On a Certain Subalgebra of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ Related to the Degenerate q-Onsager Algebra^

Tomoya HATTAI ${ }^{\dagger}$ and Tatsuro ITO ${ }^{\ddagger}$

${ }^{\dagger}$ Iida Highschool, 1-1, Nonoe, Suzu, Ishikawa 927-1213, Japan
E-mail: tmyhtti@m2.ishikawa-c.ed.jp
\ddagger School of Mathematical Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, China E-mail: tito@staff.kanazawa-u.ac.jp

Received September 30, 2014, in final form January 15, 2015; Published online January 19, 2015 http://dx.doi.org/10.3842/SIGMA.2015.007

Abstract

In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$, is generated by $e_{0}^{+}, e_{1}^{ \pm}, k_{i}^{ \pm 1}(i=0,1)$ with e_{0}^{-}missing from the Chevalley generators $e_{i}^{ \pm}, k_{i}^{ \pm 1}(i=0,1)$ of $U_{q}\left(\widehat{\mathfrak{s} l}_{2}\right)$. In this paper, we determine the finite-dimensional irreducible representations of $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$. Intertwiners are also determined.

Key words: degenerate q-Onsager algebra; quantum affine algebra; TD-algebra; augmented TD-algebra; TD-pair

2010 Mathematics Subject Classification: 17B37; 05E30

1 Introduction

Throughout this paper, the ground field is \mathbb{C} and q stands for a nonzero scalar that is not a root of unity. The symbols $\varepsilon, \varepsilon^{*}$ stand for an integer chosen from $\{0,1\}$. Let $\mathcal{A}_{q}=\mathcal{A}_{q}^{\left(\varepsilon, \varepsilon^{*}\right)}$ denote the associative algebra with 1 generated by z, z^{*} subject to the defining relations [4]

$$
\left\{\begin{array}{l}
{\left[z,\left[z,\left[z, z^{*}\right]_{q}\right]_{q^{-1}}\right]=-\varepsilon\left(q^{2}-q^{-2}\right)^{2}\left[z, z^{*}\right]} \tag{TD}\\
{\left[z^{*},\left[z^{*},\left[z^{*}, z\right]_{q}\right]_{q^{-1}}\right]=-\varepsilon^{*}\left(q^{2}-q^{-2}\right)^{2}\left[z^{*}, z\right]}
\end{array}\right.
$$

where $[X, Y]=X Y-Y X,[X, Y]_{q}=q X Y-q^{-1} Y X$. This paper deals with a subalgebra of the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ that is closely related to \mathcal{A}_{q} in the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$. If $\left(\varepsilon, \varepsilon^{*}\right)=(0,0), \mathcal{A}_{q}$ is isomorphic to the positive part of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. If $\left(\varepsilon, \varepsilon^{*}\right)=(1,1), \mathcal{A}_{q}$ is called the q-Onsager algebra. If $\left(\varepsilon, \varepsilon^{*}\right)=(1,0), \mathcal{A}_{q}$ may well be called the degenerate q-Onsager algebra.

The algebra \mathcal{A}_{q} arises in the course of the classification of TD-pairs of type I, which is a critically important step in the study of representations of Terwilliger algebras for P - and Q-polynomial association schemes [3]. For this reason, \mathcal{A}_{q} is called the TD-algebra of type I. Precisely speaking, the TD-algebra of type I is standardized to be the algebra \mathcal{A}_{q}, where q is the main parameter for TD-pairs of type I; so $q^{2} \neq \pm 1$ and q is allowed to be a root of unity. In our case where we assume q is not a root of unity, the classification of the TD-pairs of type I is equivalent to determining the finite-dimensional irreducible representations $\rho: \mathcal{A}_{q} \rightarrow \operatorname{End}(V)$ with the property that $\rho(z), \rho\left(z^{*}\right)$ are both diagonalizable. Such irreducible representations

[^0]of \mathcal{A}_{q} are determined in [4] via embeddings of \mathcal{A}_{q} into the augmented TD-algebra \mathcal{T}_{q}. (In the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,1)$, the diagonalizability condition of $\rho(z), \rho\left(z^{*}\right)$ can be dropped, because it turns out that this condition always holds for every finite-dimensional irreducible representation ρ of the q-Onsager algebra \mathcal{A}_{q}.) \mathcal{T}_{q} is easier than \mathcal{A}_{q} to study representations for, and each finite-dimensional irreducible representation $\rho: \mathcal{A}_{q} \rightarrow \operatorname{End}(V)$ with $\rho(z), \rho\left(z^{*}\right)$ diagonalizable can be extended to a finite-dimensional irreducible representation of \mathcal{T}_{q} via a certain embedding of \mathcal{A}_{q} into \mathcal{T}_{q}.

The augmented TD-algebra $\mathcal{T}_{q}=\mathcal{T}_{q}^{\left(\varepsilon, \varepsilon^{*}\right)}$ is the associative algebra with 1 generated by x, y, $k^{ \pm 1}$ subject to the defining relations

$$
(\mathrm{TD})_{0} \quad\left\{\begin{array}{l}
k k^{-1}=k^{-1} k=1 \tag{1}\\
k x k^{-1}=q^{2} x \\
k y k^{-1}=q^{-2} y
\end{array}\right.
$$

and

$$
(\mathrm{TD})_{1}\left\{\begin{array}{l}
{\left[x,\left[x,[x, y]_{q}\right]_{q^{-1}}\right]=\delta\left(\varepsilon^{*} x^{2} k^{2}-\varepsilon k^{-2} x^{2}\right),} \tag{2}\\
{\left[y,\left[y,[y, x]_{q}\right]_{q^{-1}}\right]=\delta\left(-\varepsilon^{*} k^{2} y^{2}+\varepsilon y^{2} k^{-2}\right),}
\end{array}\right.
$$

where $\delta=-\left(q-q^{-1}\right)\left(q^{2}-q^{-2}\right)\left(q^{3}-q^{-3}\right) q^{4}$. The finite-dimensional irreducible representations of \mathcal{T}_{q} are determined in [4] via embeddings of \mathcal{T}_{q} into the $U_{q}\left(\mathfrak{s l}_{2}\right)$-loop algebra $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$.

Let $e_{i}^{ \pm}, k_{i}^{ \pm 1}(i=0,1)$ be the Chevalley generators of $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$. So the defining relations of $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ are

$$
\begin{align*}
& k_{0} k_{1}=k_{1} k_{0}=1, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1, \quad k_{i} e_{i}^{ \pm} k_{i}^{-1}=q^{ \pm 2} e_{i}^{ \pm} \\
& k_{i} e_{j}^{ \pm} k_{i}^{-1}=q^{\mp 2} e_{j}^{ \pm}, \quad i \neq j, \quad\left[e_{i}^{+}, e_{i}^{-}\right]=\frac{k_{i}-k_{i}^{-1}}{q-q^{-1}}, \quad\left[e_{i}^{+}, e_{j}^{-}\right]=0, \quad i \neq j \tag{3}\\
& {\left[e_{i}^{ \pm},\left[e_{i}^{ \pm},\left[e_{i}^{ \pm}, e_{j}^{ \pm}\right]_{q}\right]_{q^{-1}}\right]=0, \quad i \neq j}
\end{align*}
$$

Note that if $k_{0} k_{1}=k_{1} k_{0}=1$ is replaced by $k_{0} k_{1}=k_{1} k_{0}$ in (3), we have the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right): U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ is the quotient algebra of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ by the two-sided ideal generated by $k_{0} k_{1}-1$. For a nonzero scalar s, define the elements $x(s), y(s), k(s)$ of $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ by

$$
\begin{align*}
& x(s)=-q^{-1}\left(q-q^{-1}\right)^{2}\left(s e_{0}^{+}+\varepsilon s^{-1} e_{1}^{-} k_{1}\right) \\
& y(s)=\varepsilon^{*} s e_{0}^{-} k_{0}+s^{-1} e_{1}^{+} \tag{4}\\
& k(s)=s k_{0}
\end{align*}
$$

Then the mapping

$$
\begin{equation*}
\varphi_{s}: \mathcal{T}_{q} \rightarrow U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right), \quad x, y, k \mapsto x(s), y(s), k(s) \tag{5}
\end{equation*}
$$

gives an injective algebra homomorphism. If $\left(\varepsilon, \varepsilon^{*}\right)=(0,0)$, the image $\varphi_{s}\left(\mathcal{T}_{q}\right)$ coincides with the Borel subalgebra generated by $e_{i}^{+}, k_{i}^{ \pm 1}(i=0,1)$. If $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$, the image $\varphi_{s}\left(\mathcal{T}_{q}\right)$ is properly contained in the subalgebra generated by $e_{0}^{+}, e_{1}^{ \pm}, k_{i}^{ \pm 1}(i=0,1)$ with e_{0}^{-}missing from the generators; we denote this subalgebra by $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$. Through the natural homomorphism $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right) \rightarrow U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$, pull back the subalgebra $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ and denote the pre-image by $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$:

$$
U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)=\left\langle e_{0}^{+}, e_{1}^{ \pm}, k_{i}^{ \pm 1} \mid i=0,1\right\rangle \subset U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)
$$

In [4], it is shown that in the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$, all the finite-dimensional irreducible representations of \mathcal{T}_{q} are produced by tensor products of evaluation modules for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$
via the embedding φ_{s} of \mathcal{T}_{q} into $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$. Using this fact and the Drinfel'd polynomials, we show in this paper that there are no other finite-dimensional irreducible representations of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ and hence of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ than those afforded by tensor products of evaluation modules, if we apply suitable automorphisms of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right), U_{q}^{\prime}\left(\widehat{\mathfrak{F l}}_{2}\right)$ to adjust the types of the representations to be $(1,1)$. Here we note that the evaluation parameters are allowed to be zero for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right), U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$. Details will be discussed in Sections 2 and 3, where the isomorphism classes of finite-dimensional irreducible representations of $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ are also determined. In Section 4, intertwiners will be determined for finite-dimensional irreducible $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ modules.

In our approach, Drinfel'd polynomials are the key tool for the classification of finitedimensional irreducible representations of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right), U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$, although they are not the main subject of this paper. They are defined in [4], and the point is that they are directly attached to \mathcal{T}_{q}-modules, not to $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ - or $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$-modules. (In the case of $\left(\varepsilon, \varepsilon^{*}\right)=(0,0)$, they turn out to coincide with the original ones up to the reciprocal of the variable.) So in our approach to the case of $\left(\varepsilon, \varepsilon^{*}\right)=(0,0)$, finite-dimensional irreducible representations are naturally classified firstly for the Borel subalgebra of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ and then for $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ itself. This will be briefly demonstrated in Section 3 as a warm-up for the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$, thus giving another proof to the classical classification theorem of Chari-Pressley [2] and to the main theorems (Theorems 1.16 and 1.17) of [1].

We now review Drinfel'd polynomials for \mathcal{T}_{q}-modules [4, p. 119]. Let V be a finite-dimensional \mathcal{T}_{q}-module. We assume the following properties for V :
(D) $)_{0}: k$ is diagonalizable on V with $V=\bigoplus_{i=0}^{d} U_{i},\left.k\right|_{U_{i}}=s q^{2 i-d}, 0 \leq i \leq d$, for some nonzero constant s;

$$
(\mathrm{D})_{1}: \operatorname{dim} U_{0}=1 .
$$

By the relations (TD) $)_{0}: k k^{-1}=k^{-1} k=1, k x k^{-1}=q^{2} x, k y k^{-1}=q^{-2} y$, it holds that $x U_{i} \subseteq$ $U_{i+1}, y U_{i} \subseteq U_{i-1}(0 \leq i \leq d)$, where $U_{-1}=U_{d+1}=0$. So the one-dimensional subspace U_{0} is invariant under $y^{i} x^{i}$ and we have the sequence $\left\{\sigma_{i}\right\}_{i=0}^{\infty}$ of eigenvalues σ_{i} of $y^{i} x^{i}$ on U_{0} : $\sigma_{i}=\left.y^{i} x^{i}\right|_{U_{0}}$. Notice that $\sigma_{0}=1$ and $\sigma_{i}=0, d+1 \leq i$. The Drinfel'd polynomial $P_{V}(\lambda)$ of the \mathcal{T}_{q}-module V is defined by

$$
P_{V}(\lambda)=\sum_{i=0}^{d}(-1)^{i} \frac{\sigma_{i}}{\left(q-q^{-1}\right)^{2 i}([i]!)^{2}} \prod_{j=i+1}^{d}\left(\lambda-\varepsilon s^{-2} q^{2(d-j)}-\varepsilon^{*} s^{2} q^{-2(d-j)}\right),
$$

where $[i]=[i]_{q}=\left(q^{i}-q^{-i}\right) /\left(q-q^{-1}\right)$ and $[i]!=[1][2] \cdots[i]$ with the understanding of $[0]!=1$. Since $\sigma_{0}=1, P_{V}(\lambda)$ is a monic polynomial of degree d.

If V is an irreducible \mathcal{T}_{q}-module, it is known that V in fact satisfies the properties $(\mathrm{D})_{0},(\mathrm{D})_{1}$ [4, Lemma 1.2, Theorem 1.8], and these properties provide a rather simple short proof for the 'injective' part of [4, Theorem 1.9], i.e., for the fact that the isomorphism class of the irreducible \mathcal{T}_{q}-module V is determined by the trio $\left(\left\{\sigma_{i}\right\}_{i=0}^{\infty}, s, d\right)$.

If V is a tensor product of evaluation modules for $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ in the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,1),(0,0)$ or for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ in the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$, we regard V as a \mathcal{T}_{q}-module via the embedding φ_{s} of (5). Then it is apparent that the \mathcal{T}_{q}-module V satisfies the properties (D) $)_{0},(\mathrm{D})_{1}$. Moreover it is known that a product formula holds for the Drinfel'd polynomial $P_{V}(\lambda)$ and it turns out that $P_{V}(\lambda)$ does not depend on the parameter s of the embedding φ_{s} [4, Theorem 5.2]. The 'surjective' part of [4, Theorem 1.9] follows from the structure of the zeros of the Drinfel'd polynomial for such a tensor product of evaluation modules regarded as a \mathcal{T}_{q}-module via the embedding φ_{s}.

2 Finite-dimensional irreducible representations of $\left.\boldsymbol{U}_{q}^{\prime}(\widehat{\mathfrak{s l}})_{2}\right)$

The subalgebra $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ of the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ is generated by $e_{0}^{+}, e_{1}^{ \pm}, k_{i}^{ \pm 1}$ $(i=0,1), e_{0}^{-}$missing from the generators, and has by the triangular decomposition of $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ the defining relations

$$
\begin{align*}
& k_{0} k_{1}=k_{1} k_{0}, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1, \quad k_{0} e_{0}^{+} k_{0}^{-1}=q^{2} e_{0}^{+}, \quad k_{1} e_{1}^{ \pm} k_{1}^{-1}=q^{ \pm 2} e_{1}^{ \pm} \\
& k_{1} e_{0}^{+} k_{1}^{-1}=q^{-2} e_{0}^{+}, \quad k_{0} e_{1}^{ \pm} k_{0}^{-1}=q^{\mp 2} e_{1}^{ \pm}, \quad\left[e_{1}^{+}, e_{1}^{-}\right]=\frac{k_{1}-k_{1}^{-1}}{q-q^{-1}} \tag{6}\\
& {\left[e_{0}^{+}, e_{1}^{-}\right]=0, \quad\left[e_{i}^{+},\left[e_{i}^{+},\left[e_{i}^{+}, e_{j}^{+}\right] q\right]_{q^{-1}}\right]=0, \quad i \neq j}
\end{align*}
$$

Note that if $k_{0} k_{1}=k_{1} k_{0}$ is replaced by $k_{0} k_{1}=k_{1} k_{0}=1$ in (6), we have the defining relations for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$.

Let V be a finite-dimensional irreducible $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$-module. Let us first observe that the $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ module V is obtained from a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module by applying an automorphism of $U_{q}^{\prime}\left(\widehat{\left.\mathfrak{s l}_{2}\right)}\right.$ as follows. Since the element $k_{0} k_{1}$ belongs to the centre of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right), k_{0} k_{1}$ acts on V as a scalar s by Schur's lemma. Since $k_{0} k_{1}$ is invertible, the scalar s is nonzero: $\left.k_{0} k_{1}\right|_{V}=s \in \mathbb{C}^{\times}$. Observe that $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ admits an automorphism that sends k_{0} to $s^{-1} k_{0}$ and preserves k_{1}. Hence we may assume $\left.k_{0} k_{1}\right|_{V}=1$. Then we can regard V as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module.

Let V be a finite-dimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module. For a scalar θ, set $V(\theta)=\{v \in$ $\left.V \mid k_{0} v=\theta v\right\}$. So if $V(\theta) \neq 0, \theta$ is an eigenvalue of k_{0} and $V(\theta)$ is the corresponding eigenspace of k_{0}. For an eigenvalue θ and an eigenvector $v \in V(\theta)$, it holds that $e_{0}^{+} v \in V\left(q^{2} \theta\right)$ by the relation $k_{0} e_{0}^{+}=q^{2} e_{0}^{+} k_{0}$ and $e_{1}^{ \pm} v \in V\left(q^{\mp 2} \theta\right)$ by $k_{0} e_{1}^{ \pm}=q^{\mp 2} e_{1}^{ \pm} k_{0}$. We have

$$
\begin{equation*}
e_{0}^{+} V(\theta) \subseteq V\left(q^{2} \theta\right), \quad e_{1}^{ \pm} V(\theta) \subseteq V\left(q^{\mp 2} \theta\right) \tag{7}
\end{equation*}
$$

If $\operatorname{dim} V=1$, then $e_{0}^{+} V=0, e_{1}^{ \pm} V=0$ by (7) and $\left.k_{0}\right|_{V}= \pm 1$ by $\left[e_{1}^{+}, e_{1}^{-}\right]=\left(k_{1}-k_{1}^{-1}\right) /\left(q-q^{-1}\right)=$ $\left(k_{0}^{-1}-k_{0}\right) /\left(q-q^{-1}\right)$. Such a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module V is said to be trivial. Assume $\operatorname{dim} V \geq 2$. Choose an eigenvalue θ of k_{0} on V. Then $\sum_{i \in \mathbb{Z}} V\left(q^{ \pm 2 i} \theta\right)$ is invariant under the actions of the generators by (7), and so we have $V=\sum_{i \in \mathbb{Z}} V\left(q^{ \pm 2 i} \theta\right)$ by the irreducibility of the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module V. Since V is finite-dimensional, there exists a positive integer d and a nonzero scalar s_{0} such that the eigenspace decomposition of k_{0} is

$$
\begin{equation*}
V=\bigoplus_{i=0}^{d} V\left(s_{0} q^{2 i-d}\right) \tag{8}
\end{equation*}
$$

We want to show that $s_{0}= \pm 1$ holds in (8).
Consider the subalgebra of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ generated by $e_{1}^{ \pm}, k_{1}^{ \pm 1}$ and denote it by $\mathcal{U}: \mathcal{U}=\left\langle e_{1}^{ \pm}\right.$, $\left.k_{1}^{ \pm 1}\right\rangle$. Regard V as a \mathcal{U}-module. Since \mathcal{U} is isomorphic to the quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right), V$ is a direct sum of irreducible \mathcal{U}-modules, and for each irreducible \mathcal{U}-submodule W of V, the eigenvalues of $k_{1}=k_{0}^{-1}$ on W are either $\left\{q^{2 i-\ell} \mid 0 \leq i \leq \ell\right\}$ or $\left\{-q^{2 i-\ell} \mid 0 \leq i \leq \ell\right\}$ for some nonnegative integer ℓ. This implies that (i) $s_{0}= \pm q^{m}$ for some $m \in \mathbb{Z}$ and (ii) if θ is an eigenvalue of k_{0}, so is θ^{-1}. It follows from (i) that $V=\bigoplus_{i=0}^{d} V\left(\pm q^{2 i-d+m}\right)$, and so by (ii), we obtain $m=0$, i.e., $s_{0}= \pm 1$.

Observe that $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ admits an automorphism that sends k_{i} to $-k_{i}(i=0,1)$ and e_{1}^{+} to $-e_{1}^{+}$. Hence we may assume $s_{0}=1$ in (8). Note that in this case, k_{1} has the eigenvalues $\left\{s_{1} q^{2 i-d} \mid 0 \leq i \leq d\right\}$ with $s_{1}=1$. Such an irreducible module or the irreducible representation
afforded by such is said to be of type $(1,1)$, indicating $\left(s_{0}, s_{1}\right)=(1,1)$. We conclude that the determination of finite-dimensional irreducible representations for $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ is, via automorphisms, reduced to that of type $(1,1)$ for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$.

In the rest of this section, we shall introduce evaluation modules for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ and state our main theorem that every finite-dimensional irreducible representation of type $(1,1)$ of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ is afforded by a tensor product of them. For $a \in \mathbb{C}$ and $\ell \in \mathbb{Z}_{\geq 0}$, let $V(\ell, a)$ denote the $(\ell+1)$ dimensional vector space with a basis $v_{0}, v_{1}, \ldots, v_{\ell}$. Using (6), it can be routinely verified that $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ acts on $V(\ell, a)$ by

$$
\begin{align*}
& k_{0} v_{i}=q^{2 i-\ell} v_{i}, \quad k_{1} v_{i}=q^{\ell-2 i} v_{i}, \quad e_{0}^{+} v_{i}=a q[i+1] v_{i+1}, \\
& e_{1}^{+} v_{i}=[\ell-i+1] v_{i-1}, \quad e_{1}^{-} v_{i}=[i+1] v_{i+1}, \tag{9}
\end{align*}
$$

where $v_{-1}=v_{\ell+1}=0$ and $[t]=[t]_{q}=\left(q^{t}-q^{-t}\right) /\left(q-q^{-1}\right)$. This $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module $V(\ell, a)$ is irreducible and called an evaluation module. The basis $v_{0}, v_{1}, \ldots, v_{\ell}$ of the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module $V(\ell, a)$ is called a standard basis. The vector v_{0} is called the highest weight vector. Note that the evaluation parameter a is allowed to be zero. Also note that if $\ell=0, V(\ell, a)$ is the trivial module. We denote the evaluation module $V(\ell, 0)$ by $V(\ell)$, allowing $\ell=0$, and use the notation $V(\ell, a)$ only for an evaluation module with $a \neq 0$ and $\ell \geq 1$.

The $U_{q}\left(\mathfrak{s l}_{2}\right)$-loop algebra $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ has the coproduct $\Delta: U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right) \rightarrow U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right) \otimes$ $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ defined by

$$
\begin{align*}
& \Delta\left(k_{i}^{ \pm 1}\right)=k_{i}^{ \pm 1} \otimes k_{i}^{ \pm 1}, \quad \Delta\left(e_{i}^{+}\right)=k_{i} \otimes e_{i}^{+}+e_{i}^{+} \otimes 1, \tag{10}\\
& \Delta\left(e_{i}^{-} k_{i}\right)=k_{i} \otimes e_{i}^{-} k_{i}+e_{i}^{-} k_{i} \otimes 1 .
\end{align*}
$$

The subalgebra $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ is closed under Δ. Thus given a set of evaluation modules $V(\ell)$, $V\left(\ell_{i}, a_{i}\right)(1 \leq i \leq n)$ for $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$, the tensor product

$$
\begin{equation*}
V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right) \tag{11}
\end{equation*}
$$

becomes a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module via Δ. Note that by the coassociativity of Δ, the way of putting parentheses in the tensor product of (11) does not affect the isomorphism class as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ module. Also note that if $\ell=0$ in (11), then $V(0)$ is the trivial module and the tensor product of (11) is isomorphic to $V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right)$ as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules. Finally we allow $n=0$, in which case we understand that the tensor product of (11) means $V(\ell)$.

With the evaluation module $V(\ell, a)$, we associate the set $S(\ell, a)$ of scalars $a q^{-\ell+1}, a q^{-\ell+3}, \ldots$, $a q^{\ell-1}$:

$$
S(\ell, a)=\left\{a q^{2 i-\ell+1} \mid 0 \leq i \leq \ell-1\right\} .
$$

The set $S(\ell, a)$ is called a q-string of length ℓ. Two q-strings $S(\ell, a), S\left(\ell^{\prime}, a^{\prime}\right)$ are said to be in general position if either
(i) the union $S(\ell, a) \cup S\left(\ell^{\prime}, a^{\prime}\right)$ is not a q-string, or
(ii) one of $S(\ell, a), S\left(\ell^{\prime}, a^{\prime}\right)$ includes the other.

Below is the main theorem of this paper. It classifies the isomorphism classes of the finitedimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules of type $(1,1)$.
Theorem 1. The following (i), (ii), (iii), (iv) hold.
(i) A tensor product $V=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right)$ of evaluation modules is irreducible as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module if and only if $S\left(\ell_{i}, a_{i}\right), S\left(\ell_{j}, a_{j}\right)$ are in general position for all $i, j \in\{1,2, \ldots, n\}$. In this case, V is of type $(1,1)$.
(ii) Consider two tensor products $V=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right), V^{\prime}=V\left(\ell^{\prime}\right) \otimes$ $V\left(\ell_{1}^{\prime}, a_{1}^{\prime}\right) \otimes \cdots \otimes V\left(\ell_{m}^{\prime}, a_{m}^{\prime}\right)$ of evaluation modules and assume that they are both irreducible as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module. Then V, V^{\prime} are isomorphic as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules if and only if $\ell=\ell^{\prime}, n=m$ and $\left(\ell_{i}, a_{i}\right)=\left(\ell_{i}^{\prime}, a_{i}^{\prime}\right)$ for all $i, 1 \leq i \leq n$, with a suitable reordering of the evaluation modules $V\left(\ell_{1}, a_{1}\right), \ldots, V\left(\ell_{n}, a_{n}\right)$.
(iii) Every non-trivial finite-dimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module of type $(1,1)$ is isomorphic to some tensor product $V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right)$ of evaluation modules.
(iv) If a tensor product $V=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right)$ of evaluation modules is irreducible as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module, then any change of the orderings of the evaluation modules $V(\ell)$, $V\left(\ell_{1}, a_{1}\right), \ldots, V\left(\ell_{n}, a_{n}\right)$ for the tensor product does not change the isomorphism class of the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module V.

3 Proof of Theorem 1(i), (ii), (iii)

Discard the evaluation module $V(\ell)$ from the statement of Theorem 1 and replace $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ by $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ or by \mathcal{B}, where \mathcal{B} is the Borel subalgebra of $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ generated by $e_{i}^{+}, k_{i}^{ \pm 1}$ $(i=0,1)$. Then it precisely describes the classification of the isomorphism classes of finitedimensional irreducible modules of type $(1,1)$ for $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ [2] or for \mathcal{B} [1]. There is a one-toone correspondence of finite-dimensional irreducible modules of type $(1,1)$ between $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ and \mathcal{B} : every finite-dimensional irreducible $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module of type $(1,1)$ is irreducible as a \mathcal{B} module and every finite-dimensional irreducible \mathcal{B}-module of type $(1,1)$ is uniquely extended to a $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module. This sort of correspondence of finite-dimensional irreducible modules exists between $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ and \mathcal{T}_{q} via the embedding φ_{s} of (5), where \mathcal{T}_{q} is the augmented TDalgebra with $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$. Namely, we shall show that (i) every finite-dimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module of type $(1,1)$ is irreducible as a \mathcal{T}_{q}-module via certain embedding φ_{s} of (5), and (ii) every finite-dimensional irreducible \mathcal{T}_{q}-module is uniquely extended to a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ module of type $(1,1)$ via the embedding φ_{s} of (5) with s uniquely determined. Since finitedimensional irreducible \mathcal{T}_{q}-modules are classified in [4], this gives a proof of Theorem 1.

Apart from the Drinfel'd polynomials, the key to our understanding of the correspondence is the following two lemmas about $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules. Let \mathcal{U} denote the quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$: \mathcal{U} is the associative algebra with 1 generated by $X^{ \pm}, K^{ \pm 1}$ subject to the defining relations

$$
\begin{equation*}
K K^{-1}=K^{-1} K=1, \quad K X^{ \pm} K^{-1}=q^{ \pm 2} X^{ \pm}, \quad\left[X^{+}, X^{-}\right]=\frac{K-K^{-1}}{q-q^{-1}} \tag{12}
\end{equation*}
$$

Lemma 1 ([4, Lemma 7.5]). Let V be a finite-dimensional \mathcal{U}-module that has the following weight-space (K-eigenspace) decomposition:

$$
V=\bigoplus_{i=0}^{d} U_{i},\left.\quad K\right|_{U_{i}}=q^{2 i-d}, \quad 0 \leq i \leq d
$$

Let W be a subspace of V as a vector space. Assume that W is invariant under the actions of X^{+}and K :

$$
X^{+} W \subseteq W, \quad K W \subseteq W
$$

If it holds that

$$
\operatorname{dim}\left(W \cap U_{i}\right)=\operatorname{dim}\left(W \cap U_{d-i}\right), \quad 0 \leq i \leq d
$$

then $X^{-} W \subseteq W$, i.e., W is a \mathcal{U}-submodule.

Lemma 2. If V is a finite-dimensional \mathcal{U}-module, the action of X^{-}on V is uniquely determined by those of $X^{+}, K^{ \pm 1}$ on V.

Proof. The claim holds if V is irreducible as a \mathcal{U}-module. By the semi-simplicity of \mathcal{U}, it holds generally.

As a warm-up for the proof of Theorem 1, we shall demonstrate how to use these lemmas in the case of the corresponding theorem [2] for $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$. We want, and it is enough, to show part (iii) of the theorem for $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ by using the classification of finite-dimensional irreducible \mathcal{B}-modules. This is because the parts (i), (ii), (iv) are well-known in advance of [2], while the finite-dimensional irreducible \mathcal{B}-modules are classified in [4] rather straightforward by the product formula of Drinfel'd polynomials without using the part (iii) in question.

Let V be a finite-dimensional irreducible $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module of type $(1,1)$. Then V has the weight-space decomposition

$$
V=\bigoplus_{i=0}^{d} U_{i},\left.\quad k_{0}\right|_{U_{i}}=q^{2 i-d}, \quad 0 \leq i \leq d
$$

Regard V as a \mathcal{B}-module. Let W be a minimal \mathcal{B}-submodule of V. Note that W is irreducible as a \mathcal{B}-module. We want to show $W=V$, i.e., V is irreducible as a \mathcal{B}-module. Since the mapping $\left(e_{0}^{+}\right)^{d-2 i}: U_{i} \rightarrow U_{d-i}$ is a bijection and $W \cap U_{i}$ is mapped into $W \cap U_{d-i}$ by $\left(e_{0}^{+}\right)^{d-2 i}$, we have $\operatorname{dim}\left(W \cap U_{i}\right) \leq \operatorname{dim}\left(W \cap U_{d-i}\right), 0 \leq i \leq[d / 2]$. Similarly from the bijection $\left(e_{1}^{+}\right)^{d-2 i}: U_{d-i} \rightarrow U_{i}$, we get $\operatorname{dim}\left(W \cap U_{d-i}\right) \leq \operatorname{dim}\left(W \cap U_{i}\right)$. Thus it holds that

$$
\operatorname{dim}\left(W \cap U_{i}\right)=\operatorname{dim}\left(W \cap U_{d-i}\right), \quad 0 \leq i \leq d
$$

Consider the algebra homomorphism from \mathcal{U} to $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ that sends $X^{+}, X^{-}, K^{ \pm 1}$ to e_{0}^{+}, e_{0}^{-}, $k_{0}^{ \pm 1}$, respectively. Regard V as a \mathcal{U}-module via this algebra homomorphism. Then $X^{+} W \subseteq W$, $K W \subseteq W$. Since $\operatorname{dim}\left(W \cap U_{i}\right)=\operatorname{dim}\left(W \cap U_{d-i}\right), 0 \leq i \leq d$, we have by Lemma 1 that $X^{-} W \subseteq W$, i.e., $e_{0}^{-} W \subseteq W$. Similarly, Lemma 1 can be applied to the \mathcal{U}-module V via the algebra homomorphism from \mathcal{U} to $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ that sends $X^{+}, X^{-}, K^{ \pm 1}$ to $e_{1}^{+}, e_{1}^{-}, k_{1}^{ \pm 1}$, respectively, in which case the weight-space decomposition of the \mathcal{U}-module V is $V=\bigoplus_{i=0}^{d} U_{d-i}$, $\left.K\right|_{U_{d-i}}=q^{2 i-d}, 0 \leq i \leq d$. Consequently, we get $X^{-} W \subseteq W$, i.e., $e_{1}^{-} W \subseteq W$. Thus W is $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-invariant and we have $W=V$ by the irreducibility of the $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module V. We conclude that every finite-dimensional irreducible $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right.$)-module of type $(1,1)$ is irreducible as a \mathcal{B}-module.

Now consider the class of finite-dimensional irreducible \mathcal{B}-modules V, where V runs through all tensor products of evaluation modules that are irreducible as a $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module:

$$
V=V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right) .
$$

Then it turns out that the Drinfel'd polynomials $P_{V}(\lambda)$ of the irreducible \mathcal{B}-modules V exhaust all that are possible for finite-dimensional irreducible \mathcal{B}-modules of type (1, 1), as shown in [4, Theorem 5.2] by the product formula

$$
P_{V}(\lambda)=\prod_{i=1}^{n} P_{V\left(\ell_{i}, a_{i}\right)}(\lambda), \quad P_{V\left(\ell_{i}, a_{i}\right)}(\lambda)=\prod_{\zeta \in S\left(\ell_{i}, a_{i}\right)}(\lambda+\zeta) .
$$

Since the Drinfel'd polynomial $P_{V}(\lambda)$ determines the isomorphism class of the \mathcal{B}-module V of type $(1,1)$ [4 , the injectivity part of Theorem $\left.1.9^{\prime}\right]$, there are no other finite-dimensional
irreducible \mathcal{B}-modules of type $(1,1)$. This means that every finite-dimensional irreducible \mathcal{B} module of type $(1,1)$ comes from some tensor product of evaluation modules for $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$.

Let V be a finite-dimensional irreducible $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module of type $(1,1)$. Then V is irreducible as a \mathcal{B}-module and so there exists an irreducible $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module $V^{\prime}=V\left(\ell_{1}, a_{1}\right) \otimes$ $\cdots \otimes V\left(\ell_{n}, a_{n}\right)$ such that V, V^{\prime} are isomorphic as \mathcal{B}-modules. By Lemma $2, V, V^{\prime}$ are isomorphic as $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules. This completes the proof of part (iii) of the theorem for $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$.

The proof of Theorem 1 can be given by an argument very similar to the one we have seen above for the case of $U_{q}\left(L\left(\mathfrak{s l}_{2}\right)\right)$. We prepare two more lemmas for the case of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ to make the point clearer. Set $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$ and let \mathcal{T}_{q} be the augmented TD-algebra defined by $(\mathrm{TD})_{0},(\mathrm{TD})_{1}$ in (1), (2). For $s \in \mathbb{C}^{\times}$, let φ_{s} be the embedding of \mathcal{T}_{q} into $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ given by (4), (5).

Lemma 3. Let V_{1}, V_{2} be finite-dimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules. If V_{1}, V_{2} are isomorphic as $\varphi_{s}\left(\mathcal{T}_{q}\right)$-modules for some $s \in \mathbb{C}^{\times}$, then V_{1}, V_{2} are isomorphic as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules.
Proof. By (4), $\varphi_{s}\left(\mathcal{T}_{q}\right)$ is generated by $s e_{0}^{+}+s^{-1} e_{1}^{-} k_{1}, e_{1}^{+}$and $k_{i}^{ \pm 1}(i=0,1)$. Since $\left\langle e_{1}^{ \pm}, k_{1}^{ \pm 1}\right\rangle$ is isomorphic to the quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$, the action of e_{1}^{-}on $V_{i}, i=1,2$, is uniquely determined by those of $e_{1}^{+}, k_{1}^{ \pm 1} \in \varphi_{s}\left(\mathcal{T}_{q}\right)$ by Lemma 2. Apparently the action of e_{0}^{+}on V_{i}, $i=1,2$, is uniquely determined by those of $s e_{0}^{+}+s^{-1} e_{1}^{-} k_{1}, e_{1}^{-}, k_{1}$, and hence by that of $\varphi_{s}\left(\mathcal{T}_{q}\right)$. So the action of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ on $V_{i}, i=1,2$, is uniquely determined by that of $\varphi_{s}\left(\mathcal{T}_{q}\right)$.

Lemma 4. Let V be a finite-dimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module of type $(1,1)$. Then there exists a finite set Λ of nonzero scalars such that V is irreducible as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module for each $s \in \mathbb{C}^{\times} \backslash \Lambda$.
Proof. For $s \in \mathbb{C}^{\times}$, regard V as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module. Let W be a minimal $\varphi_{s}\left(\mathcal{T}_{q}\right)$-submodule of V. It is enough to show that $W=V$ holds if s avoids finitely many scalars. By (8) with $s_{0}=1$, the eigenspace decomposition of $k_{1}=k_{0}^{-1}$ on V is $V=\bigoplus_{i=0}^{d} U_{d-i},\left.k_{1}\right|_{U_{d-i}}=q^{2 i-d}, 0 \leq i \leq d$. The subalgebra $\left\langle e_{1}^{ \pm}, k_{1}^{ \pm 1}\right\rangle$ of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ is isomorphic to the quantum algebra $\mathcal{U}=U_{q}\left(\mathfrak{s l}_{2}\right)$ in (12) via the correspondence of $e_{1}^{ \pm}, k_{1}^{ \pm 1}$ to $X^{ \pm}, K^{ \pm 1}$. The element $\left(e_{1}^{+}\right)^{d-2 i}$ maps U_{d-i} onto U_{i} bijectively, $0 \leq i \leq[d / 2]$. Also $\left(e_{1}^{-} k_{1}\right)^{d-2 i}$ maps U_{i} onto U_{d-i} bijectively, $0 \leq i \leq[d / 2]$.

The element $\left(e_{1}^{+}\right)^{d-2 i}$ belongs to $\varphi_{s}\left(\mathcal{T}_{q}\right)$. So $\left(e_{1}^{+}\right)^{d-2 i} W \subseteq W$. Since the mapping $\left(e_{1}^{+}\right)^{d-2 i}$: $U_{d-i} \rightarrow U_{i}$ is a bijection, we have $\operatorname{dim}\left(W \cap U_{d-i}\right) \leq \operatorname{dim}\left(W \cap U_{i}\right), 0 \leq i \leq[d / 2]$.

The element $\left(e_{1}^{-} k_{1}\right)^{d-2 i}$ does not belong to $\varphi_{s}\left(\mathcal{T}_{q}\right)$, but $\left(e_{0}^{+}+s^{-2} e_{1}^{-} k_{1}\right)^{d-2 i}$ does. By (7), $\left(e_{0}^{+}+s^{-2} e_{1}^{-} k_{1}\right)^{d-2 i}$ maps U_{i} to $U_{d-i}, 0 \leq i \leq[d / 2]$. We want to show it is a bijection if s avoids finitely many scalars. Identify U_{d-i} with U_{i} as vector spaces by the bijection $\left(e_{1}^{+}\right)^{d-2 i}$ between them. Then it makes sense to consider the determinant of a linear map from U_{i} to U_{d-i}. Set $t=s^{-2}$ and expand $\left(e_{0}^{+}+t e_{1}^{-} k_{1}\right)^{d-2 i}$ as

$$
t^{d-2 i}\left(e_{1}^{-} k_{1}\right)^{d-2 i}+\text { lower terms in } t
$$

Each term of the expansion gives a linear map from U_{i} to U_{d-i}. So the determinant of ($e_{0}^{+}+$ $\left.t e_{1}^{-} k_{1}\right)\left.^{d-2 i}\right|_{U_{i}}$ equals

$$
\begin{equation*}
\left.t^{(d-2 i) \operatorname{dim} U_{i}} \operatorname{det}\left(e_{1}^{-} k_{1}\right)^{d-2 i}\right|_{U_{i}}+\text { lower terms in } t \tag{13}
\end{equation*}
$$

and this is a polynomial in t of degree $(d-2 i) \operatorname{dim} U_{i}$, since $\left.\operatorname{det}\left(e_{1}^{-} k_{1}\right)^{d-2 i}\right|_{U_{i}} \neq 0$. Let Λ_{i} be the set of nonzero s such that $t=s^{-2}$ is a root of the polynomial in (13). Then if $s \in \mathbb{C}^{\times} \backslash \Lambda_{i}$, $\left(e_{0}^{+}+s^{-2} e_{1}^{-} k_{1}\right)^{d-2 i}$ maps U_{i} to U_{d-i} bijectively.

Set $\Lambda=\cup_{i=0}^{[d / 2]} \Lambda_{i}$. Choose $s \in \mathbb{C}^{\times} \backslash \Lambda$. Then the mapping $\left(e_{0}^{+}+s^{-2} e_{1}^{-} k_{1}\right)^{d-2 i}: U_{i} \rightarrow$ U_{d-i} is a bijection for $0 \leq i \leq[d / 2]$. Since $e_{0}^{+}+s^{-2} e_{1}^{-} k_{1}$ belongs to $\varphi_{s}\left(\mathcal{T}_{q}\right)$, we have $\left(e_{0}^{+}+\right.$
$\left.s^{-2} e_{1}^{-} k_{1}\right)^{d-2 i} W \subseteq W$ and so $\operatorname{dim}\left(W \cap U_{i}\right) \leq \operatorname{dim}\left(W \cap U_{d-i}\right)$. Since we have already shown $\operatorname{dim}\left(W \cap U_{d-i}\right) \leq \operatorname{dim}\left(W \cap U_{i}\right)$, we obtain $\operatorname{dim}\left(W \cap U_{i}\right)=\operatorname{dim}\left(W \cap U_{d-i}\right), 0 \leq i \leq[d / 2]$. Therefore by Lemma 1, we have $e_{1}^{-} W \subseteq W$. Since $\left(e_{0}^{+}+s^{-2} e_{1}^{-} k_{1}\right) W \subseteq W$, the inclusion $e_{0}^{+} W \subseteq W$ follows from $e_{1}^{-} W \subseteq W$ and so W is $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-invariant. Thus $W=V$ holds by the irreducibility of V as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module.

Proof of Theorem 1. We use the classification of finite-dimensional irreducible \mathcal{T}_{q}-modules in the case of $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$ [4, Theorem 1.18]:
(i) A tensor product $V=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right)$ of evaluation modules is irreducible as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module if and only if $-s^{-2} \notin S\left(\ell_{i}, a_{i}\right)$ for all $i \in\{1, \ldots, n\}$ and $S\left(\ell_{i}, a_{i}\right)$, $S\left(\ell_{j}, a_{j}\right)$ are in general position for all $i, j \in\{1, \ldots, n\}$.
(ii) Consider two tensor products $V=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right), V^{\prime}=V\left(\ell^{\prime}\right) \otimes$ $V\left(\ell_{1}^{\prime}, a_{1}^{\prime}\right) \otimes \cdots \otimes V\left(\ell_{m}^{\prime}, a_{m}^{\prime}\right)$ of evaluation modules and assume that they are both irreducible as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module. Then V, V^{\prime} are isomorphic as $\varphi_{s}\left(\mathcal{T}_{q}\right)$-modules if and only if $\ell=\ell^{\prime}, n=m$ and $\left(\ell_{i}, a_{i}\right)=\left(\ell_{i}^{\prime}, a_{i}^{\prime}\right)$ for all $i \in\{1, \ldots, n\}$ with a suitable reordering of the evaluation modules $V\left(\ell_{1}, a_{1}\right), \ldots, V\left(\ell_{n}, a_{n}\right)$.
(iii) Every finite-dimensional irreducible \mathcal{T}_{q}-module V, $\operatorname{dim} V \geq 2$, is isomorphic to a \mathcal{T}_{q}-module $V^{\prime}=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes \cdots \otimes V\left(\ell_{n}, a_{n}\right)$ on which \mathcal{T}_{q} acts via some embedding $\varphi_{s}: \mathcal{T}_{q} \rightarrow$ $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$.
Part (i) of Theorem 1 follows immediately from the part (i) above, due to Lemma 4. Part (ii) of Theorem 1 follows immediately from the part (ii) above, the 'if' part due to Lemma 3 (and Lemma 4) and the 'only if' part due to Lemma 4.

We want to show part (iii) of Theorem 1. Let V be a finite-dimensional irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right.$)module of type $(1,1)$. By Lemma 4, there exists a nonzero scalar s such that V is irreducible as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module. By the part (iii) above, for the proof of which Drinfel'd polynomials play the key role, the \mathcal{T}_{q}-module V via φ_{s} is isomorphic to some \mathcal{T}_{q}-module $V^{\prime}=V(\ell) \otimes V\left(\ell_{1}, a_{1}\right) \otimes$ $\cdots \otimes V\left(\ell_{n}, a_{n}\right)$ via some embedding $\varphi_{s^{\prime}}$ of \mathcal{T}_{q} into $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$. Since k_{0} has the same eigenvalues on V, V^{\prime}, we have $s=s^{\prime}$ and so V, V^{\prime} are isomorphic as $\varphi_{s}\left(\mathcal{T}_{q}\right)$-modules. By Lemma 3, V, V^{\prime} are isomorphic as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules. Part (iv) will be shown in the next section.

4 Intertwiners: Proof of Theorem 1(iv)

In this section, we show that for $\ell, m \in \mathbb{Z}_{>0}, a \in \mathbb{C}^{\times}$, there exists an intertwiner between the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules $V(\ell, a) \otimes V(m), V(m) \otimes V(\ell, a)$, i.e., a nonzero linear map R from $V(\ell, a) \otimes V(m)$ to $V(m) \otimes V(\ell, a)$ such that

$$
\begin{equation*}
R \Delta(\xi)=\Delta(\xi) R, \quad \forall \xi \in U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right) \tag{14}
\end{equation*}
$$

where Δ is the coproduct from (10). If such an intertwiner R exists, then it is routinely concluded that $V(\ell, a) \otimes V(m)$ is isomorphic to $V(m) \otimes V(\ell, a)$ as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules and any other intertwiner is a scalar multiple of R, since $V(m) \otimes V(\ell, a)$ is irreducible as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module by Theorem 1 .

Using the theory of Drinfel'd polynomials [4] for the augmented TD-algebra $\mathcal{T}_{q}=\mathcal{T}_{q}^{\left(\varepsilon, \varepsilon^{*}\right)}$ with $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$, we shall firstly show that $V(\ell, a) \otimes V(m)$ is isomorphic to $V(m) \otimes V(\ell, a)$ as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules. This proves Theorem 1(iv), since it is well-known [2, Theorem 4.11] that $V\left(\ell_{i}, a_{i}\right) \otimes V\left(\ell_{j}, a_{j}\right)$ and $V\left(\ell_{j}, a_{j}\right) \otimes V\left(\ell_{i}, a_{i}\right)$ are isomorphic as $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$-modules, if $S\left(\ell_{i}, a_{i}\right)$ and $S\left(\ell_{j}, a_{j}\right)$ are in general position. Finally we shall construct an intertwiner explicitly.

Let us denote the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules $V(\ell, a) \otimes V(m), V(m) \otimes V(\ell, a)$ by V, V^{\prime} :

$$
V=V(\ell, a) \otimes V(m), \quad V^{\prime}=V(m) \otimes V(\ell, a)
$$

Recall we assume that the integers ℓ, m and the scalar a are nonzero. Let us denote a standard basis of the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module $V(\ell, a)($ resp. $V(m))$ by $v_{0}, v_{1}, \ldots, v_{\ell}\left(\right.$ resp. $\left.v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right)$ in the sense of (9). Recall $V(m)$ is an abbreviation of $V(m, 0)$ and the action of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ on V, V^{\prime} are via the coproduct Δ of (10).

Let \mathcal{U} denote the subalgebra of $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ generated by $e_{1}^{ \pm}, k_{1}^{ \pm}$. The subalgebra \mathcal{U} is isomorphic to the quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$. Let $V(n)$ denote the irreducible \mathcal{U}-module of dimension $n+1: V(n)$ has a standard basis $x_{0}, x_{1}, \ldots, x_{n}$ on which \mathcal{U} acts as

$$
k_{1} x_{i}=q^{n-2 i} x_{i}, \quad e_{1}^{+} x_{i}=[n-i+1] x_{i-1}, \quad e_{1}^{-} x_{i}=[i+1] x_{i+1}
$$

where $[t]=[t]_{q}=\left(q^{t}-q^{-t}\right) /\left(q-q^{-1}\right), x_{-1}=x_{n+1}=0$. We call x_{n} (resp. x_{0}) the lowest (highest) weight vector: $k_{1} x_{n}=q^{-n} x_{n}, e_{1}^{-} x_{n}=0\left(k_{1} x_{0}=q^{n} x_{0}, e_{1}^{+} x_{0}=0\right)$. Note that $V(\ell, a)$ is isomorphic to $V(\ell)$ as \mathcal{U}-modules.

By the Clebsch-Gordan formula, $V=V(\ell, a) \otimes V(m)$ is decomposed into the direct sum of \mathcal{U}-submodules $\widetilde{V}(n),|\ell-m| \leq n \leq \ell+m, n \equiv \ell+m \bmod 2$, where $\widetilde{V}(n)$ is the unique irreducible \mathcal{U}-submodule of V isomorphic to $V(n)$. With $n=\ell+m-2 \nu$, we have

$$
\begin{equation*}
V=V(\ell, a) \otimes V(m)=\bigoplus_{\nu=0}^{\min \{\ell, m\}} \widetilde{V}(\ell+m-2 \nu) \tag{15}
\end{equation*}
$$

Let \widetilde{x}_{n} denote a lowest weight vector of the \mathcal{U}-module $\widetilde{V}(n)$. So

$$
\Delta\left(k_{1}\right) \widetilde{x}_{n}=q^{-n} \widetilde{x}_{n}, \quad \Delta\left(e_{1}^{-}\right) \widetilde{x}_{n}=0
$$

Since V has a basis $\left\{v_{\ell-i} \otimes v_{m-j}^{\prime} \mid 0 \leq i \leq \ell, 0 \leq j \leq m\right\}$ and k_{1} acts on it by $\Delta\left(k_{1}\right)\left(v_{\ell-i} \otimes v_{m-j}^{\prime}\right)=$ $q^{-(\ell+m)+2(i+j)} v_{\ell-i} \otimes v_{m-j}^{\prime}$, the lowest weight vector \widetilde{x}_{n} of $\widetilde{V}(n)$ can be expressed as

$$
\widetilde{x}_{n}=\sum_{i+j=\nu} c_{j} v_{\ell-i} \otimes v_{m-j}^{\prime}, \quad n=\ell+m-2 \nu
$$

Solving $\Delta\left(e_{1}^{-}\right) \widetilde{x}_{n}=0$ for the coefficients c_{j}, we obtain

$$
\frac{c_{j}}{c_{j-1}}=-q^{m-2 j+2} \frac{[\ell-\nu+j]}{[m-j+1]}
$$

and so with a suitable choice of c_{0}

$$
\begin{equation*}
\widetilde{x}_{n}=\sum_{j=0}^{\nu}(-1)^{j} q^{j(m-j+1)}[\ell-\nu+j]![m-j]!v_{\ell-\nu+j} \otimes v_{m-j}^{\prime} \tag{16}
\end{equation*}
$$

where $n=\ell+m-2 \nu$ and $[t]!=[t][t-1] \cdots[1]$.
Lemma 5. $\Delta\left(e_{0}^{+}\right) \widetilde{x}_{n}=a q \widetilde{x}_{n+2}$.
Proof. By (10), we have $\Delta\left(e_{0}^{+}\right)=e_{0}^{+} \otimes 1+k_{0} \otimes e_{0}^{+}$. By (9), the element e_{0}^{+}vanishes on $V(m)$ and acts on $V(\ell, a)$ as $a q e_{1}^{-}$. Since $e_{1}^{-} v_{\ell-\nu+j}=[\ell-(\nu-1)+j] v_{\ell-(\nu-1)+j}$, the result follows from (16), using $v_{\ell+1}=0$.

Corollary 1. Any nonzero $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-submodule of $V(\ell, a) \otimes V(m)$ contains $\widetilde{x}_{\ell+m}$, the lowest weight vector of the \mathcal{U}-module $V(\ell, a) \otimes V(m)$.

We are ready to prove the following

Theorem 2. The $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules $V(\ell, a) \otimes V(m), V(m) \otimes V(\ell, a)$ are isomorphic for every $\ell, m \in \mathbb{Z}_{>0}, a \in \mathbb{C}^{\times}$.
Proof. Let $\mathcal{T}_{q}=\mathcal{T}_{q}^{\left(\varepsilon, \varepsilon^{*}\right)}$ be the augmented TD-algebra with $\left(\varepsilon, \varepsilon^{*}\right)=(1,0)$. Let $\varphi_{s}: \mathcal{T}_{q} \rightarrow$ $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ denote the embedding of \mathcal{T}_{q} into $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$ given in (5). By [4, Theorem 5.2], the Drinfel'd polynomial $P_{V}(\lambda)$ of the $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module $V=V(\ell, a) \otimes V(m)$ turns out to be

$$
P_{V}(\lambda)=\lambda^{m} \prod_{i=0}^{\ell-1}\left(\lambda+a q^{2 i-\ell+1}\right)
$$

(Note that the parameter s of the embedding φ_{s} does not appear in $P_{V}(\lambda)$. So the polynomial $P_{V}(\lambda)$ can be called the Drinfel'd polynomial attached to the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module V.)

Let W be a minimal $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-submodule of $V=V(\ell, a) \otimes V(m)$; notice that we have shown the irreducibility of the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module $V^{\prime}=V(m) \otimes V(\ell, a)$ in Theorem 1 but not yet of $V=V(\ell, a) \otimes V(m)$. By Corollary 1, W contains the lowest and hence highest weight vectors of V. In particular, the irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module W is of type (1, 1). By Lemma 4, there exists a finite set Λ of nonzero scalars such that W is irreducible as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module for any $s \in \mathbb{C}^{\times} \backslash \Lambda$. By the definition, the Drinfel'd polynomial $P_{W}(\lambda)$ of the irreducible $\varphi_{s}\left(\mathcal{T}_{q}\right)$ module W coincides with $P_{V}(\lambda)$:

$$
P_{W}(\lambda)=P_{V}(\lambda) .
$$

By Theorem $1, V^{\prime}=V(m) \otimes V(\ell, a)$ is irreducible as a $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-module. So by Lemma 4, there exists a finite set Λ^{\prime} of nonzero scalars such that V^{\prime} is irreducible as a $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module for any $s \in \mathbb{C}^{\times} \backslash \Lambda^{\prime}$. By [4, Theorem 5.2], the Drinfel'd polynomial $P_{V^{\prime}}(\lambda)$ of the irreducible $\varphi_{s}\left(\mathcal{T}_{q}\right)$-module V^{\prime} coincides with $P_{V}(\lambda)$:

$$
P_{V^{\prime}}(\lambda)=P_{V}(\lambda) .
$$

Both of the irreducible $\varphi_{s}\left(\mathcal{T}_{q}\right)$-modules W, V^{\prime} have type s, diameter $d=\ell+m$ and the Drinfel'd polynomial $P_{V}(\lambda)$. By [4, Theorem 1.9'], W and V^{\prime} are isomorphic as $\varphi_{s}\left(\mathcal{T}_{q}\right)$-modules. By Lemma 3, W and V^{\prime} are isomorphic as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules. In particular, $\operatorname{dim} W=\operatorname{dim} V^{\prime}$. Since $\operatorname{dim} V^{\prime}=\operatorname{dim} V$, we have $W=V$, i.e., V and V^{\prime} are isomorphic as $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules.

Finally we want to construct an intertwiner R between the irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules V, V^{\prime}. Regard $V^{\prime}=V(m) \otimes V(\ell, a)$ as a \mathcal{U}-module. By the Clebsch-Gordan formula, we have the direct sum decomposition

$$
\begin{equation*}
V^{\prime}=V(m) \otimes V(\ell, a)=\bigoplus_{\nu=0}^{\min \{\ell, m\}} \widetilde{V}^{\prime}(\ell+m-2 \nu) \tag{17}
\end{equation*}
$$

where $\widetilde{V}^{\prime}(n)$ is the unique irreducible \mathcal{U}-submodule of V^{\prime} isomorphic to $V(n), n=\ell+m-2 \nu$. Let $\widetilde{x}_{n}^{\prime}$ be a lowest weight vector of the \mathcal{U}-module $\widetilde{V}^{\prime}(n)$. By (16), we have

$$
\begin{equation*}
\widetilde{x}_{n}^{\prime}=\sum_{j=0}^{\nu}(-1)^{j} q^{j(\ell-j+1)}[m-\nu+j]![\ell-j]!v_{m-\nu+j}^{\prime} \otimes v_{\ell-j} \tag{18}
\end{equation*}
$$

up to a scalar multiple, where $n=\ell+m-2 \nu$. It can be easily checked as in Lemma 5 that the lowest weight vectors $\widetilde{x}_{n}^{\prime}, n=\ell+m-2 \nu, 0 \leq \nu \leq \min \{\ell, m\}$, are related by

$$
\begin{equation*}
\left(e_{1}^{-} \otimes 1\right) \widetilde{x}_{n}^{\prime}=\widetilde{x}_{n+2}^{\prime}, \tag{19}
\end{equation*}
$$

where $V^{\prime}=V(m) \otimes V(\ell, a)$ is regarded as a $(\mathcal{U} \otimes \mathcal{U})$-module in the natural way.

Lemma 6. $\Delta\left(e_{0}^{+}\right) \widetilde{x}_{n}^{\prime}=-a q \cdot q^{n+2} \widetilde{x}_{n+2}^{\prime}$.
Proof. We have $\Delta\left(e_{0}^{+}\right) \widetilde{x}_{n}^{\prime}=a q\left(k_{1}^{-1} \otimes e_{1}^{-}\right) \widetilde{x}_{n}^{\prime}$, since $\Delta\left(e_{0}^{+}\right)=e_{0}^{+} \otimes 1+k_{0} \otimes e_{0}^{+}$, and e_{0}^{+}vanishes on $V(m)$ and acts on $V(\ell, a)$ as aqe e_{1}^{-}. Express $k_{1}^{-1} \otimes e_{1}^{-}$as $k_{1}^{-1} \otimes e_{1}^{-}=\left(k_{1}^{-1} \otimes 1\right)\left(1 \otimes e_{1}^{-}\right)=$ $\left(k_{1}^{-1} \otimes 1\right)\left(\Delta\left(e_{1}^{-}\right)-e_{1}^{-} \otimes k_{1}^{-1}\right)=\left(k_{1}^{-1} \otimes 1\right) \Delta\left(e_{1}^{-}\right)-k_{1}^{-1} e_{1}^{-} \otimes k_{1}^{-1}=\left(k_{1}^{-1} \otimes 1\right) \Delta\left(e_{1}^{-}\right)-q^{2}\left(e_{1}^{-} \otimes 1\right) \Delta\left(k_{1}^{-1}\right)$. Since $\Delta\left(e_{1}^{-}\right) \widetilde{x}_{n}^{\prime}=0, \Delta\left(k_{1}^{-1}\right) \widetilde{x}_{n}^{\prime}=q^{n} \widetilde{x}_{n}^{\prime}$, the result follows from (19).

There exists a unique linear map

$$
R_{n}: V=V(\ell, a) \otimes V(m) \rightarrow \tilde{V}^{\prime}(n)
$$

that commutes with the action of \mathcal{U} and sends \widetilde{x}_{n} to $\widetilde{x}_{\tilde{n}}^{\prime}$. The linear map R_{n} vanishes on $\widetilde{V}(t)$ for $t \neq n$ and affords an isomorphism between $\widetilde{V}(n)$ and $\widetilde{V}^{\prime}(n)$ as \mathcal{U}-modules. If R is an intertwiner in the sense of (14), then R can be expressed as

$$
\begin{equation*}
R=\sum_{\nu=0}^{\min \{\ell, m\}} \alpha_{\nu} R_{\ell+m-2 \nu} \tag{20}
\end{equation*}
$$

regarding R as an intertwiner for the \mathcal{U}-modules V, V^{\prime}. By (14), we have

$$
\begin{equation*}
R \Delta\left(e_{0}^{+}\right)=\Delta\left(e_{0}^{+}\right) R \tag{21}
\end{equation*}
$$

Apply (21) to the lowest weight vector \widetilde{x}_{n} in (16). By Lemma 5, $\Delta\left(e_{0}^{+}\right) \widetilde{x}_{n}=a q \widetilde{x}_{n+2}$ and so with $n=\ell+m-2 \nu$, we have

$$
\begin{equation*}
R \Delta\left(e_{0}^{+}\right) \widetilde{x}_{n}=a q \alpha_{\nu-1} \widetilde{x}_{n+2}^{\prime} . \tag{22}
\end{equation*}
$$

On the other hand, $R \widetilde{x}_{n}=\alpha_{\nu} \widetilde{x}_{n}^{\prime}, n=\ell+m-2 \nu$, and so by Lemma 6 , we have

$$
\begin{equation*}
\Delta\left(e_{0}^{+}\right) R \widetilde{x}_{n}=-a q \alpha_{\nu} q^{n+2} \widetilde{x}_{n+2}^{\prime} \tag{23}
\end{equation*}
$$

By (22), (23), we have $\alpha_{\nu} / \alpha_{\nu-1}=-q^{-n-2}=-q^{-\ell-m+2(\nu-1)}$ and so

$$
\begin{equation*}
\alpha_{\nu}=(-1)^{\nu} q^{-\nu(\ell+m-\nu+1)} \tag{24}
\end{equation*}
$$

by choosing $\alpha_{0}=1$. An intertwiner exists by Theorem 2. If it exists, it has to be in the form of (20), (24). Thus we obtain the following.

Theorem 3. The linear map

$$
R=\sum_{\nu=0}^{\min \{\ell, m\}}(-1)^{\nu} q^{-\nu(\ell+m-\nu+1)} R_{\ell+m-2 \nu}
$$

is an intertwiner between the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules $V(\ell, a) \otimes V(m), V(m) \otimes V(\ell, a)$. Any other intertwiner is a scalar multiple of R.

Remark 1. Let $R(a, b)$ be an intertwiner between the irreducible $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules $V=$ $V(\ell, a) \otimes V(m, b), V^{\prime}=V(m, b) \otimes V(\ell, a)$, where $a \neq 0, b \neq 0$:

$$
R(a, b): V=V(\ell, a) \otimes V(m, b) \rightarrow V^{\prime}=V(m, b) \otimes V(\ell, a)
$$

As in (20), we write

$$
R(a, b)=\sum_{\nu=0}^{\min \{\ell, m\}} \alpha_{\nu} R_{\ell+m-2 \nu} .
$$

Recall R_{n} is the linear map from V to V^{\prime} that commutes with the action of $\mathcal{U}=\left\langle e_{1}^{ \pm}, k_{1}^{ \pm}\right\rangle$ and sends \widetilde{x}_{n} to $\widetilde{x}_{n}^{\prime}$, where $\widetilde{x}_{n}, \widetilde{x}_{n}^{\prime}$ are the lowest weight vectors of $\widetilde{V}(n), \widetilde{V}^{\prime}(n)$ from (15), (17) that are explicitly given by (16), (18) and satisfy $\left(e_{1}^{-} \otimes 1\right) \widetilde{x}_{n}=\widetilde{x}_{n+2},\left(e_{1}^{-} \otimes 1\right) \widetilde{x}_{n}^{\prime}=\widetilde{x}_{n+2}^{\prime}$ as in (19). Since the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules V, V^{\prime} can be extended to $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$-modules, we have by [2, Theorem 5.4]

$$
\begin{equation*}
\alpha_{\nu}=\prod_{j=0}^{\nu-1} \frac{a-b q^{\ell+m-2 j}}{b-a q^{\ell+m-2 j}}, \tag{25}
\end{equation*}
$$

where we choose $\alpha_{0}=1$. Note that the denominator and the numerator of (25) are non-zero, since V, V^{\prime} are assumed to be irreducible and so $S(\ell, a), S(m, b)$ are in general position.

The intertwiner $R(a, b)$ with $a \neq 0, b \neq 0$ is derived from the universal R-matrix for the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ [5]. If we put $b=0$ in (25), then the spectral parameter u disappears, where $q^{2 u}=a / b$, and we get (24). In this sense, the intertwiner R of Theorem 3 is related to the universal R-matrix for $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$, but we cannot expect that R comes from it directly, because the $U_{q}^{\prime}\left(L\left(\mathfrak{s l}_{2}\right)\right)$-modules $V=V(\ell, a) \otimes V(m), V^{\prime}=V(m) \otimes V(\ell, a)$ cannot be extended to $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$-modules. In order to derive both of the intertwiners $R(a, b), R$ from a universal R-matrix directly, we need to construct it for the subalgebra $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

Acknowledgements

The research of the second author is supported by Science Foundation of Anhui University (Grant No. J10117700037).

References

[1] Benkart G., Terwilliger P., Irreducible modules for the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$ and its Borel subalgebra, J. Algebra 282 (2004), 172-194, math.QA/0311152.
[2] Chari V., Pressley A., Quantum affine algebras, Comm. Math. Phys. 142 (1991), 261-283.
[3] Ito T., Tanabe K., Terwilliger P., Some algebra related to P - and Q-polynomial association schemes, in Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 56, Amer. Math. Soc., Providence, RI, 2001, 167-192, math.CO/0406556.
[4] Ito T., Terwilliger P., The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), 81-144, arXiv:0904.2889.
[5] Tolstoy V.N., Khoroshkin S.M., Universal R-matrix for quantized nontwisted affine Lie algebras, Funct. Anal. Appl. 26 (1992), 69-71.

[^0]: ${ }^{\star}$ This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html

