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1 Introduction

In this work we propose a dual mesh numerical scheme for analysis of the following non-local
parabolic problem coming from conservation law of electric charges:

∂u

∂t
−∇ · (k(u)∇u) = λ

f(u)(∫
Ω f(u) dx

)2 in Ω×]0;T [,

u = 0 on ∂Ω×]0;T [, u/t=0 = u0 in Ω, (1)

where ∇ denotes the gradient with respect to the x-variables. The nonlinear problem (1) is
obtained, under some simplificative conditions, by reducing the well-known thermistor problem
(cf., e.g., [13, 14, 15]), which consists of the heat equation, with joule heating as a source, and
subject to current conservation:

ut = ∇ · (k(u)∇u) + σ(u) |∇ϕ|2 , ∇ · (σ(u)∇ϕ) = 0, (2)

where the domain Ω ⊂ R2 occupied by the thermistor is a bounded convex polygonal; ϕ =
ϕ(x, t) and u = u(x, t) are, respectively, the distributions of the electric potential and the
temperature in Ω; σ(u) and k(u) are, respectively, the temperature-dependant electrical and
thermal conductivities; σ(u) |∇ϕ|2 is the joule heating. The literature on problem (2) is vast
(see e.g. [2, 6, 7, 8, 9, 10, 11, 16, 17]). With respect to numerical approximation results to
problem (2) we are aware of [1, 11, 12, 18]: in [18] a numerical analysis of the non-steady
thermistor problem by a finite element method is discussed; in [12] the authors study a spatially
and completely discrete finite element model; in [11] a semi-discretization by the backward Euler
scheme is given for the special case k = Id; in [1] a box approximation scheme is presented and
analyzed. A completely discrete scheme based on the backward Euler method with semi-implicit
linearization to (2) is presented in [12] for the special case k(u) = 1. Existence and uniqueness
of solutions to the problem (1) were proved in [10].
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Finite volume methods emerged recently and seem to have a significant role on concrete
applications, because they have very interesting properties in view of the subjacent physical
problems: in particular in conservation of flows. An equation coming from a conservation law
has a good chance to be correctly discretized by the finite volume method. We also recall that
these schemes have been widely used to approximate solutions of the heat linear equation, semi-
linear or parabolic equations. Since we consider data f with lack of regularity when compared to
previous work, we need a new way to discretize (1). We present a dual mesh method capable of
handling the non local term λf(u)

(
∫
Ω f(u) dx)2 which is a noticeable feature of (1), by generalizing the

results of [1]. A box approximation scheme for discretizing (1) with the case k being different
from the identity is obtained. Speed of convergence is directly related with regularity of the
continuous problem. When one increases regularity of the second term and data, the solution
see its regularity increasing in parallel, and precise speed of convergence can be established.
In the existing literature (see e.g. [5, 12]) the error estimates for both the finite element or
volume element method are usually derived for solutions that are sufficiently smooth. Because
the domain is polygonal, special attention has to be paid to regularity of the exact solution.
We give sufficient conditions in terms of data and the solution u that yield error estimates (see
hypothesis (H1) below).

The text is organized as follows. In Section 2 we set up the notation and the functional
spaces used throughout the paper. Section 3 introduces a box scheme model for problem (1),
and existence and uniqueness of the solution of the approximating problem (12) is obtained from
the fixed point theorem and equivalence of norms in the finite dimensional space S0

h. Finally,
in Section 4, under some regularity assumptions, we prove error estimates.

2 Notation and functional spaces

Let (·, ·) and ‖·‖ denote the inner product and norm in L2(Ω); H1
0 (Ω) =

{
u ∈ H1(Ω), u/∂Ω = 0

}
;

‖ · ‖s, ‖ · ‖s,p denote the Hs(Ω) and the W s,p(Ω) norm respectively; Th denote a triangulation
of Ω; T h

v be the set of vertices of a quasi-uniform triangulation Th; and
{
S0

h

}
h>0

be the family
of approximating subspaces of H1

0 (Ω) defined by

S0
h =

{
v ∈ H1

0 (Ω) : v/e is a linear function for all e ∈ Th

}
.

In the remainder of this paper we denote by c various constants that may depend on the data
of the problem, and that are not necessarily the same at each occurrence. We assume that the
family of triangulations is such that the following estimates [4] hold for all v ∈ S0

h:

‖v‖β,q ≤ chr−β−2max{0,1/p−1/q}‖v‖r,p, 0 ≤ r ≤ β ≤ 1, 1 ≤ p, q ≤ ∞,

‖v‖0,∞ ≤ c| lnh|
1
2 ‖v‖1. (3)

Let Ph : L2(Ω) → S0
h be the standard L2-projection. One has [4]:

‖v − Phv‖+ h‖v − Phv‖1 ≤ ch2‖v‖2,

‖v − Phv‖0,∞ ≤ ch‖v‖2, ‖Phv‖1,∞ ≤ c‖v‖1,∞. (4)

We construct the box scheme Bh (dual mesh) employed in the discretization as follows. From
a given triangle e ∈ Th, we choose a point q ∈ e as the intersection of the perpendicular bisectors
of the three edges of e. Then, we connect q by straight-line segments to the edge midpoints of e.
To each vertex p ∈ T h

v , we associate the box bp ∈ Bh, consisting of the union of subregions which
have p as a corner (see Fig. 1). For the piecewise constant interpolation operator Ih, defined by

Ih : C(Ω) → L2(Ω), Ihv = v(p), on bp ∈ Bh, ∀ p ∈ T h
v ,
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Figure 1. Construction of the dual mesh.

we have the following standard error estimates [1, 3]:

c−1‖v‖ ≤ ‖Ihv‖ ≤ c‖v‖, ∀ v ∈ Sh
0 ,

‖v − Ihv‖ ≤ ch‖v‖1, ∀ v ∈ Sh
0 . (5)

We denote by Nh(p) the set of the neighboring vertices of p ∈ T h
v , ∂b =

⊔
p∈T h

v
∂bp, ∂bp =⊔

p∗∈Nh(p){Γpp∗}, where Γpp∗ = ∂bp
⋂

∂bp∗ (see Fig. 1). Let l∂b : ∂b → R+ be defined as follows:
for p ∈ T h

v and bp ∈ Bh,

l∂b/Γpp∗ = |p− p ∗ | for p∗ ∈ Nh(p).

For b ∈ Bh, we denote the jump in w across ∂b at x by [w]∂b(x) = w(x + 0)− w(x− 0), where
w(x± 0) are the outside and inside limit values of w(x) along the normal directions for ∂b.

We now collect from the literature [1, 3] some important lemmas and trace results, that are
needed in the sequel.

Lemma 1. Assume that Bh is a dual mesh. If v is a piecewise linear function, and x is not
a vertex, then

[Ihv]/∂bp(x) =
∂v

∂n
l∂b/Γpp∗, x ∈ Γpp∗, ∀ b ∈ Bh,

where n is the unit outward normal vector on ∂b.

The h-dependent norms are defined as follows:

‖v‖1,h =

(∑
l∈∂b

|[Ihv]l|2
) 1

2

and ‖v‖0,h = ‖Ihv‖ .

Lemma 2. There exists a constant c > 0 such that

c−1 ‖∇v‖ ≤ ‖v‖1,h ≤ c‖∇v‖, ∀ v ∈ S0
h,

c−1‖v‖ ≤ ‖v‖0,h ≤ c‖v‖, ∀ v ∈ S0
h.

Lemma 3. For any a ∈ C(Ω) there exists a positive constant c such that∣∣∣∣∣∣−
∑
b∈Bh

∫
∂b

a
∂u

∂n
Ihv

∣∣∣∣∣∣ ≤ c‖u‖1‖v‖1, ∀ u, v ∈ S0
h. (6)

Moreover, if there exists a constant a0 > 0 such that a ≥ a0 in Ω, then

c−1‖v‖2
1 ≤ −

∑
b∈Bh

∫
∂b

a
∂v

∂n
Ihv, ∀ v ∈ S0

h. (7)
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Let Qh : H2(Ω) → S0
h be defined by Qhu− ihu ∈ S0

h, and

−
∑
b∈Bh

∫
∂b

a
∂(u−Qhu)

∂n
Ihv = 0, ∀ v ∈ S0

h, (8)

where ih : C(Ω) → S0
h is the Lagrangian interpolation operator and u ∈ H2(Ω).

Lemma 4. Assume that a ∈ L∞(Ω), with a ≥ a0 for some constant a0 > 0. Then, there exists
c > 0 such that for u ∈ H2(Ω)

‖u−Qhu‖1 ≤ ch‖u‖2. (9)

Moreover, if u ∈ H2(Ω)
⋂

W 1,∞(Ω), then

‖Qhu‖1,∞ ≤ c (‖u‖1,∞ + ‖u‖2) . (10)

Lemma 5. For each b ∈ Bh one has

h
1
2 ‖v‖L2(∂b) ≤ c

(
‖v‖L2(b) + h‖v‖H1(b)

)
, ∀ v ∈ H1(b).

Throughout this work, we assume that the following hypotheses on the solution and data of
problem (1) are satisfied:

(H1) u ∈ L∞(H1
0 (Ω)

⋂
H2(Ω)), ut ∈ L2(H1(Ω));

(H2) c−1 ≤ k(s) ≤ c;

(H3) there exist positive constants c1, c2 and ν, such that ν ≤ f(ξ) ≤ c1|ξ|+ c2 for all ξ ∈ R;

(H4) |f(ξ)− f(ξ′)|+ |k(ξ)− k(ξ′)| ≤ c |ξ − ξ′|.

3 Existence and uniqueness result for the box scheme method

Let u be the solution of (1). Integrating over an element b in Bh we obtain:∫
b
ut −

∫
∂b

k(u)
∂u

∂n
=

λ(∫
f(u) dx

)2 ∫
b
f(u), ∀ b ∈ Bh. (11)

We consider a box scheme defined as follows: find uh ∈ S0
h such that

(
Ihuh

t , Ihv
)
−
∑
b∈Bh

∫
∂b

k
(
uh
)∂uh

∂n
Ihv =

λ(∫
Ω f(uh) dx

)2 (f(uh
)
, Ihv

)
, ∀ v ∈ S0

h, (12)

where uh(0) = Phu0 and Ih is the interpolation operator.

Theorem 1. Let (H1)–(H4) be satisfied. Then, for each h > 0, there exists t0(h) such that (12)
possesses a unique solution uh for 0 ≤ t ≤ t0(h).

Proof. We begin by proving existence of solution. We define a nonlinear operator G from S0
h

to S0
h as follows. For each uh ∈ S0

h, wh = G(uh) is obtained as the unique solution of the
following problem:

(
Ihwh

t , Ihv
)
−
∑
b∈Bh

∫
∂b

k
(
uh
)∂wh

∂n
Ihv =

λ(∫
Ω f(uh) dx

)2 (f(uh
)
, Ihv

)
, ∀ v ∈ S0

h. (13)
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We remark that G is well defined. Using v = wh as a test function in (13), hypotheses (H2)
and (H3), and Holder’s inequality, we can write:

1
2

d

dt
‖Ihwh‖2 + c‖wh‖2

1 ≤ c
(
f
(
uh
)
, Ihwh

)
≤ c

∫ (
|uh|+ 1

)
|Ihwh|

≤ c‖uh‖L2‖Ihwh‖L2 + c‖Ihwh‖ ≤ c‖uh‖1‖Ihwh‖1 + c‖Ihwh‖

≤ c

2
‖Ihwh‖2

1 + c‖uh‖2
1 + c.

Thus, we have

d

dt
‖Ihwh‖2 + c‖wh‖2

1 ≤ c‖uh‖2
1 + c . (14)

Integrating (14) with respect to t and using the equivalency of ‖Ih · ‖ and ‖ · ‖ in S0
h (see (5))

yields

‖wh‖2 + c

∫ t

0
‖wh‖2

1 ≤ c‖IhPhu0‖2 + c

∫ t

0
‖uh‖2

1 dx + ct

≤ c‖u0‖2 + c

∫ t

0
‖uh‖2

1 dx + ct.

Define now the following set

D =
{

uh ∈ S0
h, ‖uh‖2 + c

∫ t

0
‖uh‖2

1 ≤ c
(
‖u0‖2 + 1

)}
.

We can easily see that D is closed subset of L∞(0, t, L2(Ω)) with its natural norm. We conclude
that there exists t > 0 such that G(D) ⊂ D. To obtain that G has a fixed point wh = G(wh),
we prove that G is a contraction. Conclusion follows from Banach’s fixed point theorem. For
this purpose, let uh

1 and uh
2 ∈ S0

h × S0
h such that Guh

1 = wh
1 and Guh

2 = wh
2 . We have, from the

equation (13) verified by wh
1 and wh

2 , that

(
Ih

(
wh

1t − wh
2t

)
, Ihv

)
−
∑
b∈Bh

∫
∂b

k
(
uh

1

)∂wh
1

∂n
Ihv +

∑
b∈Bh

∫
∂b

k
(
uh

2

)∂wh
2

∂n
Ihv

=
λ(∫

Ω f(uh
1) dx

)2 (f(uh
1

)
, Ihv

)
− λ(∫

Ω f(uh
2) dx

)2 (f(uh
2

)
, Ihv

)
.

On the other hand, one has

−
∑
b∈Bh

∫
∂b

k
(
uh

1

)∂wh
1

∂n
Ihv +

∑
b∈Bh

∫
∂b

k
(
uh

2

)∂wh
2

∂n
Ihv

= −
∑
b∈Bh

∫
∂b

k(uh
1)

∂
(
wh

1 − wh
2

)
∂n

Ihv +
∑
b∈Bh

∫
∂b

(
k
(
uh

2

)
− k
(
uh

1

))∂wh
2

∂n
Ihv.

Schwartz inequality implies that

∑
b∈Bh

∫
∂b

(
k
(
uh

1

)
− k
(
uh

2

))∂wh
2

∂n
Ihv ≥ −c‖wh

2‖1,∞

∑
b∈Bh

‖uh
1 − uh

2‖0,∂b

 ‖v‖.

By Lemma 5, we have

h
1
2

∑
b∈Bh

‖uh
1 − uh

2‖0,∂b ≤ c
∑
b∈Bh

(
‖uh

1 − uh
2‖L2(b) + h‖uh

1 − uh
2‖H1(b)

)
≤ c‖uh

1 − uh
2‖1.



6 A. El Hachimi, M.R. Sidi Ammi and D.F.M. Torres

Thus, from the inverse estimate (3),

∑
b∈Bh

∫
∂b

(
k
(
uh

1

)
− k
(
uh

2

))∂wh
2

∂n
Ihv ≥ −c(h)‖wh

2‖1‖uh
1 − uh

2‖1‖v‖1. (15)

On the basis of hypotheses (H1)–(H4), we have:

λ(∫
Ω f(uh

1) dx
)2 (f(uh

1

)
, Ihv

)
− λ(∫

Ω f
(
uh

2

)
dx
)2 (f(uh

2

)
, Ihv

)
=

λ(∫
Ω f
(
uh

1

)
dx
)2 (f(uh

1

)
− f

(
uh

2

)
, Ihv

)
+ λ

(
1(∫

Ω f
(
uh

1

)
dx
)2 − 1(∫

Ω f
(
uh

2

)
dx
)2
)(

f
(
uh

2

)
, Ihv

)
≤ c‖uh

1 − uh
2‖ ‖v‖+ λ

(∫
Ω f
(
uh

2

)
− f

(
uh

1

)) (∫
Ω f
(
uh

2

)
+ f

(
uh

1

))(∫
Ω f
(
uh

2

)
dx
)2 (∫

Ω f
(
uh

1

)
dx
)2 (

f
(
uh

2

)
, Ihv

)
≤ c‖uh

1 − uh
2‖ ‖v‖+ c‖Ihv‖L2(Ω)‖uh

1 − uh
2‖L1(Ω)

≤ c‖uh
1 − uh

2‖ ‖v‖ ≤ c‖uh
1 − uh

2‖1 ‖v‖1. (16)

It follows from (15) and (16) that

(
Ih

(
wh

1t − wh
2t

)
, Ihv

)
−
∑
b∈Bh

∫
∂b

k(uh
1)

∂
(
wh

1 − wh
2

)
∂n

Ihv

≤ c(h)‖uh
1 − uh

2‖1‖v‖1 −
∑
b∈Bh

∫
∂b

(
k
(
uh

1

)
− k
(
uh

2

))∂wh
2

∂n
Ihv ≤ c(h)‖uh

1 − uh
2‖1‖v‖1. (17)

Now, using v = wh
1 − wh

2 as a test function in (17), we obtain from (7):

1
2

d

dt

∥∥Ih

(
wh

1 − wh
2

)∥∥2 + c‖wh
1 − wh

2‖2
1 ≤ c(h)‖uh

1 − uh
2‖1‖wh

1 − wh
2‖1. (18)

With use of the Holder’s inequality and equivalency of ‖Ih · ‖ and ‖ · ‖, integration of (18) with
respect to time gives:

∥∥(wh
1 − wh

2

)∥∥2 ≤ c
∥∥Ih

(
wh

1 − wh
2

)∥∥2 ≤ c(h)
∫ t

0

∥∥(uh
1 − uh

2

)∥∥2

1
ds.

Thus G is a contraction. We prove now uniqueness. Following the same arguments as before,
we have

(
Ih

(
uh

1t − uh
2t

)
, Ihv

)
−
∑
b∈Bh

∫
∂b

k(uh
1)

∂(uh
1 − uh

2)
∂n

Ihv ≤ c(h)‖uh
1 − uh

2‖1‖v‖. (19)

Choosing v = uh
1 − uh

2 as test function in (19), using again (7) and integrating, we obtain

∥∥(uh
1 − uh

2

)∥∥2 ≤ c(h)
∫ t

0

∥∥(uh
1 − uh

2

)∥∥2
ds,

which gives, by Gronwall’s Lemma, uniqueness of solution. �
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4 Error analysis

In this section we prove error estimates under certain assumptions on regularity of the exact
solution u.

Theorem 2. Under assumptions (H1)–(H4), if
(
u, uh

)
are solutions of (11)–(12) for 0 ≤ t ≤

t0(h), then

‖uh − u‖L∞(L2) + ‖uh − u‖L2(H1) ≤ ch.

Proof. From (11) and (12) we obtain

(
Ih

(
uh − Phu

)
t
, Ihv

)
−
∑
b∈Bh

∫
∂b

k
(
uh
)∂ (uh

1 − Phu
)

∂n
Ihv

=
λ(∫

Ω f (uh) dx
)2 (f(uh

)
, Ihv

)
− λ(∫

Ω f(u) dx
)2 (f(u), Ihv

)
+
∑
b∈Bh

∫
∂b

k
(
uh
)∂ (Phu− u)

∂n
Ihv

−
∑
b∈Bh

∫
∂b

(
k(u)− k

(
uh
))∂u

∂n
Ihv +

(
(I − Ph)ut, Ihv

)
+
(
(I − Ih)Phut, Ihv

)
. (20)

We now estimate, separately, the terms on the right-hand side of (20). We have from (6) and (4)
that ∣∣∣∣∣∣

∑
b∈Bh

∫
∂b

k
(
uh
)∂(Phu− u)

∂n
Ihv

∣∣∣∣∣∣ ≤ c‖Phu− u‖1‖v‖1 ≤ ch‖u‖2‖v‖1 ≤ ch‖v‖1, (21)

∣∣∣∣∣∣
∑
b∈Bh

∫
∂b

(
k(u)− k

(
uh
))∂u

∂n
Ihv

∣∣∣∣∣∣
≤ c‖v‖1

∑
b∈Bh

(∫
∂b
|u− uh|

∣∣∣∣∂u

∂n

∣∣∣∣)2
 1

2

≤ ch
1
2 ‖v‖1

∑
b∈Bh

‖u− uh‖2
0,∂b

 1
2

. (22)

By Lemma 5, inverse inequality (3) and (4), we have:∑
b∈Bh

‖uh − u‖2
0,∂b ≤ 2

∑
b∈Bh

‖uh − Phu‖2
0,∂b + 2

∑
b∈Bh

‖Phu− u‖2
0,∂b

≤ c
(
h2 + ‖uh − Phu‖2

)
. (23)

Consequently, we obtain from (23) that∣∣∣∣∣∣
∑
b∈Bh

∫
∂b

(
k(u)− k

(
uh
))∂u

∂n
Ihv

∣∣∣∣∣∣ ≤ c
(
h + ‖uh − Phu‖

)
‖v‖1. (24)

Based on our earlier development in (16), we also know:

λ(∫
Ω f(uh) dx

)2 (f(uh
)
, Ihv

)
− λ(∫

Ω f(u) dx
)2 (f(u), Ihv) ≤ c‖uh − u‖‖v‖1. (25)

Let v = uh − Phu be a test function in (20). Using Lemma 3, it follows from (21)–(25) that

1
2

d

dt
‖Ih(uh − Phu)‖2 + c‖uh − Phu‖2

1
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≤ c‖uh − u‖‖uh − Phu‖1 + ch‖uh − Phu‖1 + c
(
h + ‖uh − Phu‖

)
‖uh − Phu‖1

+ c(‖(I − Ph)ut‖+ ‖(I − Ih)Phut‖)‖uh − Phu‖
≤ c(‖(I − Ph)ut‖+ ‖(I − Ih)Phut‖)‖uh − Phu‖

+ c
(
h + ‖uh − Phu‖

)
‖uh − Phu‖1 + ‖Phu− u‖‖uh − Phu‖1.

By properties (4) and Cauchy’s inequality, it follows:

d

dt

∥∥Ih

(
uh − Phu

)∥∥2 + c‖uh − Phu‖2
1 ≤ c‖Phu− u‖1‖uh − Phu‖1

+ c
{
h + ‖(I − Ph)ut‖+ ‖(I − Ih)Phut‖+ ‖uh − Phu‖

}
‖uh − Phu‖1

≤ c
{
h2 + ‖(I − Ph)ut‖2

1 + ‖(I − Ih)Phut‖2 + ‖uh − Phu‖2
}

+
c

2
‖uh − Phu‖2

1

≤ c
{
h2 + h2‖ut‖2

2 + ch2‖Phut‖2
1

}
+ c‖uh − Phu‖2 +

c

2
‖uh − Phu‖2

1.

Hence,

d

dt

∥∥Ih

(
uh − Phu

)∥∥2 + c
∥∥uh − Phu

∥∥2

1
≤ ch2 + c‖uh − Phu‖2. (26)

Integrating (26) and applying Gronwall Lemma and using again the equivalency of ‖ · ‖ and
‖Ih · ‖, we get that

‖uh − Phu‖2 + c

∫ t

0
‖uh − Phu‖2

1 ≤ ch2.

Then, by the triangular inequality, we conclude with the intended result. �

Under more restrictive hypotheses on the data, it is possible to derive the following error
estimate.

Theorem 3. Assume (H1)–(H4). If k(s) = 1 and u0 ∈ H1
0 (Ω)

⋂
H2(Ω), then

‖uh − u‖L∞(H1) ≤ ch.

Proof. From equations (11) and (12), we have:

(
Ihuh

t − ut, Ihv
)
−
∑
b∈Bh

∫
∂b

∂uh

∂n
Ihv +

∑
b∈Bh

∫
∂b

∂u

∂n
Ihv

=
λ(∫

Ω f(uh) dx
)2 (f(uh

)
, Ihv

)
− λ(∫

Ω f(u) dx
)2 (f(u), Ihv).

Using the definition (8) of Qh, we get

(
Ihuh

t − ut, Ihv
)
−
∑
b∈Bh

∫
∂b

∂
(
uh −Qhu

)
∂n

Ihv

=
λ(∫

Ω f(uh) dx
)2 (f(uh

)
, Ihv

)
− λ(∫

Ω f(u) dx
)2 (f(u), Ihv),

and it follows that(
Ih

(
uh

t −Qhu
)
t
, Ihv

)
−
∑
b∈Bh

∫
∂b

∂(uh −Qhu)
∂n

Ihv
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=
λ(∫

Ω f(uh) dx
)2 (f(uh

)
, Ihv

)
− λ(∫

Ω f(u) dx
)2 (f(u), Ihv)

+ ((I −Qh)ut, Ihv) + ((I − Ih)Qhut, Ihv). (27)

In order to estimate the right hand side of the last inequality, we treat both terms separately.
By similar arguments to those used in (16),∣∣∣∣∣ λ(∫

Ω f(uh) dx
)2 (f(uh

)
, Ihv

)
− λ(∫

Ω f(u) dx
)2 (f(u), Ihv)

∣∣∣∣∣ ≤ c‖uh − u‖‖v‖.

Taking a function test v = (uh −Qhu)t in (27), by (9) and (10) we have

‖Ih(uh −Qhu)t‖2 −
∑
b∈Bh

∫
∂b

∂(uh −Qhu)
∂n

Ih

(
uh −Qhu

)
t

≤ c
{
h + ‖(I − Ih)Qhut‖+ ‖(I −Qh)ut‖+ ‖Qhu− uh‖

}
‖Ih(uh −Qhu)t‖

≤ c
{
h + ch‖ut‖2 + ch‖Qhut‖1 + ‖Qhu− uh‖

}
‖Ih(uh −Qhu)t‖

≤ c
{
h + ‖Qhu− uh‖

}
‖Ih(uh −Qhu)t‖

≤ ch2 + c‖Qhu− uh‖2 +
1
2
‖Ih(uh −Qhu)t‖2. (28)

Integrating (28), we arrive to

‖uh −Qhu‖2
1 ≤ c

(
h2 +

∫ t

0
‖uh −Qhu‖2

)
≤ c

(
h2 +

∫ t

0
‖uh −Qhu‖2

1

)
= ch2 + c‖uh −Qhu‖2

L2(H1(Ω)),

and Theorem 2 gives

‖uh −Qhu‖2
1 ≤ ch2.

On the other hand, by triangular inequality, (9) and the regularity of the exact solution u, we
have

‖uh − u‖2
1 ≤ 2‖uh −Qhu‖2

1 + 2‖Qhu− u‖2
1 ≤ ch2‖u‖2

2 + ch2 ≤ ch2.

We conclude then with the desired error estimate. �

5 Conclusion

In this paper a dual mesh numerical scheme was proposed for a nonlocal thermistor problem.
We have showed the existence and uniqueness of the approximate solution via Banach’s fixed
point theorem. We have also proved H1-error bounds under minimal regularity assumptions.
We only obtain first-order estimates: higher order estimates are difficult to obtain due to the
nonstandard nonlocal term. Optimal error analysis to the present context, under appropriate
smoothness assumptions on data, can be derived by application of the techniques of [5], but this
needs further developments.



10 A. El Hachimi, M.R. Sidi Ammi and D.F.M. Torres

Acknowledgements

The support of the Portuguese Foundation for Science and Technology (FCT) and post-doc
fellowship SFRH/BPD/20934/2004 are gratefully acknowledged. We would like to thank two
anonymous referees for valuable comments and suggestions.

[1] Allegretto W., Lin Y., Zhou A., A box scheme for coupled systems resulting from microsensor thermistor
problems, Dynam. Contin. Discrete Impuls. Systems, 1999, V.5, N 1–4, 209–223.

[2] Antontsev S.N., Chipot M., The thermistor problem: existence, smoothness uniqueness, blowup, SIAM J.
Math. Anal., 1994, V.25, N 4, 1128–1156.

[3] Cai Z.Q., On the finite volume element method, Numer. Math., 1991, V.58, N 7, 713–735.

[4] Ciarlet P.G., The finite element method for elliptic problems, Amsterdam, North-Holland, 1978.

[5] Chatzipantelidis P., Lazarov R.D., Thomée V., Error estimates for a finite volume element method for
parabolic equations in convex polygonal domains, Numer. Methods Partial Differential Equations, 2004,
V.20, Issue 5, 650–674.

[6] Cimatti G., On the stability of the solution of the thermistor problem, Appl. Anal., 1999, V.73, N 3–4,
407–423.

[7] Cimatti G., Stability and multiplicity of solutions for the thermistor problem, Ann. Mat. Pura Appl. (4),
2002, V.181, N 2, 181–212.

[8] El Hachimi A., Sidi Ammi M.R., Existence of weak solutions for the thermistor problem with degeneracy, in
Proceedings of the 2002 Fez Conference on Partial Differential Equations, Electron. J. Differ. Equ. Conf.,
2002, V.9, 127–137.

[9] El Hachimi A., Sidi Ammi M.R., Thermistor problem: a nonlocal parabolic problem, in Proceedings of the
2004-Fez Conference on Differential Equations and Mechanics, Electron. J. Differ. Equ. Conf., 2004, V.11,
117–128.

[10] El Hachimi A., Sidi Ammi M.R., Existence of global solution for a nonlocal parabolic problem, Electron. J.
Qual. Theory Differ. Equ., 2005, N 1, 9 pages.

[11] El Hachimi A., Sidi Ammi M.R., Semi-discretization for a non local parabolic problem, Int. J. Math. Math.
Sci., 2005, N 10, 1655–1664.

[12] Elliott C.M., Larsson S., A finite element model for the time-dependent Joule heating problem, Math.
Comp., 1995, V.64, N 212, 1433–1453.

[13] Lacey A.A., Thermal runaway in a non-local problem modelling Ohmic heating. I. Model derivation and
some special cases, European J. Appl. Math., 1995, V.6, N 2, 127–144.

[14] Lacey A.A., Thermal runaway in a non-local problem modelling Ohmic heating. II. General proof of blow-up
and asymptotics of runaway, European J. Appl. Math., 1995, V.6, N 3, 201–224.

[15] Tzanetis D.E., Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating,
Electron. J. Differential Equations, 2002, N 11, 26 pages.

[16] Xu X., Local and global existence of continuous temperature in the electrical heating of conductors, Houston
J. Math., 1996, V.22, N 2, 435–455.

[17] Xu X., Existence and uniqueness for the nonstationary problem of the electrical heating of a conductor due
to the Joule–Thomson effect, Int. J. Math. Math. Sci., 1993, V.16, N 1, 125–138.

[18] Yue X.Y., Numerical analysis of nonstationary thermistor problem, J. Comput. Math., 2004, V.12, N 3,
213–223.


	1 Introduction
	2 Notation and functional spaces
	3 Existence and uniqueness result for the box scheme method
	4 Error analysis
	5 Conclusion

