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1 Introduction

The theory of one- and multi-parameter approximate transformation groups was initiated by
Ibragimov, Baikov, Gazizov [1, 13]. They introduced the notion of approximate Lie–Bäcklund
symmetry of a partial differential equation with a small parameter ε and develop a method, which
allows to construct approximate Lie–Bäcklund symmetries of such an equation (a perturbed
equation) in the form of a power series in ε, starting from an exact Lie–Bäcklund symmetry of
the unperturbed equation (for ε = 0). Similar ideas were suggested independently by Fushchych
and Shtelen (see, for instance, [5] and the bibliography therein). The main purpose of this paper
is to extend these methods to approximate nonclassical Lie–Bäcklund symmetries.

Nonclassical symmetries appeared for the first time in the paper by Bluman and Cole in
1969 [2]. Since then this theory was actively developed in papers of: Olver and Rosenau [3] (non-
classical method), Clarkson and Kruskal [4] (nonclassical symmetry reductions (direct method)),
Fushchych’s school ([5] and the bibliography therein) (conditional symmetries and reductions of
partial differential equations), Fokas and Liu [6] (the generalized conditional symmetry method),
Olver [10] (nonclassical and conditional symmetries). Nonclassical Lie–Bäcklund symmetries for
evolution equations were considered in the paper by Zhdanov [7]. This paper also contains
a theorem on reduction of an evolution equation to a system of ordinary differential equations.
The notion of nonclassical Lie–Bäcklund symmetry is a very wide generalization of the notion of
point symmetry. Nevertheless, in many cases, nonclassical Lie–Bäcklund symmetries enable to
construct differential substitutions, which reduce a partial differential equation to a system of
ordinary differential equations. This fact is used for finding new solutions of partial differential
equations, which cannot be found with the help of the classical symmetry method.

The method of approximate conditional symmetries for partial differential equations with
a small parameter was suggested by Mahomed and Qu [8] (point symmetries), Kara, Mahomed
and Qu (potential approximate symmetries) [9]. In this paper we develop the method of approxi-
mate nonclassical Lie–Bäcklund symmetries. In [1], Baikov, Gazizov and Ibragimov constructed
approximate Lie–Bäcklund symmetries of the Korteweg–de Vries equation ut = uux + εuxxx,
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starting from exact symmetries of the transport equation ut = uux. In this paper, we extend
this construction to approximate nonclassical Lie–Bäcklund symmetries.

We will consider a particular class of evolution partial differential equations with a small
parameter given by

ut = uux + εH(t, x, u, ux, uxx, . . .).

This class contains both integrable and nonintegrable equations. We consider such equations
as perturbations of the transport equation ut = uux and construct approximate nonclassical
symmetries of these equations, starting from exact nonclassical symmetries of the transport
equation. Using these approximate nonclassical symmetries and the reduction theorem, we
find approximate conditionally invariant solutions of equations under consideration. As an
example, we find approximate solutions of the KdV equation with a small parameter and of
some nonintegrable equations.

2 Nonclassical Lie–Bäcklund symmetries

Recall the definition of classical Lie–Bäcklund symmetries (here we will consider symmetries
given by canonical Lie–Bäcklund operators):

Definition 1. An operator

X = ζ
∂

∂u
+ (Dxζ)

∂

∂ux
+ (Dtζ)

∂

∂ut
+ (Dxxζ)

∂

∂uxx
+ · · · ,

where

ζ = ζ(t, x, u, ux, uxx, . . .),

will be called a classical Lie–Bäcklund symmetry for a partial differential equation of evolution
type

ut = F (t, x, u, ux, uxx, . . .),

if

X(ut − F )
∣∣
ut=F

= 0. (1)

Here Dx and Dt are the total differentiation operators:

Dx = ∂x + ∂uux + ∂uxuxx + ∂uxxuxxx + · · · ,
Dt = ∂t + ∂uut + ∂uxuxt + ∂uxxuxxt + · · · ,

Dxx = D2
x = Dx(Dx), Dxxx = D3

x = Dx(Dxx) etc. The equation (1) is the determining equation
for Lie–Bäcklund symmetries.

Definition 2. An operator

X = η
∂

∂u
+ (Dxη)

∂

∂ux
+ (Dtη)

∂

∂ut
+ (Dxxη)

∂

∂uxx
+ · · · , (2)

where η = η(t, x, u, ux, uxx, . . .), will be called a nonclassical Lie–Bäcklund symmetry for a partial
differential equation

ut = F (x, u, ux, uxx, . . .),

if

X(ut − F )
∣∣∣ut = F
η = 0

= 0. (3)
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The equation (3) is the determining equation for nonclassical Lie–Bäcklund symmetries. This
definition is well known and can be found in the paper by Zhdanov [7].

Theory of approximate point symmetries was developed by Baikov, Gazizov, Ibragimov in [1,
13]. They proposed to consider point symmetries in the form of formal power series

X =
0
X + ε

1
X + · · ·+ εn

n
X + · · · .

Now we introduce approximate nonclassical Lie–Bäcklund symmetries.

Definition 3. An operator

X =

(
n∑

i=0

εi
i
η

)
∂

∂u
+

(
Dx

(
n∑

i=0

εi
i
η

))
∂

∂ux
+

(
Dt

(
n∑

i=0

εi
i
η

))
∂

∂ut

+

(
Dxx

(
n∑

i=0

εi
i
η

))
∂

∂uxx
+ · · · , (4)

where
k
η =

k
η(t, x, u, ux, uxx, . . .), k = 1, 2, . . . , n will be called an approximate nonclassical Lie–

Bäcklund symmetry (in the nth order order of precision) for an evolution partial differential
equation with a small parameter:

ut = F (t, x, u, ux, uxx, . . .) + εG(t, x, u, ux, uxx, . . .) + o(ε)

if

X(ut − F − εG)
∣∣∣ut = F + εG

n∑
i=0

εi i
η = o(εn)

= o(εn). (5)

The equation (5) is the determining equation for approximate nonclassical Lie–Bäcklund
symmetries.

Recall that, by definition, the equality α(z, ε) = o(εp) is equivalent to the following condition:

lim
ε→0

α(z, ε)
εp

= 0.

Here p is called the order of precision.
We will use the following theorem on stability of symmetries of the transport equation [1].

Theorem 1 (Baikov, Gazizov, Ibragimov). Any canonical Lie–Bäcklund symmetry

0
X =

0
η
∂

∂u
+
(
Dx

0
η
) ∂

∂ux
+
(
Dt

0
η
) ∂

∂ut

of the equation

ut = h(u)ux, (6)

gives rise to an approximate symmetry of the form (4) of the equation

ut = h(u)ux + εH(t, x, u, ux, uxx, . . .) (7)

with an arbitrary order of precision in ε.

In other words, the equation (7) approximately inherits all the symmetries of the equation (6).
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3 Approximate conditionally invariant solutions

Now we introduce the definition of approximate conditionally invariant solutions:

Definition 4. An approximate solution of an equation

ut = F (t, x, u, ux, uxx, . . .) + εG(t, x, u, ux, uxx, . . .) + o(ε)

written in the form of a formal power series

u =
∞∑
i=0

εi
i
u

is called conditionally invariant under an approximate nonclassical symmetry X (in the nth
order order of precision), given by formula (4), if

∞∑
j=0

j
η

( ∞∑
i=0

εi
i
u

)
= o(εn).

As an example, we consider approximate nonclassical symmetries of the KdV equation

ut − uux − εuxxx = 0. (8)

Take the exact nonclassical Lie–Bäcklund symmetry of the transport equation:

0
X =

0
η
∂

∂u
+ · · · , 0

η = uxx.

It is easy to check that this is not a classical Lie–Bäcklund symmetry.
The corresponding approximate nonclassical Lie–Bäcklund symmetry of the approximate

KdV equation (8) is written in the form

X =
(

0
η + ε

1
η
) ∂
∂u

+
(
Dx

(
0
η + ε

1
η
)) ∂

∂ux
+
(
Dt

(
0
η + ε

1
η
)) ∂

∂ut

+
(
Dxxx

(
0
η + ε

1
η
)) ∂

∂uxxx
. (9)

From the determining equation (5) for X, it follows that

ε0 :
0
η = uxx,

ε1 :
∂

∂t

1
η − ux

1
η − u

∂

∂x

1
η + u2

x

∂

∂ux

1
η + 3uxuxx

∂

∂uxx

1
η

+
(
3u2

xx + 4uxuxxx

) ∂

∂uxxx

1
η + (10uxxuxxx + 5uxuxxxx)

∂

∂uxxxx

1
η

+
(
10u2

xxx + 15uxxuxxxx + 6uxuxxxxx

) ∂

∂uxxxxx

1
η − uxxxxx = 0. (10)

Whence we get

1
η = −F

(
u, x+ ut,

uxt+ 1
ux

,−uxx

u3
x

,
uxuxxx − 3uxx

2

u5
x

,−uxxxxu
2
x − 10uxuxxuxxx + 15u3

xx

u7
x

,

− 105u4
xx − uxxxxxu

3
x − 105u2

xxuxuxxx + 15uxxuxxxxu
2
x + 10u2

xu
2
xxx

u9
x

)
ux
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+
1
4
uxxxxx

ux
+
−1

2u
2
xxx − 3

4uxxuxxxx

u2
x

+
7
4
uxx

2uxxx

u3
x

− 3
4
u4

xx

u4
x

,

where F is an arbitrary function.
Note that the order of

1
η equals the sum of the orders of

0
η and the perturbation G minus

one. Here we consider an approximate conditionally invariant solution of the KdV equation (8)
in the form:

u = u0 + εu1 + o(ε).

Conditional invariance under an approximate nonclassical symmetry (9) in the first order of
precision is written as

0
η
(
u0 + εu1

)
+ ε

1
η
(
u0 + εu1

)
= o(ε). (11)

To compute an approximately invariant solution in the zero order of precision, we use the
following reduction theorem [7].

Theorem 2. Suppose that an equation

ut = F (t, x, u, ux, uxx, . . . , uN ), uN =
∂Nu

∂xN

is conditionally invariant under a Lie–Bäcklund operator (2). Let

u = f(t, x, C1, C2, . . . , CN )

be a general solution of the equation η(t, x, u, u1, . . . , uN ) = 0. Then the Ansatz

u = f
(
t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t)

)
,

where ϕj(t), j = 1, 2, . . . , N, are arbitrary smooth functions, reduces the partial differential
equation ut = F to a system of N ordinary differential equations for the functions ϕj(t), j =
1, 2, . . . , N .

There is a nice consequence of this theorem.

Corollary 1. Suppose an equation

ut = F (t, x, u, ux, uxx, . . .) + εG(t, x, u, ux, uxx, . . .) + o(ε)

admits an approximate Lie–Bäcklund operator X, given by the formula (4) with n = 1. Let

0
u = f(t, x, C1, C2, . . . , CN ),

1
u = g(t, x, C1, . . . , CN+M )

be a general solution of the equation(0
η + ε

1
η
)(0
u+ ε

1
u
)

= o(ε).

Then the Ansatz

u = f
(
t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t)

)
+ εg

(
t, x, ϕ1(t), ϕ2(t), . . . , ϕN (t), ψ1(t), ψ2(t), . . . , ψM (t)

)
,

reduces the equation ut = F+εG into a system of N+M ordinary differential equations for ϕj(t),
j = 1, 2, . . . , N, and ψk(t), k = 1, 2, . . . ,M .
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Example 1. Take a nonclassical symmetry (2) (η =
0
η) of the transport equation

ut = uux, (12)

where
0
η = uxx.

Applying the operator (2) to the equation (12) in the zero order of precision, we have
0
η(u0) = 0,

whence we get u0 = Ax+B.
By Reduction Theorem, we substitute

u0 = A(t)x+B(t)

to the transport equation (12) and get

Ȧ = A2, Ḃ = AB.

A general solution has the form:

A = − 1
t+ a

, B =
b

t+ a
,

where a, b are constants.
Thus we get

u0 =
b− x

t+ a
.

Take
1
η as in (10) with

F (u) = p eu.

where p is a constant. From (11) it follows that

u1
xx −

p

t+ a
e

b−x
t+a = 0

and

u1 = p(t+ a)e
b−x
t+a + Cx+D.

Take the approximate solution

u =
b− x

t+ a
+ ε

(
p(t)(t+ a)e

b−x
t+a + C(t)x+D(t)

)
and substitute it into the KdV equation (8). We get three first order ODE for C(t), D(t), p(t):

Ċ = − 2C
t+ a

, Ḋ =
bC −D

t+ a
, ṗ =

−2p
t+ a

.

A general solution of the system can be written as

C(t) =
c3

b(t+ a)2
, D(t) =

c2t+ c2a+ c3
(t+ a)2

, p(t) =
c1

(t+ a)2

where c1, c2, c3 are constants.
Finally, we get the following solution of the KdV equation in the first order of precision:

u =
b− x

t+ a
+ ε

(
c1
t+ a

e
b−x
t+a +

c3x

b(t+ a)2
+
c2t+ c2a+ c3

(t+ a)2

)
.
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We use the following proposition to construct nonclassical symmetries.

Proposition 1. Let

X = η
∂

∂u
+ · · · , η = η(t, x, u, ux, uxx, . . .),

be a classical Lie–Bäcklund symmetry for a f irst order PDE

F (t, x, u, ux, ut) = 0. (13)

For any function f = f(t, x, u, ux, uxx, . . .), the operator

∗
X =

∗
η
∂

∂u
+ · · · , ∗

η = fη,

is a nonclassical Lie–Bäcklund symmetry for (13).

Example 2. Now we consider an example of finding symmetries of the KdV equation with
a small parameter (8) and construct its approximate solution. We have a classical Lie–Bäcklund
symmetry

X =
0
η
∂

∂u
+Dx

(0
η
) ∂

∂ux
+Dt

(0
η
) ∂

∂ut

of the transport equation (12), where

0
η = uxΦ

(
u, x+ ut,

uxt+ 1
ux

,−uxx

u3
x

,
uxuxxx − 3u2

xx

u5
x

)
.

By Proposition 1,
0
η = uxuxxx − 3u2

xx is a nonclassical Lie–Bäcklund symmetry of the transport
equation (12). Now we take operator (9). Applying the operator X to the equation (8), we get
the following equations in the zero and first orders of precision in ε:

ε0 :
0
η = uxuxxx − 3u2

xx,

ε1 :
∂

∂t

1
η − ux

1
η − u

∂

∂x

1
η + u2

x

∂

∂ux

1
η + 3uxuxx

∂

∂uxx

1
η + (3u2

xx + 4uxuxxx)
∂

∂uxxx

1
η

+ (10uxxuxxx + 5uxuxxxx)
∂

∂uxxxx

1
η + (10u2

xxx + 15uxxuxxxx + 6uxuxxxxx)
∂

∂uxxxxx

1
η

+ (35uxxxuxxxx + 21uxxuxxxxx + 7uxuxxx)
∂

∂uxxxxxx

1
η + 14uxxxuxxxx

+ 3uxxuxxxxx − uxuxxxxxx = 0.

From the last equation, we find

1
η = −F

(
u, x+ ut,

uxt+ 1
ux

,−uxx

u3
x

,
uxuxxx − 3u2

xx

u5
x

,−15u3
xx + uxxxxu

2
x − 10uxxuxuxxx

u7
x

,

− 105u4
xx − uxxxxxu

3
x − 105u2

xxuxuxxx + 15uxxuxxxxu
2
x + 10u2

xu
2
xxx

u9
xxx

,

− 945u5
xx − 1260u3

xxuxuxxx + 280uxxu
2
xu

2
xxx + 210u2

xxuxxxxu
2
x − 21uxxuxxxxxu

3
x

u11
x

+
−35u3

xuxxxuxxxx + uxxxxxxu
4
x

u11
x

)
ux +

1
6
uxxxxxx +

(
−13

14
uxxuxxxxx−

17
6
uxxxuxxxx

)
u−1

x
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+
(

395
84

uxxu
2
xxx +

157
56

u2
xxuxxxx

)
u−2

x − 25
4
u3

xxuxxx

u3
x

+
15
8
u5

xx

u4
x

,

where F is an arbitrary function. The invariance condition of a solution

u =
0
u+ ε

1
u+ · · ·

in the first order of precision is written as(0
η + ε

1
η
)(0
u+ ε

1
u
)

= o(ε). (14)

If we substitute
0
η,

1
η to the equation (14), we obtain in the zero and first orders of precision by ε

equations for
0
u and

1
u:

ε0 :
0
η
(0
u
)

= 0,

ε1 :
1
ux

0
uxxx +

0
ux

1
uxxx − 6

1
uxx

0
uxx +

1
η
(0
u
)

= 0.

We find

0
u = 2

√
t2 + t− x− 2t− 1

and substitute it in the second equation:

−
1
uxxx√

t2 + t− x
− 3

1
ux

4(t2 + t− x)5/2
+ 3

1
uxx

(t2 + t− x)3/2
+ c(t2 + t− x)−11/2 = 0, (15)

where c is a constant, depending on the choice of F . The equation (15) is an ordinary differential
equation and has the following solution:

1
u =

2c
15(t2 + t− x)2

+ F1(t) +
F2(t)√
t2 + t− x

+ F3(t)
√
t2 + t− x.

If we substitute u =
0
u + ε

1
u in (8) we obtain a system of ordinary differential equations for

finding F1(t), F2(t), F3(t):

Ḟ1 = −2F3, Ḟ2 = −F1, Ḟ3 = 0,

which has the solution:

F1 = −2At+B, F2 = At2 −Bt+ C, F3 = A,

where A, B, C are arbitrary constants, c = 1
4 . Finally, we find the solution of (8):

u = 2
√
t2 + t− x− 2t− 1

+ ε

(
1
4
(t2 + t− x)2 + (−2At+B) +

At2 −Bt+ C√
t2 + t− x

+A
√
t2 + t− x

)
,

where A, B, C are arbitrary constants.

Example 3. Now we consider an example of finding of symmetries of the nonintegrable equation

ut = uux + u2
xxx (16)
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and construct its approximate solution. Using the criteria of integrability, it can be checked that
the equation (16) is nonintegrable [11].

As in Example 2, take a nonclassical Lie–Bäcklund symmetry of the transport equation (12)

with
0
η = uxuxxx− 3u2

xx. Applying the operator, given by (9), to the equation (16) we get in the
zero and first orders of precision by ε:

ε0 :
0
η = uxuxxx − 3u2

xx,

ε1 :
∂

∂t

1
η − ux

1
η − u

∂

∂x

1
η + u2

x

∂

∂ux

1
η + 3uxuxx

∂

∂uxx

1
η +

(
3u2

xx + 4uxuxxx

) ∂

∂uxxx

1
η

+ (10uxxuxxx + 5uxuxxxx)
∂

∂uxxxx

1
η + (10u2

xxx + 15uxxuxxxx + 6uxuxxxxx)
∂

∂uxxxxx

1
η

+ (35uxxxuxxxx + 21uxxuxxxxx + 7uxuxxx)
∂

∂uxxxxxx

1
η

+ 2uxxx(14uxxxuxxxx + 3uxxuxxxxx − uxuxxxxxx) = 0.

From the last equation, we find

1
η = −F

(
u, x+ ut,

uxt+ 1
ux

,−uxx

u3
x

,
uxuxxx − 3u2

xx

u5
x

,−15u3
xx + uxxxxu

2
x − 10uxxuxuxxx

u7
x

,

− 105u4
xx − uxxxxxu

3
x − 105u2

xxuxuxxx + 15uxxuxxxxu
2
x + 10u2

xu
2
xxx

u9
xxx

,

− 945u5
xx − 1260u3

xxuxuxxx + 280uxxu
2
xu

2
xxx + 210u2

xxuxxxxu
2
x − 21uxxuxxxxxu

3
x

u11
x

+
−35u3

xuxxxuxxxx + uxxxxxxu
4
x

u11
x

)
ux +

1
5
uxxxuxxxxxx

−
(

51
55
uxxxuxxuxxxxx −

3
55
u2

xxuxxxxxx −
35
11
u2

xxxuxxxx

)
u−1

x

+
(

32
11
u2

xxuxxxuxxxx +
113
33

uxxu
3
xxx +

18
55
u3

xxuxxxxx

)
u−2

x

+
(
−695

143
u3

xxu
2
xxx −

150
143

u4
xxuxxxx

)
u−3

x +
405
143

u5
xxuxxxu

−4
x − 81

143
u7

xxu
−5
x .

where F is an arbitrary function. Now we find an approximate solution of the equation (8) in

the form u =
0
u+ ε

1
u+ o(ε). The invariance condition in the first order of precision is written as:

(0
η + ε

1
η
)(0
u+ ε

1
u
)

= o(ε). (17)

If we substitute
0
η,

1
η to the equation (17), we obtain in the zero and first orders by ε equations

for
0
u and

1
u:

ε0 :
0
η
(0
u
)

= 0,

ε1 :
1
ux

0
uxxx +

0
ux

1
uxxx − 6

1
uxx

0
uxx +

1
η
(0
u
)

= 0.

From the first equation, we get

0
u = 2

√
t2 + t− x− 2t− 1,
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and, substituting this expression into the second equation, we obtain

−
1
uxxx√

t2 + t− x
− 3

1
ux

4(t2 + t− x)5/2
+ 3

1
uxx

(t2 + t− x)3/2
+ c

(
t2 + t− x

)−8 = 0, (18)

where c is a constant depending on the choice of F . The equation (18) is an ordinary differential
equation and has the following solution:

1
u =

c

90
(
t2 + t− x

)−9/2 + (−2At+B) +
At2 −Bt+ C√

t2 + t− x
+A

√
t2 + t− x. (19)

If we substitute u =
0
u + ε

1
u in the equation (16) we obtain the system of ordinary differential

equations for finding F1(t), F2(t), F3(t) :

Ḟ1 = −2F3, Ḟ2 = −F1, Ḟ3 = 0,

which has the solution:

F1 = −2At+B, F2 = At2 −Bt+ C, F3 = A.

Therefore, the solution u has the form:

u = 2
√
t2 + t− x− 2t− 1

+ ε

(
405
64
(
t2 + t− x

)−9/2 + (−2At+B) +
At2 −Bt+ C√

t2 + t− x
+A

√
t2 + t− x

)
,

where A, B, C are arbitrary constants.

Remark 1. One can show that the approximate symmetries constructed in the above examples
remain stable in any higher order of precision. However, we do not know whether any non-
classical symmetry of an evolution partial differential equation with a small parameter is stable
in any order of precision.

4 Conclusion

The methods developed in this paper can be applied to larger classes of partial differential
equations with a small parameter, not only to the evolution ones. For instance, in the paper [12]
it is shown that classical approximate Lie–Bäcklund symmetries of the Boussinesq equation with
a small parameter can be constructed, starting from the exact Lie–Bäcklund symmetries of the
linear wave equation. It is quite possible that these results can be extended to non-classical
approximate symmetries of the Boussinesq equation.

From the other side, one should note that stability property of approximate classical symme-
tries holds only for a very restricted class of partial differential equations with a small parameter,
mainly, for those, which have very nice symmetry properties in the zero order of precision. The
class of non-classical symmetries is much larger than the class of classical symmetries. Therefore,
one can hardly expect to have some general theorems on stability of non-classical symmetries.
This means that we will have to investigate separately stability properties of non-classical sym-
metries in each particular case.

All the computations have been made with the help of Maple.
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