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Abstract

Newton'’s iterative method for a scalar equation f(z) = 0, is known
to be convergent to the unique zero « of f, for f satisfying certain
conditions involving f, f' and f".

In thi case, if (z,) is the sequence defined by Newton’s method, a
stopping inequality or an aposteriori estimation of the form |z,4; —
a| < {zp — Tn41], holds.

The aim of this paper is to show that Newton’s method converges
under weaker conditions, involving only f and f', when a generalized
stopping inequality is valid.
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1. Introduction

In this paper we consider the equation
(1) f(z)=0

on an interval {a,b] C R, for a real-valued function f.
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The (one-dimensional) Newton method is given by the iteration

()
f(z2)’

(2) Tpil = Tn Zo € [a,0], n>0
assuming f’ # 0 on [a, b].

The importance of the Newton iteration (2) rests on the fact that, under
certain natural conditions on f, an estimate of the form

(3) |Zpt1 — @] < Clz, — af?,
holds.

Together with the simplicity and elegance of (2), the so-called ”quadratic
convergence” (3) makes Newton’s method a focal point in the study of iter-
ative methods for nonlinear equations.

However, the conditions as ” f” does not change its sign on [a, b]”, in [4]
or " f” > 0 on [a,b]” in [5], are too strong. Even the Ostrowski theorem on
the Newton method [7], assumes ” f” there exist in the neighborhood of o”.
But, as shown by some practical examples, (see [2], [3]), the existence of the
second derivative of f is not necessary for the convergence of the Newton
method.

Theorem 1 in this paper gives conditions, stated in terms of f and f’, for
the convergence of the Newton method, which however provides a "linear
convergence” instead of the classical quadratic convergence.

2. An extension of the Newton method

Let f:[a,b] — R be a real function which satisfies the following conditions

(f1) f(a)- f(b) < 0;
(f2) f € Ca,b], f'(z)#0, z € [a,b];

Then, from (f;) we deduce that f € C[a,b] has a root @ € (a,b), and (f)
implies that f € C[a,b] has only a root in [a, b].

If, in addition, f € C?%[a,b] and f"(z) # 0 on [a, b], the Newton iteration
(2) converges to a, for zp € [a,b] arbitrary taken and (3) holds with C =
My /2m,, where my = m[inb]lf'(x)| and M, = m[aog]lf"(z)l, see [4].

z€la re|a,

i
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If a stopping inequality is valid, i.e. an estimation of the form |z,41 —
a| < |z, — Zp41|, as shown in {4] or 5], then the numerical computation of
the sequence (2,) given by (2) is stopped when the distance between two
successive approximations is less than a preassigned tolerance. Such an exit
criterion is correct, because, from

lzn — zny1| <e,
and the stopping inequality we obtain
|z, —a| <.
In this paper we consider a stopping inequality of the form
(4) |20 — ] < cltn = 2npal,

where ¢ > 1 is constant. Obviously, for ¢ = 1, we obtain the stopping
inequality from [5] and [4].

The main result of this paper is given by

Theorem 1. Let f : [a,b] — R, a < b, be a function which satisfies (f;),
(f.) and
(fs): 2m > M, where

— . ’ , M — ! .
m zﬁil}b]'f (z)] Joax If'(z)]

Then the Newton iteration (2)converges to a, the unigue solution of (1) and
the following estimation

M
(5) |z — af < Elxn —Zpya], 720,
holds.

Proof. From (f;) and (f3) it results that (1) has a unique solution « €
(a,b). Let zo € [a,b], be the initial approximation. From (2) we obtain

f(zn) — f(e)

Tpt1 —@ =2, —a— ——————= forall n=0,1,...

f'(zn)



22

and, using the mean value theorem, this yields

(6) mn+1—a=[1—%%%]~(mn—a),n€N,
where ¢, = o+ 6(z, — ), 0 < 8 < 1.

In a similar manner we deduce, directly from (2),

L fen)
(7) Tn41 n f’(Trn)

(zp, —a), YnEN.

Now, from (f3) it results

_ f'(en)
1 f’(flrn)<1’ n € N.
On the other hand,
f,(cn) — fl(cn) — ,fl(cn)l < _]E
filea) 1 (a)l | f'(za)l — m’

hence, in virtue of (f3),

f'(en)
1- > —1 foreach n> 0.
f'(@n) -
Since [a,b] is compact and f € C'{a,b], we obtain
f'(y)
k= max |1- <1,
z,y€[a,b] fl(z)

which, together with (6), yields
l$n+1 - al < klmn - als ne N3

and 0 < & < 1.
By induction, we deduce
|zn — | < k"|zo —af, n €N,

s0
Ty, — @, as n — 0o,

V. Berinde
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for each zg € [a, b)].
However, [a, b] is generally not an invariant set with respect to the iter-

ation (2), i.e. it is possible to obtain at a certain step p, z, ¢ [a, b].

In order to remove difficulties we define f over the whole real axis (and
denote it by f too) as follows

flla)(z —a)+ f(a), if z<a
(8) fle) = f(=), if z € a,b)
F(0)(z —b)+ f(b), if z>b.

If some iterate z, does not lie in [a, b}, we have either z, < a or z, > b.
In the first case,

flap) _ f(a)(zp—a) + fla)

AR TTE% W F(a) ’

hence
f(a)

$P+1 =a- f,(a)’

which shows 2,41 > a, because, from (f;)-(f2) it results f(a)f'(a) < 0.

In the second case,

L WE-b+E _, O
Eariabis OO

because f(b)- f'(b) > 0.

But (z,) converges to a and a < a < b. This means that, begining from
a step pg > 0, we necessarly have

T, € [a,b].

The desired estimation (5) may be obtained from (7). The proof is now
complete. 0O

Remarks.

1) The Newton iteration method given by (2) and (8) is called ”the ex-
tended Newton method”, see [2]. In fact, this algorithm consists in applying
the Newton method on [a,b] and the modified Newton method (see [4]) on
R\ [a,b].
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2) If the conditions of Theorem 1 are satisfied, in order to obtain |z, —
a| < ¢ the iterative procedure must be stopped when |z,41 — 2,| < Fje.

3) Relation (6) shows a linear rate of convergence for the extended New-
ton method. However, if f” exists on [a, b]\{a}, the convergence is quadratic

[4].

4) A fixed point proof of Theorem 1 is given in [3], and the corresponding
n-dimensioanl case is treated in [1].

5) A classical fixed point argument, based on Edelstein’s fixed point
theorem shows that condition (f3) in Theorem 1 may be weakened. We also
obtain

Theorem 2. If f satisfies (fi), (f2) and the following condition
(f,S) 2m Z M7

then the conclusion of Theorem 1 remains true.

Remarks. The condition (f’3) is similar to condition (F4) in [5], but there
f € C?[a,b], and the studied method is a general one given by

f(zn)

Tntl = Tn — f,(mn)g(mn)7

where ¢ is a certain function.

The proof of Theorem 1 may be easily extended to this procedure, as-
suming z, € [a,b], for each n € N, see [1].

3. Examles

The best result until now about the convergence of Newton’s method in
the scalar case seems to be the well-known Ostrowski’s theorem (see [7],
Theorem 7.2) which assumes that f“ exists in a neighborhood of a. Our
Theorem 2 is better than Ostrowski’s theorem, as shown by Example 2.

For the convergence of the extended Newton method, the numerical tests
was performed on an IBM PC, under MATHCAD.

Example 1. For f(z) = tgz, 2 € [a,b] C (%,37”), we have f'(z) > 0, but
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f"(r) = 0 and o = « is the unique solution of the equation f(z) = 0in [a,d].
The Demidovich’s theorem does not apply. The convergence of the Newton
method is a consequence of Theorem 1 or 2 in this paper, or Ostrowski’s
theorem.

Fora = 1—72’, b= % and zg = a, the constant ¢ in the stopping inequality

is c = — = 14.76 . After 7 iterations we obtain 7 with exact digits: zg =
m

1.83; z; = 2.08; zo = 2.51; z3 = 2.99; z4 = 3.139; =5 = 3.141592644;

re¢ = 3.141592653589794 and z7 = 3.141592653589793.

Taking z¢ = 2—3’5 we obtain the solution after 5 iterations : 29 = 2.09; 2, =

2.527; zo = 2.998; x5 = 3.139; 24 = 3.141592648; and 5 = 3.141592653589793.

Example 2. [3] Let f : [-1,1] — R be given by f(z) = —z% + 2z, if
z € [-1,0) and f(z) = 22 + 2z, if ¢ € [0, 1]. The equation f(z) = 0 has only
the solution @ = 0 on [~1,1]. Since f” does not exist in 0, neither Theorem 1
nor Ostrowski’s theorem does apply. We have m = 2, M = 4, the condition
(f’s) in Theorem 2 is satisfied, hence the Newton method is convergent.

Indeed, if we start with zp = 0.5, we obtain z; = 0.833333; z5 =
0.0032051; z3 = 0.0000129; z4 = 0.0000001 and z5 = 0.

Remarks. The basic idea in proving the convergence of the Newton method
in the classical form, i.e. f € C?[a,b] and f” # 0 on [a, ], is to show that
the sequence (z,) is monotonous. As shown by the following example, in
the conditions of Theorem 1 or 2, (2,) is not generally monotonous.

Example 3. For f : [1.1,4] — R, f(z) = ze™® — 2¢7%, we have f’ < 0,
f"(2) = 0 and a = 2 is the unique zero of f.

Starting from zg = 1.2, we obtain z; = 2.7067103; z; = 1.9169384;
z3 = 2.0002041; z4 = 2.00... and z5 = 2, hence (z,) is not monotonous.
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