). (In euclidean geometry d’Ocagne [6] has this statement
t00.)
Proof. The lines BA and BC have the slopes —c and —a with the

2
sum b. The line AK from (6) has the slope -—3—q, and if &k is the slope
, a
of the line AB’, then ‘

a2 g

2q : 2q
k_gc—z—b’ ie. k= b+3_a'
The line with the equation
2
(23) <b+3z>m+a24ab—§q

has that slope and passes through the point A = (a,a?), and that is
the line AB’. From the equation (23) and the equation y = —az — bc
of the line BC for the abscissa of the point B’ we get the equation

2
a,—l—b—i——z—g T ==q—a*+ab— bc,
. 3a 3
i.e. it is equivalent to
(2q—3ca)—;2 :—2(a2+ab+b2)—3a2+3ab+3b(a+b) =-5a>+4ab+b?,
(a=b)(b— )= = ~(a—b)(5a+1),

with the solution z = b’ where the abscissa b’ of the point B’ is given
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by the first of the two analogous equalities
5a +b , _ ba+c

b—c’ ° T “c—b’

while ¢’ is the abscissa of the analogous point C’. From (24) easily
follows the equality b’ + ¢ = —a, i.e. b’ + ¢ = b+ c so the segments
BC and B’C’ have the same midpoint. The lines AB’ and AC’ have
the slopes

(24) b =—a

2q 2q
b+£ and c—!—%,

so we get
L(AB'JAC"Y=c—b=Z(AB,AC). ¢
The authors are grateful to the referee for very useful suggestions
about the references.
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