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1 Introduction

Let g be a complex finite-dimensional semisimple Lie algebra. The category of weight modules
of g is interesting on its own on the one hand, and it contains some fundamental subcategories
like the category O, categories of parabolically induced modules, Harish-Chandra modules on
the other. A weight g-module is a module which is a direct sum of simple h-modules, where h
is a fixed Cartan subalgebra of g. The classification of the simple weight modules is a very
hard problem which is solved only for g = sl(2). However, the classification of the simple
objects is known for various subcategories of weight modules, including those with finite weight
multiplicities [5, 17].

The classification of the simple weight sl(2)-modules involves two parameters that correspond
to eigenvalues of the generators of a maximal commutative subalgebra of U(sl(2)), the Gelfand–
Tsetlin subalgebra. Such subalgebra can be defined for any sl(n) and has a joint spectrum on
every finite-dimensional module. This observation leads naturally to the definition of a Gelfand–
Tsetlin module: a module that is the direct sum of its common generalized eigenspaces with
respect to the Gelfand–Tsetlin subalgebra Γ. Such modules were introduced in [2, 3, 4]. Note
that an irreducible Gelfand–Tsetlin modules does not need to be Γ-diagonalizable [6].

Gelfand–Tsetlin subalgebras and modules appear in various contexts. Such subalgebras were
considered in [22] in connection with subalgebras of maximal Gelfand–Kirillov dimension in the
universal enveloping algebra of a simple Lie algebra. Furthermore, Gelfand–Tsetlin subalgebras
are related to: general hypergeometric functions on the complex Lie group GL(n) [13, 14];
solutions of the Euler equation [22]; and problems in classical mechanics in general [15, 16].

One natural question is to attempt the classification of all irreducible Gelfand–Tsetlin mo-
dules of sl(n). An explicit construction of all irreducible Gelfand–Tsetlin modules for the case
n = 3 was recently obtained in [10]. Various partial results for sl(3) were previously obtained
in [1, 6, 7, 8, 9].

A generic Gelfand–Tsetlin module is a module spanned by tableaux with noninteger diffe-
rences of entries in each row (see Definition 5.1). The present paper provides a classification of
all irreducible generic Gelfand–Tsetlin modules of sl(n) extending the result in [21] for n = 3.

?This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is
available at http://www.emis.de/journals/SIGMA/LieTheory2014.html
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For simplicity we work with gl(n) instead of sl(n). We also obtain an explicit construction of
all irreducible generic modules providing a Gelfand–Tsetlin type basis.

The organization of the paper is as follows. In Section 3 we introduce some basic definitions
and preparatory results on Gelfand–Tsetlin modules. In Section 4 we list the Gelfand–Tsetlin
formulas and use them to recall the classical result of Gelfand and Tsetlin for finite-dimensional
gl(n)-modules. In Section 5 we introduce the notion of generic Gelfand–Tsetlin module and recall
the classification of irreducible generic Gelfand–Tsetlin modules of gl(3). The main theorem in
the paper, the classification of irreducible generic Gelfand–Tsetlin gl(n)-modules, is included in
Section 6. In the last section we compute the number of irreducible Gelfand–Tsetlin modules in
the so-called generic blocks.

2 Notation and conventions

Throughout the paper we fix an integer n ≥ 2. The ground field will be C. For a ∈ Z,
we write Z≥a for the set of all integers m such that m ≥ a. Similarly, we define Z<a, etc.
By gl(n) we denote the general linear Lie algebra consisting of all n × n complex matrices,
and by {Ei,j | 1 ≤ i, j ≤ n}, the standard basis of gl(n) of elementary matrices. We fix the
standard Cartan subalgebra h, the standard triangular decomposition and the corresponding
basis of simple roots of gl(n). The weights of gl(n) will be written as n-tuples (λ1, . . . , λn).

For a Lie algebra a by U(a) we denote the universal enveloping algebra of a. Throughout
the paper U = U(gl(n)). For a commutative ring R, by SpecmR we denote the set of maximal
ideals of R.

We will write the vectors in C
n(n+1)

2 in the following form:

L = (lij) = (ln1, . . . , lnn| . . . |l21, l22|l11).

For 1 ≤ j ≤ i ≤ n, δij ∈ Z
n(n+1)

2 is defined by (δij)ij = 1 and all other (δij)k` are zero.
For i > 0 by Si we denote the ith symmetric group. Throughout the paper we set G :=

Sn × · · · × S1.

3 Gelfand–Tsetlin modules

Recall that U = U(gl(n)). Let for m 6 n, glm be the Lie subalgebra of gl(n) spanned by
{Eij | i, j = 1, . . . ,m}. We have the following chain

gl1 ⊂ gl2 ⊂ · · · ⊂ gln.

It induces the chain U1 ⊂ U2 ⊂ · · · ⊂ Un for the universal enveloping algebras Um = U(glm),
1 ≤ m ≤ n. Let Zm be the center of Um. The subalgebra of U generated by {Zm |m = 1, . . . , n}
will be called the (standard) Gelfand–Tsetlin subalgebra of U and will be denoted by Γ [2].

Definition 3.1. A finitely generated U -module M is called a Gelfand–Tsetlin module (with
respect to Γ) if

M =
⊕

m∈Specm Γ

M(m),

where M(m) = {v ∈M |mkv = 0 for some k ≥ 0}.

For each m ∈ Specm Γ we have associated a character χm : Γ→ Γ/m ∼ C. In the same way,
for each non-zero character χ : Γ→ C we have that Ker(χ) is a maximal ideal of Γ. So, we have
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a natural identification between characters of Γ and elements of Specm Γ. Using characters we
can define Gelfand–Tsetlin modules. A U -module M is called Gelfand–Tsetlin module (with
respect to Γ) if

M =
⊕
χ∈Γ∗

M(χ),

where M(χ) = {v ∈ M : ∀ g ∈ Γ, ∃ k ∈ Z>0 such that (g − χ(g))kv = 0}. The Gelfand–Tsetlin
support of M is the set SuppGT(M) := {χ ∈ Γ∗ : M(χ) 6= 0}.

Lemma 3.2. Any submodule of a Gelfand–Tsetlin module over gl(n) is a Gelfand–Tsetlin mo-
dule.

Proof. The proof is standard, but for a sake of completeness, we provide the important details.
Let M be a Gelfand–Tsetlin gl(n)-module and N any submodule of M . We will prove that, if

{χ1, . . . , χk} is a set of distinct Gelfand–Tsetlin characters in SuppGT(M) such that
k∑
i=1

vi ∈ N

with vi ∈M(χi), then vi ∈ N for all i = 1, . . . , k.

Without loss of generality we assume that k = 2. Since χ1 6= χ2, there exist g ∈ Γ and r ≤ s
in Z≥0 such that χ1(g) 6= χ2(g), (g − χ1(g))r(v1) = 0 and (g − χ2(g))s(v2) = 0. Let a := χ1(g)
and b := χ2(g), Then, if w = v1 + v2 we have (g − b)sw = (g − b)sv1 ∈ N . Let y := (g − b)sv1.
We have that y ∈ N on one hand and

y = ((g − a) + (a− b))sv1 =
r−1∑
k=0

(
s

k

)
(a− b)s−k(g − a)kv1 ∈ N

on the other. As
(
s
k

)
(a − b)s−k 6= 0 for any k, using that (g − a)r−1y ∈ N , we obtain

(g − a)r−1v1 ∈ N . Reasoning in the same way, from (g − a)r−iy ∈ N , and (g − a)r−1v1, . . .,
(g − a)r−i+1v1 ∈ N we obtain xr−iv1 ∈ N . Hence v1 ∈ N and consequently, v2 ∈ N . �

One can choose the following generators of Γ: {cmk | 1 ≤ k ≤ m ≤ n}, where

cmk =
∑

(i1,...,ik)∈{1,...,m}k
Ei1i2Ei2i3 · · ·Eiki1 . (3.1)

Let Λ be the polynomial algebra in the variables {λij | 1 6 j 6 i 6 n}. The action of the
symmetric group Si on {λij | 1 6 j 6 i} induces the action of G = Sn × · · · × S1 on Λ. There is
a natural embedding ı : Γ−→ Λ given by ı(cmk) = γmk(λ), where

γmk(λ) =

m∑
i=1

(λmi +m− 1)k
∏
j 6=i

(
1− 1

λmi − λmj

)
. (3.2)

Hence, Γ can be identified with G-invariant polynomials in Λ.

Remark 3.3. In what follows, we will identify the set Specm Λ of maximal ideals of Λ with

the set C
n(n+1)

2 . Then we have a surjective map π : Specm Λ → Specm Γ. Moreover, since Λ is
integral over Γ, there are finitely many maximal ideals of Λ that map to a fixed maximal ideal
of Γ. The different maximal ideals of Λ are obtained from each other under permutations in the
group G.

If π(`) = m for some ` ∈ Specm Λ, then we write ` = `m and say that `m is lying over m.
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4 Finite-dimensional modules of gl(n)

In this section we recall a classical result of Gelfand and Tsetlin which provides an explicit basis
for every irreducible finite-dimensional gl(n)-module.

Definition 4.1. For a vector L = (lij) in C
n(n+1)

2 , by T (L) we will denote the following array
with entries {lij : 1 ≤ j ≤ i ≤ n}

ln1 ln2 . . . ln,n−1 lnn

ln−1,1 . . . ln−1,n−1

. . . . . . . . .

l21 l22

l11

Such an array will be called a Gelfand–Tsetlin tableau of height n. A Gelfand–Tsetlin tableau of
height n is called standard if lki− lk−1,i ∈ Z≥0 and lk−1,i− lk,i+1 ∈ Z>0 for all 1 ≤ i ≤ k ≤ n−1.

Note that, for sake of convenience, the second condition above is slightly different from the
original condition in [12].

Theorem 4.2 ([12]). Let L(λ) be the finite-dimensional irreducible module over gl(n) of highest
weight λ = (λ1, . . . , λn). Then there exist a basis of L(λ) consisting of all standard tableaux
T (L) = T (lij) with fixed top row lnj = λj−j+1. Moreover, the action of the generators of gl(n)
on L(λ) is given by the Gelfand–Tsetlin formulas:

Ek,k+1(T (L)) = −
k∑
i=1


k+1∏
j=1

(lki − lk+1,j)

k∏
j 6=i

(lki − lkj)

T
(
L+ δki

)
,

Ek+1,k(T (L)) =

k∑
i=1


k−1∏
j=1

(lki − lk−1,j)

k∏
j 6=i

(lki − lkj)

T
(
L− δki

)
,

Ekk(T (L)) =

(
k − 1 +

k∑
i=1

lki −
k−1∑
i=1

lk−1,i

)
T (L), (4.1)

if the new tableau T (L± δki) is not standard, then the corresponding summand of Ek,k+1(T (L))
or Ek+1,k(T (L)) is zero by definition. Furthermore, for s ≤ r,

crs(T (L)) = γrs(l)T (L), (4.2)

where {crs} are the generators of Γ defined in (3.1) and γrs are defined in (3.2) (see [23]).

The formulas above are called Gelfand–Tsetlin formulas for gl(n). These formulas were extended
to the case of Uq(gl(n)) in [19].



Irreducible Generic Gelfand–Tsetlin Modules of gl(n) 5

5 Generic Gelfand–Tsetlin modules of gl(n)

Theorem 4.2 gives an explicit realization of any irreducible finite-dimensional gl(n)-module.
Using the Gelfand–Tsetlin formulas, Drozd, Futorny and Ovsienko defined the class of infinite-
dimensional generic modules for gl(n) in [2].

Definition 5.1. A Gelfand–Tsetlin tableau T (L)
(
equivalently, L ∈ C

n(n+1)
2

)
is called generic

if lki− lkj /∈ Z for all 1 ≤ i 6= j ≤ k ≤ n−1. A character χ and n = Kerχ are called generic if `n
is generic for one choice (hence for all choices) of `n lying over n. A Gelfand–Tsetlin module M
will be called a generic Gelfand–Tsetlin module if every n in SuppGT(M) is generic.

Theorem 5.2 ([2, Section 2.3] and [18, Theorem 2]). Let T (L) = T (lij) be a generic Gelfand–
Tsetlin tableau of height n. Denote by B(T (L)) the set of all Gelfand–Tsetlin tableaux T (R) =
T (rij) satisfying rnj = lnj, rij − lij ∈ Z for 1 ≤ j ≤ i ≤ n− 1.

(i) The vector space V (T (L)) = spanB(T (L)) has a structure of a gl(n)-module with action
of the generators of gl(n) given by the Gelfand–Tsetlin formulas (4.1).

(ii) The action of the generators of Γ on the basis elements of V (T (L)) is given by (4.2).

(iii) The gl(n)-module V (T (L)) is a Gelfand–Tsetlin module all of whose Gelfand–Tsetlin mul-
tiplicities are 1.

Remark 5.3. The basis of the module in the previous theorem is

B(T (L)) =
{
T (L+ z) : z ∈ Z

n(n+1)
2 and zn1 = · · · = znn = 0

}
.

By a slight abuse of notation we will identify elements in Z
n(n−1)

2 with elements z ∈ Z
n(n+1)

2 such

that zn1 = · · · = znn = 0. This will allow us to write T (L+ z) for z ∈ Z
n(n−1)

2 .

Remark 5.4. In what follows, we will apply Lemma 3.2 and use that the elements of Γ separate
the tableaux in the submodules of V (T (L)) in the following sense. Let N be a gl(n)-submodule
of V (T (L)), g ∈ gl(n), and T (R) be a tableau in N . Then, if g · T (R) =

∑
i
ciT (Ri) for some

distinct tableaux T (Ri) in B(T (L)) and nonzero ci ∈ C, we have T (Ri) ∈ N for all i.

Theorem 5.5. If n ∈ Specm Γ is generic, then there exists a unique irreducible Gelfand–Tsetlin
module N such that N(n) 6= 0.

Proof. Let Xn = U/Un. We know that Xn = U/Un is a Gelfand–Tsetlin module. Further-
more, any irreducible Gelfand–Tsetlin module M with M(n) 6= 0 is a homomorphic image of Xn,
and Xn(n) maps onto M(n). Since both spaces Xn(n) and M(n) are Γ-modules then the projec-
tion Xn(n)→M(n) is a homomorphism of Γ-modules (see also [11, Corollary 5.3]). Taking into
account that dimXn(n) ≤ 1, we conclude that Xn has a unique maximal submodule (which does
not intersect Xn(n)) and hence there exist a unique irreducible module N with N(n) 6= 0. �

Definition 5.6. If T (R) is a generic tableau and r ∈ Specm Γ corresponds to R then, the unique
module N such that N(r) 6= 0 is called the irreducible Gelfand–Tsetlin module containing T (R),
or simply, the irreducible module containing T (R).

Our goal is to describe explicitly the irreducible Gelfand–Tsetlin module containing T (R) for
every generic tableau T (R). Below we recall how this is achieved in the case n = 3 in [20]. One
should note that the methods used in [20] involve direct computations based on a case-by-case
consideration, while in the present paper we provide an invariant proof. Also, we reformulate
the result in [20] in terms of T (L+ z).
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For any tableau T (R) ∈ {T (L+z) : z ∈ Z3} and any 1 < p ≤ 3, 1 ≤ s ≤ p, and 1 ≤ u ≤ p−1,
define

Ω+(T (R)) := {(p, s, u) : rp,s − rp−1,u ∈ Z≥0}.

Theorem 5.7 ([20]). If T (L) is a generic Gelfand–Tsetlin tableau of height 3, then the following
is a basis for the irreducible gl(3)-module containing T (L):

I(T (L)) :=
{
T (L+ z) : z ∈ Z3 and Ω+(T (L)) = Ω+(T (L+ z))

}
.

The action of gl(3) on this irreducible module is given by the Gelfand–Tsetlin formulas.

Example 5.8. Consider a, b, c ∈ C such that {a− b, a− c, b− c}
⋂
Z = ∅, L = (a, b, c|a, b+ 1|a)

and

a b c

T (L)= a b+1

a

then Ω+(T (L)) = {(3, 1, 1), (2, 1, 1)}. So, by Theorem 5.7, the irreducible module contai-
ning T (L) has basis

I(T (L)) =
{
T (L+ (m,n, k)) : (m,n, k) ∈ Z3, m ≤ 0, k ≤ m, and n > −1

}
.

6 Classif ication of irreducible generic
Gelfand–Tsetlin gl(n)-modules

In this section we prove the main result in the paper, i.e. the generalization of Theorem 5.7
for gl(n). For convenience we introduce and recall some notation.

Notation 6.1. Let T (L) = T (lij) be a fixed tableau of height n.

(i) B(T (L)) :=
{
T (L+ z) : z ∈ Z

n(n−1)
2

}
.

(ii) V (T (L)) := spanB(T (L)).

(iii) For any T (R) = T (rij) ∈ B(T (L)) and for any 1 < p ≤ n, 1 ≤ s ≤ p and 1 ≤ u ≤ p− 1 we
define:

(a) ωp,s,u(T (R)) := rp,s − rp−1,u;

(b) Ω(T (R)) := {(p, s, u) : ωp,s,u(T (R)) ∈ Z};
(c) Ω+(T (R)) := {(p, s, u) : ωp,s,u(T (R)) ∈ Z≥0};
(d) N (T (R)) := {T (Q) ∈ B(T (L)) : Ω+(T (R)) ⊆ Ω+(T (Q))};
(e) W (T (R)) := spanN (T (R));

(f) U · T (R): the gl(n)-submodule of V (T (L)) generated by T (R).

6.1 Basis for the module generated by a single tableau

In order to find an explicit basis of every irreducible generic module, we first find a basis of
U · T (R) for any tableau T (R) in B(T (L)).

Proposition 6.2. For any T (R) ∈ B(T (L)), the Gelfand–Tsetlin formulas endow W (T (R))
with a gl(n)-module structure.
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Proof. It is enough to prove U · T (Q) ⊆W (T (R)) for any T (Q) = T (qij) ∈ N (T (R)). We will
show g · T (Q) is in W (T (R)) for every (standard) generator g of gl(n).

Suppose g = Ek,k+1 for some 1 ≤ k ≤ n− 1. By the Gelfand–Tsetlin formulas, we have

Ek,k+1(T (Q)) = −
k∑
i=1


k+1∏
j=1

(qki − qk+1,j)

k∏
j 6=i

(qki − qkj)

T
(
Q+ δki

)
.

If Ek,k+1(T (Q)) /∈W (T (R)), then there exist k and i such that T (Q) ∈ N (T (R)) but T (Q+δki)
/∈ N (T (R)). That implies

Ω+(T (R)) ⊆ Ω+(T (Q)) and Ω+(T (R)) * Ω+
(
T
(
Q+ δki

))
.

Hence, there exists (p, s, u) ∈ Ω+(T (R)) such that ωp,s,u(T (Q)) ∈ Z≥0 and ωp,s,u(T (Q + δki))
/∈ Z≥0. The latter holds only in two cases:

(p, s, u) ∈ {(k, i, u), (k + 1, s, i) : 1 ≤ u ≤ k − 1; 1 ≤ s ≤ k + 1}.

Note that if neither of these two cases hold, we have ωp,s,u(T (Q + δki)) = ωp,s,u(T (Q)). We
consider now each of the two cases separately.

(i) Suppose (p, s, u) = (k, i, u). Then ωk,i,u(T (Q)) = qki−qk−1,u ∈ Z≥0 and ωk,i,u(T (Q+δki)) =
(qki + 1)− qk−1,u /∈ Z≥0, which is impossible.

(ii) Suppose (p, s, u) = (k + 1, s, i). Then

ωk+1,s,i(T (Q)) = qk+1,s − qki ∈ Z≥0

and

ωk+1,s,i(T (Q+ δki)) = qk+1,s − (qki + 1) /∈ Z≥0.

Hence qk+1,s − qk,i = 0 and then the coefficient of T (Q + δki) in the decomposition of

Ek,k+1(T (Q)) is −

k+1∏
j=1

(qki−qk+1,j)

k∏
j 6=i

(qki−qkj)

= 0.

Therefore, the tableaux that appear with nonzero coefficients in Ek,k+1(T (Q)) are elements
of N(T (R)). Hence, Ek,k+1(T (Q)) ∈ W (T (R)). The proof that Ek+1,k(T (Q)) ∈ W (T (R)) is
analogous to the one of Ek,k+1(T (Q)) ∈W (T (R)). The case g = Ekk is trivial because Ekk acts
as a multiplication by a scalar on T (Q) and T (Q) ∈ N (T (R)) ⊆W (T (R)). �

Given any tableau T (R), there are three modules containing T (R): V (T (L)), W (T (R)) and
U · T (R). We will show that W (T (R)) = U · T (R). For this we need the following lemmas.

Lemma 6.3. Let T (L) be a generic tableau. If 0 6= z ∈ Z
n(n−1)

2 is such that Ω+(T (L)) ⊆
Ω+(T (L+ z)) then, there exist i, j such that zij 6= 0 and

Ω+(T (L)) ⊆ Ω+
(
T
(
L+ zijδ

ij
))
⊆ Ω+(T (L+ z)). (6.1)

Proof. We will use the following definition in the proof of the lemma.
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Definition 6.4. Given a generic tableau T (R) ∈ B(T (L)), a chain in T (R) of length ` starting
in row d is a subset of the entries of T (R), C = {rd−i,s(d−i)}i=0,...,`, where 1 ≤ s(d−i) ≤ d− i are

such that rd−i,s(d−i)−rd−i−1,s(d−i−1) ∈ Z for any i = 0, . . . , `−1 (i.e. {(d−i, s(d−i), s(d−i−1))}i=0,...,`

⊆ Ω(T (R))). The chain is called maximal if

(i) (d+ 1, i, s(d)) /∈ Ω(T (R)) for any 1 ≤ i ≤ d+ 1,

(ii) (d− `, s(d−`), j) /∈ Ω(T (R)) for any 1 ≤ j ≤ d− `− 1.

For every T (R) in B(T (L)) we have that Ω+(T (R)) =
⊔

1≤c≤n Ω+
c (T (R)), where Ω+

c (T (R)) :=
{(p, s, u) ∈ Ω+(T (R)) : p = c}. In particular, (6.1) holds if and only if

Ω+
c (T (L)) ⊆ Ω+

c

(
T
(
L+ zijδ

ij
))
⊆ Ω+

c (T (L+ z)) (6.2)

for any 1 ≤ c ≤ n. For c /∈ {i, i + 1} we have Ω+
c (T (L)) = Ω+

c (T (L + zijδ
ij)). So, in order to

verify (6.2), it is enough to consider the cases c = i, i+ 1.
Lets consider k, l such that zkl 6= 0. Set for convenience Q := L+ z. There exists a maximal

chain C in T (Q) of length `, starting in row d such that qkl ∈ C. Suppose that C = {q[i]}i=0,...,`

where [i] := (d− i, s(d−i)). If ` = 0, then C = {qkl} and (6.1) is obvious for zij = zkl.
Let a and b be the minimum and maximum of {i : z[i] 6= 0}, respectively. We have

Ω+
d−a+1

(
T
(
L+ z[a]δ

[a]
))

= Ω+
d−a+1(T (L+ z)),

Ω+
d−b
(
T
(
L+ z[b]δ

[b]
))

= Ω+
d−b(T (L+ z)). (6.3)

Therefore (6.2) holds for the pairs c = d−a+1, zij = z[a] and c = d−b, zij = z[b], respectively.
Now, let a ≤ m ≤ b and consider the 4 cases depending on what the signs of z[a] and z[a+1] are.

(i) z[m] > 0 and z[m+1] ≤ 0. In this case (6.2) holds for c = d−m and zij = z[m]. In particular,
if z[a] > 0 and z[a+1] ≤ 0, using the first equation in (6.3), we conclude that (6.1) holds for
zij = z[a].

(ii) z[m] < 0 and z[m−1] ≥ 0. In this case (6.2) holds for c = d − m + 1 and zij = z[m−1].
In particular, if z[b] < 0 and z[b−1] ≥ 0, using the second equation in (6.3) we conclude
that (6.1) holds for zij = z[b].

(iii) z[m] > 0 and z[m+1] > 0. In this case (6.2) holds for c = d−m and

zij =

{
z[m] if l[m] − l[m+1] ∈ Z≥0,

z[m+1] if l[m+1] − l[m] ∈ Z>0.

(iv) z[m] < 0 and z[m−1] < 0. In this case (6.2) holds for c = d−m+ 1 and

zij =

{
z[m] if l[m−1] − l[m] ∈ Z≥0,

z[m−1] if l[m] − l[m−1] ∈ Z>0.

Now combining (i)–(iv) we reduce the proof to the following two cases:

(a) z[a] > 0, z[a+1] > 0, . . . , z[b] > 0 and for any t = 1, . . . , b− a, (6.2) holds for c = d− a+ t+ 1
and zij = z[a+l]. In particular, (6.2) holds for c = d− b+ 1 and zij = z[b]. So, by the second
equation in (6.3) we have that (6.1) holds for zij = z[b].

(b) z[b] < 0, z[b−1] < 0, . . . , z[a] < 0 and for any t = 1, . . . , b−a, (6.2) holds for c = d− (b− t) and
zij = z[b−t]. In particular, (6.2) holds for c = d− a and zij = z[a]. So, by the first equation
in (6.3) we have that (6.1) holds for zij = z[a]. �
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Definition 6.5. Given T (Q) and T (R) in B(T (L)), we write T (R) �(1) T (Q) if there exist
g ∈ gl(n) such that T (Q) appears with nonzero coefficient in the decomposition of g ·T (R) into
a linear combination of tableaux. For any p ≥ 1 we write T (R) �(p) T (Q) if there exist tableaux

T (L(1)),. . . , T (L(p)), such that

T (R) = T
(
L(0)

)
�(1) T

(
L(1)

)
�(1) · · · �(1) T

(
L(p)

)
= T (Q).

As an immediate consequence of the definition of �(p) we have the following.

Lemma 6.6. If T (Q), T (Q(0)), T (Q(1)) and T (Q(2)) are tableaux in B(T (L)) then:

(i) T (Q(0)) �(p) T (Q(1)) and T (Q(1)) �(q) T (Q(2)) imply T (Q(0)) �(p+q) T (Q(2));

(ii) T (Q) �(1) T (Q).

Corollary 6.7. If T (R), T (Q) ∈ B(T (L)) are generic Gelfand–Tsetlin tableaux such that
T (R) �(p) T (Q) for some p ∈ Z≥0, then T (Q) ∈ U · T (R).

Proof. By Lemma 5.4 and the definition of the relation�(1), we first verify that T (R) �(1)T (Q)
implies T (Q) ∈ U · T (R). Now, using Lemma 6.6(i), if T (R) �(p) T (Q) for some p then
T (Q) ∈ U · T (R). �

The next theorem provides a convenient basis for the submodule of V (T (L)) generated by
a fixed tableau. Recall the definition of N (T (R)) in Notation 6.1(iii)(d).

Theorem 6.8. For any tableau T (R) ∈ B(T (L)), U ·T (R) = W (T (R)). In particular, N (T (R))
forms a basis of U · T (R), and the action of gl(n) on U · T (R) is given by the Gelfand–Tsetlin
formulas.

Proof. By Proposition 6.2, U · T (R) ⊆ W (T (R)). To prove that W (T (R)) ⊆ U · T (R) we will
show that T (Q) ∈ U · T (R) for any T (Q) ∈ N (T (R)). By Corollary 6.7, it is enough to prove
that T (R) �(p) T (Q) for some positive integer p.

Suppose that T (Q) = T (R + z) ∈ N (T (R)) for some z ∈ Z
n(n−1)

2 . Let t be the number of
non-zero components of z. We will prove that T (R) �(p) T (Q) using induction on t.

Let us first consider the case t = 1 (the case t = 0 is trivial, since then T (Q) = T (R)) and
zij > 0. We will first prove that T (R+ lδij) �(1) T (R+ (l+ 1)δij) for any 0 ≤ l ≤ zij − 1. This
will imply

T (R) �(1) T
(
R+ δij

)
�(1) T

(
R+ 2δij

)
�(1) · · · �(1) T

(
R+ zijδ

ij
)

= T (Q),

and then T (R) �(zij) T (Q). To prove that T (R + lδij) �(1) T (R + (l + 1)δij) we show that the

coefficient of T (R + (l + 1)δij) in the decomposition of Ei,i+1(T (R + lδij)) is not zero. In fact,
by the Gelfand–Tsetlin formulas, that coefficient is

al := −

i+1∏
k=1

(rij − ri+1,k + l)

i∏
k 6=j

(rij − rik + l)

.

Assume that al = 0. Then rij − ri+1,k + l = 0 for some k, which implies ωi+1,k,j(T (R)) =
ri+1,k − rij = l ∈ Z≥0. But, since T (Q) ∈ N (T (R)), we have

l − zij = ri+1,k − rij − zij = ωi+1,k,j(T (Q)) ∈ Z≥0.

Therefore we have 0 ≤ l ≤ zij−1 and zij ≤ l, which is a contradiction. Hence, T (R) �(zij) T (Q).
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Let now t = 1 and zij < 0. Using the same arguments as in the case zij > 0, we prove that
T (R) �(−zij) T (Q) using |zij | applications of Ei+1,i. This completes the proof for t = 1.

Assume now that for any w ∈ Z
n(n−1)

2 with at most t nonzero components, and such that
Ω+(T (R)) ⊆ Ω+(T (R + w)), we have T (R) �(p) T (R + w) for some p. Let us consider z with
t + 1 nonzero components. Since Ω+(T (R)) ⊆ Ω+(T (R + z)), by Lemma 6.3, there exist i, j
such that

Ω+(T (R)) ⊆ Ω+
(
T
(
R+ zijδ

ij
))
⊆ Ω+(T (R+ z)).

Using the induction hypothesis for the pairs of tableaux (T (R), T (R + zijδ
ij)) and (T (R +

zijδ
ij), T (R+ z)), there exist p, q ∈ Z≥0 such that

T (R) �(p) T
(
R+ zijδ

ij
)

and T
(
R+ zijδ

ij
)
�(q) T (R+ z).

Thus, by Lemma 6.6(i), T (R) �(p+q) T (R+ z). �

Proposition 6.9. Let T (R) and T (Q) be in B(T (L)). Then U · T (R) = U · T (Q) if and only if
Ω+(T (Q)) = Ω+(T (R)).

Proof. Using Theorem 6.8 and the definitions of W (T (R)), W (T (Q)), Ω+(T (R)), and
Ω+(T (Q)), we can prove a stronger statement: U · T (R) ⊆ U · T (Q) if and only if Ω+(T (Q)) ⊆
Ω+(T (R)). �

Corollary 6.10. U · T (R) = V (T (L)) whenever Ω+(T (R)) = ∅.

Definition 6.11. We will write T (Q) ∼Ω+ T (R) if Ω+(T (R)) = Ω+(T (Q)).

Proposition 6.12. Every submodule of V (T (L)) is finitely generated.

Proof. Let N be any submodule of V (T (L)) and Φ the set of all tableaux T (R) in N such that
Ω+(T (P )) ⊆ Ω+(T (R)) implies Ω+(T (P )) = Ω+(T (R)). By Theorem 6.8, N =

∑
T (R)∈Φ

U · T (R)

and by Proposition 6.9, we can write N =
⊕

T (R)∈Φ̃ U · T (R), where Φ̃ is a set of distinct

representatives of Φ/ ∼Ω+ (hence Ω+(T (R)) 6= Ω+(T (Q)) for any T (R), T (Q) in Φ̃). Now, since
Ω(T (L)) is a finite set, then Φ̃ is finite. �

6.2 Basis for irreducible modules containing a given tableau

By Theorem 6.8, the module generated by a tableau T (R) has basis N (T (R)). For the purpose

of the next theorem let us introduce the following equivalence on C
n(n+1)

2 .

Definition 6.13. We write z ∼ w for z, w ∈ C
n(n+1)

2 if and only if one of the two cases hold.

(i) z − w ∈ Z
n(n−1)

2 and z ∼Ω+ w.

(ii) z ∈ Gw.

Now we are ready to formulate and prove the main theorem in the paper.

Theorem 6.14. The irreducible module containing T (R) has a basis of tableaux

I(T (R)) =
{
T (Q) ∈ B(T (R)) : Ω+(T (Q)) = Ω+(T (R))

}
.

The action of gl(n) on this irreducible module is given by the Gelfand–Tsetlin formulas (4.1).
Therefore the set of irreducible generic Gelfand–Tsetlin modules is in one-to-one correspondence

with C
n(n+1)

2
gen / ∼, where C

n(n+1)
2

gen stands for the set of generic vectors in C
n(n+1)

2 .
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Proof. For each tableau T (R), we have an explicit construction of the module containing T (R)
(recall Definition 5.6):

M(T (R)) := U · T (R)/
(∑

U · T (Q)
)
,

where the sum is taken over tableaux T (Q) such that T (Q) ∈ U ·T (R) and U ·T (Q) is a proper
submodule of U · T (R).

The module M(T (R)) is simple. Indeed, this follows from the fact that for any nonzero
tableau T (S) in M(T (R)) we have U · T (S) = U · T (R) and, hence, T (S) generates M(T (R)).

By Theorem 6.8 and Proposition 6.9, a basis for a proper submodule U · T (Q) of U · T (R)
is {T (S) : Ω+(T (R)) ( Ω+(T (Q)) ⊆ Ω+(T (S))} so, a basis for the module

∑
U · T (Q) is

{T (S) : Ω+(T (R)) ( Ω+(T (S))}. Therefore, I(T (R)) is a basis for M(T (R)).

To show that C
n(n+1)

2
gen / ∼ parameterizes the set of all irreducible generic Gelfand–Tsetlin

modules we use Theorem 5.5 and the fact that `, `′ ∈ Specm Λ lie over the same m in Specm Γ
if and only if ` ∈ G`′ (see Remark 3.3). �

7 Number of irreducible modules in generic blocks

Definition 7.1. For any generic tableau T (L), the block associated with T (L) is the set of all
Gelfand–Tsetlin gl(n)-modules with Gelfand–Tsetlin support contained in SuppGT(V (T (L))).

Theorem 6.14 describe explicit bases of the irreducible modules in the block associated with
V (T (L)). In this section we will use this description to compute the number of nonisomorphic
irreducible modules in this block.

Definition 7.2. For any T (R) = T (rij) ∈ B(T (L)), 1 < p ≤ n and 1 ≤ u ≤ p − 1, define
dpu(T (R)) to be the number of distinct elements in

{rps : (p, s, u) ∈ Ω(T (R))}.

Remark 7.3. For any generic tableau T (R) = T (rij) ∈ B(T (L)) of height n we have:

(i) dpu(T (L)) = dpu(T (R)) for any 1 < p ≤ n, 1 ≤ u ≤ p− 1;

(ii) if p 6= n, then dpu(T (R)) ≤ 1 for any 1 ≤ u ≤ p− 1.

Example 7.4. Suppose a, b, c ∈ C are such that {a − b, a − c, b − c} ∩ Z = ∅. If R = (a, a −
1, b|a, b|c), then

a a− 1 b

T (R):= a b

c

d31(T (R)) = 2, d32(T (R)) = 1, d21(T (R)) = 0 and d22(T (R)) = 0.

Remark 7.5. For each tableau T (R) we have an one-to-one correspondence between the set
{0, 1, . . . , dpu(T (L))} and the subset {0, i1, . . . , idpu(T (L))} of {0, 1, . . . , p} defined as follows:
i1 = 1 and ik = min{x : rpx /∈ {rpi1 , . . . , rpik−1

}}.
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Theorem 7.6. For any generic tableau T (L), the number of irreducible modules in the block
associated with T (L) is∏

1≤u≤p−1<n

(dpu(T (L)) + 1).

In particular, V (T (L)) is irreducible if and only if dpu(T (L)) = 0 for any p and u, or equivalently,
if and only if Ω(T (L)) = ∅.

Proof. By Theorem 6.14, the irreducible modules are in one-to-one correspondence with the
subsets of Ω(T (L)) of the form Ω+(T (L + z)). For any T (R) ∈ B(T (L)), we can decompose
Ω(T (R)) into a disjoint union Ω(T (R)) =

⊔
p,u Ωpu(T (R)), where

Ωp,u(T (R)) = {(p, 1, u), (p, 2, u), . . . , (p, p, u)} ∩ Ω(T (R)).

Now, if Ω+
p,u(T (R)) := Ωp,u ∩ Ω+(T (R)), one can write Ω+(T (R)) =

⊔
p,u Ω+

pu(T (R)). For p,

u fixed, let us denote by sp,u the number of different subsets of the form Ω+
p,u(T (R)). So, the

number of different subsets of the form Ω+(T (R)) is
∏
p,u
sp,u.

Let {T (R(i))}spui=1 be a set of tableaux such that {Ω+
p,u(T (R(i)))}spui=1 is the set of all distinct

sets of the form Ω+
p,u(T (R)). We have a one-to-one correspondence between {T (R(i))}spui=1 and

the set {0, i1, . . . , idpu(T (L))} constructed as in Remark 7.5. More explicitly, this correspondence
is defined my the map:

T (R(i))→

{
min{j : (p, j, u) ∈ Ω+(T (R(i)))}, if Ω+

pu(T (R(i))) 6= ∅,
0, if Ω+

pu(T (R(i))) = ∅.

Therefore, spu = dpu(T (L)) + 1. �
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