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Abstract. We consider AD-type orbifolds of the triplet vertex algebras W(p) extending
the well-known c = 1 orbifolds of lattice vertex algebras. We study the structure of Zhu’s
algebras A(W(p)Am) and A(W(p)Dm), where Am and Dm are cyclic and dihedral groups,
respectively. A combinatorial algorithm for classification of irreducible W(p)Γ-modules is
developed, which relies on a family of constant term identities and properties of certain
polynomials based on constant terms. All these properties can be checked for small values
of m and p with a computer software. As a result, we argue that if certain constant term
properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15
(2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a com-
plete list of irreducible W(p)Am and W(p)Dm -modules. This paper is a continuation of our
previous work on the ADE subalgebras of the triplet vertex algebra W(p).

Key words: C2-cofiniteness, triplet vertex algebra, orbifold subalgebra, constant term iden-
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2010 Mathematics Subject Classification: 17B69

1 Introduction and notation

Orbifold theory of vertex algebras has an interesting and rich development. Although orbifolds
have been studied even earlier in string theory, their first mathematical treatment goes back to
already classical work by Frenkel, Lepowsky and Meurman on the Moonshine module, which is
constructed as a Z2-orbifold [12]. We should also mention, closely related to our investigation,
an important construction of c = 1 orbifolds by Ginsparg [13]. In the language of vertex algebra,
Ginsparg was basically considering what we now call ADE-type orbifolds of the rank one lattice
vertex algebra of central charge one and associated orbifold characters and the partition function.
This line of work was later brought to even firmer footing in the VOA literature by Dong, Griess
and others (see [10] and references therein). Our current line of work is an attempt to lift these
classical results from rational to the setup of irrational vertex algebras with central charge
1− 6(p−1)

p2
, p ≥ 2.

?This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is
available at http://www.emis.de/journals/SIGMA/LieTheory2014.html
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Arguably, the most famous constant term identity is the one due to F. Dyson who discovered
it in connection to what we now call the circular ensembles model in random matrix theory. His
conjectural identity, later proved by Gunson, Wilson and others, concerned the constant term
of ∏

1≤i 6=j≤n

(
1− xi

xj

)p
, p ∈ N,

which can be elegantly expressed as a ratio of factorials; observe that the rational function is
up to a monomial term just the p-th power of the discriminant. Dyson’s identities are later
generalized by Morris, Kadell, Aomoto and others by adding extra terms to the discriminant
part. For example, one includes additional variable x0 (e.g. Morris and Aomoto’s identities) or
perhaps symmetric functions in xi (as in Kadell’s identitiy). All these identities are in a way
related to Selberg’s integral (in fact, Morris’ identity seems to be equivalent to it). For a good
review of this subject see [11].

Constant term identities are also related to computation of correlation functions arising from
vertex operators in 2-dimensional CFT. This can be either done in the integral form leading
to Selberg integral, or purely formally by using constant terms of generating functions – the
method that we advertise here. There are three main computational ingredients that lead to
aforementioned expressions and eventually to considerations of constant term identities

• Various calculations with products of bosonic vertex operators Y (eαi , x1) · · ·Y (eαn , xn)
and their normal ordering. Already such considerations lead to Dyson-type expressions
(see for instance [4]).

• Action of certain distinguished vectors (e.g. singular vectors for the Virasoro algebra in
the Fock space) on highest weight modules. The key method is based on a simple obser-

vation that the zero mode operator of the vector exp
(
−
∑
n>0

h(−n)
n zn

)
1, which lives in the

completed Fock space, acts on the highest weight Fock module vector vλ semisimply with
eigenvalue (1 + z)〈h,λ〉.

• Extra terms coming from Zhu’s algebra multiplication: a ∗ b = Resx0
(1+x0)deg(a)

x0
Y (a, x0)b,

namely (1 + x0)deg(a).

Combination of these three methods for purposes of proving C2-cofiniteness and description
of Zhu’s algebra has led to many constant term evaluations and identities. Already a sample
of new identities can be obtained from the triplet vertex algebra [5, 6, 7, 8, 9]. It is interesting
that classification of modules for the triplet algebra can be reduced to a single constant term
identity [5].

In this paper, we continue our investigation of the ADE subalgebras of W(p) initiated in [2]
in connection to constant term identities.

We begin with a short review of the triplet algebra W(p), its orbifold subalgebras W(p)Γ,
and status of classifications of their modules; more details can be found in [2, 3, 5].

Let L = Zα be a rank one lattice with 〈α, α〉 = 2p (p ≥ 1). Let

VL = U(ĥ<0)⊗ C[L]

be the corresponding lattice vertex operator algebra [14], where ĥ is the affinization of h = Cα,
and let C[L] be the group algebra of L. Let M(1) be the Heisenberg vertex subalgebra of VL
generated by α(−1)1. With conformal vector

ω =
α(−1)2

4p
1 +

p− 1

2p
α(−2)1,
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the space VL has a vertex operator algebra structure of central charge

cp = 1− 6(p− 1)2

p
,

for more details see [14]. This vertex algebra admits two (degree one) screenings: Q = eα0 and

Q̃ = e
−α/p
0 , where we used eβ to denote vectors in the group algebra of the dual lattice of L.

The triplet vertex algebra W(p) is defined to be the kernel of the “short” screening Q̃ on VL. It
is strongly generated by ω and three primary vectors

F = e−α, H = QF, E = Q2F

of conformal weight 2p− 1.
We use M(1) to denote the singlet vertex algebra (cf. [1, 4]). It is realized as a vertex

subalgebra of W(p) generated by ω and H. Set

e = Q, h =
α(0)

p
,

acting on W(p). Let f ∈ EndVir(W(p)) be the unique operator defined by

fe−nα = 0, fQie−nα = i(2n+ 1− i)Qi−1e−nα, 1 ≤ i ≤ 2n.

It was proved first in [2] that W(p) admits an action of sl2 by the above three operators. The
integration of the action of sl2 gives rise to an action of PSL(2,C) on the vertex operator algeb-
ra W(p). Vertex algebra W(p)Am (resp. W(p)Dm) is defined as the invariant subalgebras with
respect to the cyclic group Am of order m (reps. dihedral group Dm of order 2m). It is important
to notice thatW(p)Dm is the Z2-orbifold ofW(p)Am with respect to the automorphism Ψ which
is uniquely determined by the property

Ψ
(
Qie−nα

)
=

(−1)ii!

(2n− i)!
Q2n−ie−nα.

Note also that Ψ is also an automorphism of M(1) such that Ψ(H) = −H and its fixed point

subalgebra M(1)
+

is a subalgebra of W(p)Dm (for details see [2, 3]).
In [2, 3], based on investigation of modules and twisted modules ofW(p), we gave a conjectural

list of 2m2p irreducible W(p)Am-modules and a list of (m2 + 7)p irreducible W(p)Dm-modules.
Moreover, for m = 2, we showed that these two lists are complete under the assumption of
validity of certain constant term identities which have been verified by computer for small
value p.

In this paper we first give a detailed investigation of Zhu’s algebras of W(p)Dm in con-
nection to classification of irreducible W(p)Dm-modules. Results from [3] show that Zhu’s al-
gebra A(W(p)Dm) is a commutative, finite-dimensional algebra such that dimA(W(p)Dm) ≥
(m2 + 8)p − 1. In order to prove that modules constructed in [3] provide a complete list of
irreducible W(p)Dm-modules, it suffices to prove inequality

dimA
(
W(p)Dm

)
≤
(
m2 + 8

)
p− 1.

We apply the methods similar to those used in [2] (see also [1, 5, 9]) and evaluate certain relations
in Zhu’s algebras on modules for Heisenberg vertex algebra M(1). This leads to a new series of
constant term identities which we list in Appendix A.

The structure of Zhu’s algebra A(W(p)Am) is discussed in Section 3. We first show that
the classification of irreducible modules for W(p)Am is equivalent to proving that Zhu’s algebra
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A(W(p)Am) has dimension (2m2 + 4)p− 1. The results from [2] implies that dimA(W(p)Am) ≥
(2m2+4)p−1. In Section 3 we present a detailed discussion of the proof of the opposite inequality,
and finally show that it can be reduced to the proof of certain combinatorial identities which
we checked for small values of m and p.

Throughout this paper we use

hi,j =
(i− jp+ p− 1)(i− jp− p+ 1)

4p

to parameterize lowest conformal weights of modules.

2 On classif ication of irreducible W(p)Dm-modules

In [3], we initiated the study of representation theory of the vertex operator algebra W(p)Dm ,
m ≥ 2. We proved C2-cofiniteness of these vertex algebras and showed that the associated Zhu’s
algebra is a finite-dimensional commutative algebra. In the representation theory of W(p)Dm ,

the singlet vertex algebra M(1)
+

has played an important role. In the same paper, we classified

all irreducible modules for M(1)
+

and W(p)D2 modulo the same constant term identity.
In this section we shall slightly extend results from [3] so we shall introduce two new combi-

natorial conjectures which will imply the classification of irreducible modules.
First we recall some results we obtained in [3].

Theorem 2.1.

(1) The vertex algebra W(p)Dm is strongly generated by

ω, H(2) = Q2e−2α, U (m) = (2m)!F (m) + E(m),

where F (m) = e−mα, E(m) = Q2mF (m).

(2) Zhu’s algebra A(W(p)Dm) is a commutative associative algebra generated by [ω], [H(2)]
and [U (m)], where [ · ] denotes coset of an element in Zhu’s algebra.

(3) W(p)Dm has (m2 + 7)p inequivalent irreducible modules constructed from twisted and un-
twisted W(p)-modules whose lowest components are all 1-dimensional.

SinceW(p)Dm has p−1 logarithmic modules constructed in [9], we conclude that A(W(p)Dm)
also has p− 1 indecomposable 2-dimensional modules. So we have:

Corollary 2.2. For every m ≥ 2

dimA
(
W(p)Dm

)
≥
(
m2 + 8

)
p− 1.

In order to classify irreducible modules it is sufficient to prove the inequality

dimA
(
W(p)Dm

)
≤
(
m2 + 8

)
p− 1. (2.1)

This will imply that the dimension of Zhu’s algebra is of course (m2 + 8)p− 1 and therefore the
list of irreducible modules constructed in [3] (see also Tables 1 and 2) will be a complete list of
irreducible W(p)Dm-modules, up to equivalence. We obtained this result in [3] for m = 2.

Theorem 2.3. Assume that Conjecture 7.6 of [3] holds (verified by computer for small p). Then

dimA
(
W(p)D2

)
= 12p− 1,

and W(p)D2 has exactly 11p irreducible modules constructed explicitly in [3].
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Next we shall see that for general m the inequality (2.1) is also related to certain constant
term combinatorial identities which are more complicated than the identities which appear in [3].

Note thatW(p)Dm contains a subalgebra generated by ω and H(2). As in [3], we denoted this

subalgebra by M(1)
+

since it is a Z2 orbifold of the singlet vertex algebra M(1) [1], which is

generated by ω and H = Qe−α. We also determined the structure of Zhu’s algebra A(M(1)
+

).
The next result is again taken from [3].

Proposition 2.4.

(1) Inside the Zhu algebra A(M(1)
+

) we have the following relations:([
H(2)

]
− fp([ω])

)
∗
([
H(2)

]
− rp([ω])

)
= 0,

where rp ∈ C[x], deg rp ≤ 3p− 1, and

fp(x) = (−1)p
(4p)3p−1(2p)!

(4p− 1)!(3p− 1)!p!

3p−1∏
i=1

(x− hi,1).

(2) Assume that Conjecture A.4 holds, then in A(M(1)
+

)

`p([ω]) ∗
([
H(2)

]
− fp([ω])

)
= 0,

where

`p(x) =

p∏
i=1

(x− h4p−i,1)

2p∏
i=1

(x− h3p+1/2−i,1).

Let A0(W(p)Dm) be the subalgebra of A(W(p)Dm) generated by [ω] and [H(2)]. Let
A1(W(p)Dm) = A0(W(p)Dm).[U (m)].

Lemma 2.5. In A(W(p)Dm), we have [U (m)] ∗ [U (m)] ∈ A0(W(p)Dm). Moreover, A(W(p)Dm)
is a Z2-graded algebra

A
(
W(p)Dm

)
= A0

(
W(p)Dm

)
⊕A1

(
W(p)Dm

)
.

Proof. First we notice that

E(m) ∗ E(m) = F (m) ∗ F (m) = 0, E(m) ∗ F (m), F (m) ∗ E(m) ∈M(1),

which implies that U (m) ∗ U (m) ∈M(1)
+

. The proof follows. �

For technical reasons we need to recall some informations on lowest weights of irreducible
modules. Since Zhu’s algebra A(W(p)Dm) is commutative (see below), its irreducible modules
are 1-dimensional. Then applying Zhu’s algebra theory we see that all irreducible A(W(p)Dm)-
modules should be parameterized by its lowest weights with respect to (L(0), H(2)(0), U (m)(0)).
The lowest weights of irreducibleW(p)Dm-module constructed in [3] can be found in the following
two tables, where

φ(t) = (−1)
m(m−1)p

2

m−1∏
l=0

(
t+ pl

(m+ 1)p− 1

)
((m+ 1)p− 1)!((l + 1)p)!

((m+ l + 1)p− 1)!p!
,

σ =
[

1
2( 1+i −1+i

1+i 1−i )
]
∈ PSL(2,C),

and the number ` is defined as in [2, Lemma 4.8].
By the above two tables and standard arguments we infer:
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Table 1. Irreducible W(p)Dm-modules: m = 2k.

module M L(0) H(2)(0) U (m)(0)

Λ(i)+
0 hi,1 0 0

Λ(i)−0 hi,3 −2fp(hi,3) 0

Λ(i)+
j
∼= Λ(i)−j hi,2j+1 fp(hi,2j+1) 0

Λ(i)+
m hi,m+1 fp(hi,m+1) (2m)!

m! φ(−mp+ i− 1)

Λ(i)−m hi,m+1 fp(hi,m+1) − (2m)!
m! φ(−mp+ i− 1)

Π(i)+
j
∼= Π(i)−j hp+i,2j+1 fp(hp+i,2j+1) 0

R(i, j, k) h`+1−i/m,1 fp(h`+1−i/m,1) 0

R(j)σ h3p+1/2−j,1 − 1
2fp(h3p+1/2−j,1) im(2m)!

2m−1m!φ(3p− 1/2− j)
R(j)hσ h3p+1/2−j,1 − 1

2fp(h3p+1/2−j,1) − i
m(2m)!

2m−1m!φ(3p− 1/2− j)

Table 2. Irreducible W(p)Dm-modules: m = 2k + 1.

module M L(0) H(2)(0) U (m)(0)

Λ(i)+
0 hi,1 0 0

Λ(i)−0 hi,3 −2fp(hi,3) 0

Λ(i)+
j
∼= Λ(i)−j hi,2j+1 fp(hi,2j+1) 0

Π(i)+
j
∼= Π(i)−j hp+i,2j+1 fp(hp+i,2j+1) 0

Π(i)+
m hp+i,m+2 fp(hp+i,m+2) (2m)!

m! φ(−mp+ i− 1)

Π(i)−m hp+i,m+2 fp(hp+i,m+2) − (2m)!
m! φ(−mp+ i− 1)

R(i, j, k) h`+1−i/m,1 fp(h`+1−i/m,1) 0

R(j)σ h3p+1/2−j,1 − 1
2fp(h3p+1/2−j,1) im(2m)!

2m−1m!φ(3p− 1/2− j)
R(j)hσ h3p+1/2−j,1 − 1

2fp(h3p+1/2−j,1) − i
m(2m)!

2m−1m!φ(3p− 1/2− j)

Lemma 2.6. We have the following relation in A(W(p)Dm):[
H(2)

]
∗
[
U (m)

]
=
[
U (m)

]
∗
[
H(2)

]
= hp([ω])

[
U (m)

]
,

where hp(x) is a polynomial of degree at most 3p − 1, and satisfies the following interpolation
conditions:

hp(hi,m+1) = fp(hi,m+1), hp(h3p+1/2−j,1) = −1
2fp(h3p+1/2−j,1),

for i = 1, . . . , p, j = 1, . . . , 2p. In particular, Zhu’s algebra A(W(p)Dm) is commutative.

Proof. We use the above tables and apply both vectors in the equation on lowest weight vectors
of modules. �

Next, for a, b ∈ W(p) we define

a◦̃b = Resz
(1 + z)deg(a)

z3
Y (a, z)b and a◦̃kb = Resz

(1 + z)deg(a)

zk
Y (a, z)b.

Lemma 2.7. Assume that Conjecture A.3 holds for m ≥ 3 and that Conjecture A.4 holds for
m = 2. Then in A(W(p)Dm),

gp([ω]) ∗
[
U (m)

]
= 0,
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where

gp(x) =

p∏
i=1

(x− hi,m+1)

2p∏
i=1

(x− h3p+1/2−i,1).

In particular,

dimA1

(
W(p)Dm

)
≤ 3p.

Proof. We assume that m ≥ 3, noticing that the case m = 2 has been treated in [3]. From the
structure of W(p) as a Virasoro module

U (m)◦̃H(2) = tpU
(m),

where tp ∈ U(V ir−). Then

Qm
(
e−mα◦̃H(2)

)
= tpQ

me−mα.

We see that there exists a polynomial gp(x) of degree at most 3p, such that

gp([ω]) ∗
[
U (m)

]
= 0

in A(W(p)Dm), and[
Qm
(
e−mα◦̃H(2)

)]
= gp([ω]) ∗ [Qme−mα]

in A(M(1)). By evaluating the left hand side on known irreducible W(p)Dm-modules we see
that

gp(x) = Cp

p∏
i=1

(x− hi,m+1)

2p∏
i=1

(x− h3p+1/2−i,1)

for some constant Cp.
As in our previous papers we shall relate evaluation of the constant Cp with action of certain

elements of M(1) on lowest weight M(1)-modules. These highest weight modules are realized
as modules M(1, λ) for the Heisenberg vertex algebra M(1) (remember that M(1) ⊂M(1)).

So let vλ be a lowest weight vector in the M(1, λ) and let t = 〈λ, α〉. Then we get

o
(
Qm
(
e−mα◦̃H(2)

))
vλ

= Resx0,x1,...,xm+2

(1 + x0)m
2p+mp−(t+1)m

x−4mp+3
0 (x1 · · ·xm+2)4p

(1 + x1)t · · · (1 + xm+2)t

× (x0 − xm+1)−2mp(x0 − xm+2)−2mp
∏

1≤i<j≤m+2

(xi − xj)2p
m∏
i=1

(xi − x0)−2mp.

It follows from Conjecture A.3 that Cp is nonzero. �

Remark 2.8. Notice that the previous lemma generalizes our result from [3]. There we proved
that for m = 2, `p([ω]) ∗ [U (2)] = 0. Observe that `p = gp only for m = 2.

Now we want to calculate upper bound for dimA1(W(p)Dm).
Using a similar calculation as above, we have[

U (m)◦̃U (m)
]

= kp([ω])
([
H(2)

]
− fp([ω])

)
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+ lp([ω])

p∏
i=1

([ω]− hi,1)

p−1∏
i=1

([ω]− hmp+p+i,1)

m2p∏
i=1

(
[ω]− h

p+
i
m ,1

)
,

and [
U (m)◦̃5U (m)

]
= k̃p([ω])

([
H(2)

]
− fp([ω])

)
+ l̃p([ω])

p∏
i=1

([ω]− hi,1)

p−1∏
i=1

(
[ω]− hmp+p+i,1

)m2p∏
i=1

(
[ω]− h

p+
i
m ,1

)
,

where kp(x), k̃p(x), lp(x), l̃p(x) ∈ C[x], and

deg lp ≤ (m− 2)(p− 1), deg l̃p ≤ (m− 2)(p− 1) + 1.

By the proof of [15, Lemma 2.1.3], we get

U (m)◦̃U (m) = Resx
(1 + x)m

2p+mp−m(2 + x)

x3
Y (e−mα, x)Q2me−mα,

and

U (m)◦̃5U (m) = Resx
(1 + x)m

2p+mp−m(2 + 3x+ 3x2 + x3)

x5
Y (e−mα, x)Q2me−mα.

Hence

o
(
U (m)◦̃U (m)

)
vλ = Hp,m(t)vλ and o

(
U (m)◦̃5U (m)

)
vλ = H̃p,m(t)vλ,

where

Hp,m(t) = Resx0,...,x2m
(1 + x0)m

2p+mp−(t+1)m(2 + x0)

x2m2p+3
0

(x1 · · ·x2m)−2mp

×
2m∏
i=1

(1 + xi)
t

∏
1≤i<j≤2m

(xi − xj)2p
2m∏
i=1

(
1− xi

x0

)−2mp

,

and

H̃p,m(t) = Resx0,·,x2m
(1 + x0)m

2p+mp−(m+1)t
(
2 + 3x0 + 3x2

0 + x3
0

)
x2m2p+5

0

(x1 · · ·x2m)−2mp

×
2m∏
i=1

(1 + xi)
t

∏
1≤i<j≤2m

(xi − xj)2p
2m∏
i=1

(
1− xi

x0

)−2mp

.

We can show that for small values of (m, p)

Hp,m(t) = hp,m(t)

(
t

p

)(
t+ 1− p

p

)(
t− (m+ 1)p

p− 1

)(
t+mp

p− 1

)m2p∏
i=1

(
(t+ 1− p)2 − i2

m2

)
,

H̃p,m(t) = h̃p,m(t)

(
t

p

)(
t+ 1− p

p

)(
t− (m+ 1)p

p− 1

)(
t+mp

p− 1

)m2p∏
i=1

(
(t+ 1− p)2 − i2

m2

)
,

where hp,m and h̃p,m are given in the table (up to a scalar factor):
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(m, p) hp,m(t) h̃p,m(t)

(2, 1) 1 4t2 + 107

(2, 2) 1 4t2 − 8t+ 175

(2, 3) 1 4t2 − 16t+ 219

(2, 4) 1 4t2 − 24t+ 239

(3, 1) 1 9t2 + 362

(3, 2) t2 − 2t− 30 549t4 − 2196t3 + 57020t2 − 109648t− 2118976

(3, 3) 26141t4 − 104564t3 − 576380t2 4977t6 − 29862t5 + 495920t4 − 1784600t3

+ 1361888t− 3720960 − 13382432t2 + 30254432t− 84341760

Conjecture 2.9. Polynomials hp,m and h̃p,m are relatively prime.

This yields the following result:

Lemma 2.10. Assume that Conjecture 2.9 holds. Then in A(W(p)Dm), we have

kp([ω])
([
H(2)

]
− fp([ω])

)
+

p∏
i=1

([ω]− hi,1)

p−1∏
i=1

([ω]− hmp+p+i,1)

m2p∏
i=1

(
[ω]− h

p+
i
m ,1

)
= 0

for some kp(x) ∈ C[x].

This lemma and the structure of Zhu’s algebra A(M(1)
+

) imply:

Proposition 2.11. Assume that Conjectures 2.9 and A.3 hold. Then

dimA0

(
W(p)Dm

)
≤ m2p+ 5p− 1.

Now we are in a position to give the first main result of this paper.

Theorem 2.12. Assume that Conjectures 2.9, A.3 and A.4 hold. Then

(1) Tables 1 and 2 give a complete list of irreducible W(p)Dm-modules. In particular, W(p)Dm

has (m2 + 7)p non-isomorphic irreducible modules,

(2) Zhu’s algebra A(W(p)Dm) is a commutative algebra of dimension (m2 + 8)p− 1.

Proof. As we discussed above it is enough to prove inequality (2.1). We proved in [3] that
A(W(p)Dm) is commutative. We will compute the dimension of A(W(p)Dm). By Lemma 2.7
and Proposition 2.11, we get that

dimA
(
W(p)Dm

)
= dimA0

(
W(p)Dm

)
+ dimA1

(
W(p)Dm

)
≤ m2p+ 5p− 1 + 3p =

(
m2 + 8

)
p− 1.

The proof follows. �

3 On classif ication of irreducible W(p)Am-modules

In our paper [2] we constructed 2m2p irreducible W(p)Am-modules and conjectured that these
modules provide a complete list of irreducibleW(p)Am-modules. In the case m = 2 we presented
a proof which is based on certain constant term identities. These identities are difficult to prove
in general, but using Mathematica they can be verified for p small. So our approach can be
considered as an algorithm that reduces problems in representation theory to checking something
purely computational.
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In this section we shall extend our results of [2] to general m and thus provide an algorithm
for a classification of irreducible W(p)Am-modules.

Let us first recall some results from [2]. Set F (m) = e−mα, E(m) = Q2me−mα, H = Qe−α.
Then W(p)Am is strongly generated by E(m), F (m), H and ω. Hence, Zhu’s algebra A(W(p)Am)
is generated by [ω], [H], [E(m)] and [F (m)].

It is also important to notice that the restriction of the automorphism Ψ of W(p) (cf. [2]) to
W(p)Am gives an automorphism of order two such that

Ψ(F (m)) = E(m), Ψ(H) = −H.

In [2] we constructed 2m2p irreducible W(p)Am-modules. A list of irreducible W(p)Am-
modules and their lowest weights with respect to (L(0), H(0)) are given in the following tables:

Table 3. Irreducible W(p)Am -modules: m = 2k.

module M lowest weights dimM(0)

Λ(i)0 (hi,1, 0) 1

Λ(i)+
j

(
hi,2j+1,

(−2jp−1+i
2p−1

))
1

Λ(i)−j
(
hi,2j+1,−

(−2jp−1+i
2p−1

))
1

Λ(i)m
(
hi,2k+1,±

(−2kp−1+i
2p−1

))
2

Π(i)+
j

(
hp+i,2j+1,

(−(2j−1)p−1+i
2p−1

))
1

Π(i)−j
(
hp+i,2j+1,−

(−(2j−1)p−1+i
2p−1

))
1

R(i, j, k)
(
h`+1−i/m,1,

(`− i
m

2p−1

))
1

Table 4. irreducible W(p)Am -modules: m = 2k + 1.

module M lowest weights dimM(0)

Λ(i)0 (hi,1, 0) 1

Λ(i)+
j

(
hi,2j+1,

(−2jp−1+i
2p−1

))
1

Λ(i)−j
(
hi,2j+1,−

(−2jp−1+i
2p−1

))
1

Π(i)m
(
hp+i,2k+3,±

(−(2k+1)p−1+i
2p−1

))
2

Π(i)+
j

(
hp+i,2j+1,

(−(2j−1)p−1+i
2p−1

))
1

Π(i)−j
(
hp+i,2j+1,−

(−(2j−1)p−1+i
2p−1

))
1

R(i, j, k)
(
h`+1−i/m,1,

(`− i
m

2p−1

))
1

Remark 3.1. When m = 2k, the action of A(W(p)Am) on the lowest weight space of Λ(i)m is
given by

H(0)e
−mα/2+

(i−1)α
2p =

(
−mp− 1 + i

2p− 1

)
e
−mα/2+

(i−1)α
2p ,

H(0)Qme
−mα/2+

(i−1)α
2p = −

(
−mp− 1 + i

2p− 1

)
Qme

−mα/2+
(i−1)α

2p ,

E(m)(0)e
−mα/2+

(i−1)α
2p = am,pQ

me
−mα/2+

(i−1)α
2p ,

F (m)(0)Qme
−mα/2+

(i−1)α
2p = bm,pe

−mα/2+
(i−1)α

2p ,

where am,p, bm,p are nonzero constants. Similar result holds for Π(i)m for m = 2k + 1.
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So we constructed (2m2−1)p irreducible modules whose lowest components are 1-dimensional
and p irreducible modules with 2-dimensional lowest components. Since these lowest components
are irreducible modules for Zhu’s algebra A(W(p)Am) and since A(W(p)Am) has (p − 1) 2-di-
mensional indecomposable modules constructed from logarithmic W(p)-modules we get:

dimA
(
W(p)Am

)
≥
(
2m2 − 1

)
p+ 4p+ p− 1 =

(
2m2 + 4

)
p− 1.

So if we prove that in the above relation equality holds, we get the classification of irreducible
modules.

Lemma 3.2. Assume that dimA(W(p)Am) ≤ (2m2 + 4)p − 1. Then the above two tables give
a complete list of irreducible W(p)Am-modules.

Let A0(W(p)Am) be the subalgebra of A(W(p)Am) generated by [ω] and [H], and let
Aω(W(p)Am) be the subalgebra generated by [ω]. Let

A1

(
W(p)Am

)
:= A0

(
W(p)Am

)
.E(m), A−1

(
W(p)Am

)
:= A0

(
W(p)Am

)
.F (m).

As in Lemma 2.5 we have:

Lemma 3.3. In A(W(p)Am), we have [E(m)]2 = [F (m)]2 = 0, [E(m)] ∗ [F (m)] ∈ A0(W(p)Am),
and [E(m)] ∗ [F (m)] + [F (m)] ∗ [E(m)] = gp([ω]) for some fixed gp(x) ∈ C[x].

In particular,

A
(
W(p)Am

)
:= A−1

(
W(p)Am

)
⊕A0

(
W(p)Am

)
⊕A1

(
W(p)Am

)
.

Lemma 3.4.

[H] ∗
[
F (m)

]
= up([ω]) ∗

[
F (m)

]
,

where the polynomial up with deg up ≤ p− 1 is uniquely determined by up(hi,m+1) =
(−mp−1+i

2p−1

)
,

for 1 ≤ i ≤ p. Similarly, we have

[H] ∗
[
E(m)

]
= −up([ω]) ∗

[
E(m)

]
.

Proof. The first assertion follows directly by evaluating this relation on lowest weight spaces
of irreducible W(p)Am-modules. The second assertion follows by applying the automorphism
Ψ ∈ Aut(W(p)Am) such that

Ψ
(
F (m)

)
= E(m), Ψ(H) = −H. �

Similarly, we have[
H ◦ F (m)

]
= vp([ω]) ∗

[
F (m)

]
with deg vp ≤ p. By evaluating this relation on lowest components of modules Λ(i)−, we get
that

vp(x) = kp

p∏
i=1

(x− hi,m+1).

It follows from Conjecture A.2 that kp is nonzero. Hence we have
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Proposition 3.5. Assume that Conjecture A.2 holds. Then in A(W(p)Am), we have

p∏
i=1

([ω]− hi,m+1)
[
F (m)

]
= 0 and

p∏
i=1

([ω]− hi,m+1)
[
E(m)

]
= 0.

In particular,

dimAi
(
W(p)Am

)
≤ p for i = −1, 1.

Now we shall calculate the upper bound for dimA0(W(p)Am).
By the proof of [15, Lemma 2.1.3],

E(m)◦̃F (m) − F (m)◦̃E(m) = Resx
(1 + x)m

2p+mp−m

x2
Y (e−mα, x)Q2me−mα,

E(m)◦̃4F (m) − F (m)◦̃4E(m) = Resx
(1 + x)m

2p+mp−m(2 + 2x+ x2)

x4
Y (e−mα, x)Q2me−mα.

On the other hand, by evaluating this relation on lowest components of W(p)Am-modules we
get

Lemma 3.6.

Resx0,x1,...,x2m
(1 + x0)m

2p+mp−m(t+1)

x−2m2p+2
0 (x1 · · ·x2m)2mp

2m∏
i=1

(1 + xi)
t

∏
1≤i<j≤2m

(xi − xj)2p
2m∏
i=1

(xi − x0)−2mp

= fp,m(t)

(
t− (m+ 1)p

p− 1

)(
t+mp

p− 1

) m2p∏
i=−m2p

(t+ 1− p− i
m),

Resx0,x1,...,x2m
(1 + x0)m

2p+mp−m(2 + 2x0 + x2
0)

x−2m2p+4
0 (x1 · · ·x2m)2mp

(1 + x0)−mt(1 + x1)t · · · (1 + x2m)t

×
∏

1≤i<j≤2m

(xi − xj)2p
2m∏
i=1

(xi − x0)−2mp

= f̃p,m(t)

(
t− (m+ 1)p

p− 1

)(
t+mp

p− 1

) m2p∏
i=−m2p

(t+ 1− p− i
m),

where fp,m(t), f̃p(t) ∈ C[t], and

deg fp,m ≤ 2(m− 1)(p− 1), deg f̃p,m ≤ 2(m− 1)(p− 1) + 2,

and use it to obtain (after we switch to [ω] polynomials)[
E(m)◦̃F (m) − F (m)◦̃E(m)

]
=
[
F (m) ◦ E(m)

]
= sp,m([ω])

mp+2p−1∏
i=2p

([ω]− hi,1)
∏

1≤i≤m2p,m-i

(
[ω]− h

p+
i
m ,1

)
∗ [H],

and [
E(m)◦̃4F (m) − F (m)◦̃4E(m)

]
= s̃p,m([ω])

mp+2p−1∏
i=2p

([ω]− hi,1)
∏

1≤i≤m2p,m-i

(
[ω]− h

p+
i
m ,1

)
∗ [H],

where sp,m(x), s̃p,m(x) ∈ C[x], deg sp,m ≤ (m− 1)(p− 1), deg s̃p,m ≤ (m− 1)(p− 1) + 1. Observe
that s-polynomials are of half degree of f -polynomials.
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Conjecture 3.7. Polynomials fp,m(t) and f̃p,m are relatively prime.

The next table gives evidence for the conjecture

(m, p) fp,m(t) f̃p,m(t)

(2, 1) 1 4t2 + 85

(2, 2) 17t2 − 34t+ 224 4t4 − 16t3 + 121t2 − 210t+ 1568

(2, 3) 233t4 − 1864t3 + 6539t2 − 11244t+ 216216 764t6 − 9168t5 + 69807t4 − 313976t3

+ 895137t2 − 1459908t+ 34378344

(2, 4) 811t6 − 14598t5 + 128467t4 − 665724t3 116908t8 − 2805792t7 + 32179967t6

+ 1401172t2 + 422832t+ 168030720 −225709614t5 + 1213477115t4 − 5261506044t3

+ 9465801460t2 + 10976862000t+ 1491272640000

(3, 1) 1 9t2 + 320

(3, 2) 26141t4 − 104564t3 − 576380t2 4977t6 − 29862t5 + 495920t4 − 1784600t3

+ 1361888t− 3720960 − 13382432t2 + 30254432t− 84341760

If we assume that Conjecture 3.7 holds, then sp,m(x) and s̃p,m(x) are relatively prime.

Proposition 3.8. Assume that Conjecture 3.7 holds. Then in A(W(p)Am), we have

(1)

mp+2p−1∏
i=2p

([ω]− hi,1)
∏

1≤i≤m2p,m-i

(
[ω]− h

p+
i
m ,1

)
∗ [H] = 0,

(2)

p∏
i=1

([ω]− hi,1)

p−1∏
i=1

([ω]− hmp+p+i,1)

m2p∏
i=1

(
[ω]− h

p+
i
m ,1

)
= 0.

In particular,

dimAω
(
W(p)Am

)
≤
(
m2 + 2

)
p− 1, dimA0

(
W(p)Am

)
≤
(
2m2p+ 2

)
p− 1.

Proof. The first assertion follows from the arguments which we explained above. The second
assertion follows by multiplying first identity by [H]. �

Theorem 3.9. Assume that Conjectures 3.7 and A.2 (or alternatively Conjectures 3.7 and A.1)
hold. Then

(1) the above two tables give a complete list of irreducible W(p)Am-modules, in particular,
W(p)Am has 2m2p non-isomorphic irreducible modules,

(2) Zhu’s algebra A(W(p)Am) is of dimension (2m2 + 4)p− 1,

(3) the center of Zhu’s algebra A(W(p)Am) is Aω(W(p)Am) and it has dimension (m2+2)p−1.

Proof. It suffices to prove the second assertion. By using Propositions 3.5 and 3.8 we get

dimA
(
W(p)Am

)
= dimA−1

(
W(p)Am

)
+ dimA0

(
W(p)Am

)
+ dimA1

(
W(p)Am

)
≤
(
2m2p+ 2

)
p− 1 + 2p =

(
2m2 + 4

)
p− 1.

Now assertion follows from Lemma 3.2. �

Remark 3.10. In fact the classification of irreducible W(p)Am-modules can also be derived
from the classification of irreducible W(p)Dm-modules by the general properties of orbifold
vertex operator algebra.
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A Several conjectures about constant term identities

In this section we list several constant term identities, although strictly speaking they are written
as residues. Let’s start by recalling our identity from [2]:

Conjecture A.1 (constant term identity of type Am, I).

Resx0,x1,...,xm+1

(1 + x0)2p−1−t
m+1∏
i=1

(1 + xi)
t

x2+2p
0 (x1 · · ·xm+1)2mp

m+1∏
i=1

(
1− xi

x0

)−2p ∏
1≤i<j≤m+1

(xi − xj)2p

= λp,m

(
t+mp

2(m+ 1)p− 1

)m−1∏
i=1

(
t+ (i− 1)p

2ip− 1

)
,

where λp,m 6= 0.

In Sections 2 and 3, we need the following two conjectures:

Conjecture A.2 (constant term identity of type Am, II).

Resx0,x1,...,xm+1

(1 + x0)m
2p+mp−m(t+1)

x−2mp+2
0 (x1 · · ·xm+1)2mp

m+1∏
i=1

(1 + xi)
t(x0 − xm+1)−2mp

×
∏

1≤i<j≤m+1

(xi − xj)2p
m∏
i=1

(xi − x0)−2mp

= −2Resx0,x1,...,xm+1

(1 + x0)m
2p+mp−m(t+1)

x−2mp+3
0 (x1 · · ·xm+1)2mp

m+1∏
i=1

(1 + xi)
t(x0 − xm+1)−2mp

×
∏

1≤i<j≤m+1

(xi − xj)2p
m∏
i=1

(xi − x0)−2mp

= µp,m

(
t− (m+ 1)p+ 1

p

)(
t+mp

p

)m−1∏
l=0

(
t+ pl

(m+ 1)p− 1

)
,

where µp,m is a nonzero constant.

We verified this conjecture using Mathematica 9.0 for m = 2, p ≤ 12; m = 3, p ≤ 6; m = 4,
p ≤ 4.

Conjecture A.3 (constant term identity of type Dm, m > 2).

Resx0,x1,...,xm+2

(1 + x0)m
2p+mp−(m+1)t

x−4mp+3
0 (x1 · · ·xm+2)4p

m+2∏
i=1

(1 + xi)
t

× (x0 − xm+1)−2mp(x0 − xm+2)−2mp
∏

1≤i<j≤m+2

(xi − xj)2p
m∏
i=1

(xi − x0)−2mp

= −Resx0,x1,...,xm+2

(1 + x0)m
2p+mp−(m+1)t

x−4mp+4
0 (x1 · · ·xm+2)4p

m+2∏
i=1

(1 + xi)
t

× (x0 − xm+1)−2mp(x0 − xm+2)−2mp
∏

1≤i<j≤m+2

(xi − xj)2p
m∏
i=1

(xi − x0)−2mp
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= αp,m

(
t+ p+ 1

2

2p

)(
t− p+ 1

2

2p

)(
t− (m+ 1)p+ 1

p

)(
t+mp

p

)m−1∏
l=0

(
t+ pl

(m+ 1)p− 1

)
,

where m ≥ 3 and αp,m is a nonzero constant.

We verified this conjecture using Mathematica 9.0 for m = 3, p ≤ 4; m = 4, p ≤ 2.
Note that the Conjecture A.3 does not hold for m = 2. Instead we have the following

conjecture (cf. [3]).

Conjecture A.4 ([3, Conjecture 7.6], constant term identity of type D2, I)).

Resx0,x1,x2,x3,x4
(1 + x0)6p−2−2t

x−8p+3
0 (x1x2x3x4)4p

(1 + x1)t(1 + x2)t(1 + x3)t(1 + x4)t

× (x0 − x1)−4p(x0 − x2)−4p(x3 − x0)−4p
∏

1≤i<j≤4

(xi − xj)2p ∂4p−1
x0

(4p− 1)!
x−1

4 δ

(
x0

x4

)

= Ap

(
t+ p+ 1/2

4p

)(
t+ 2p

4p− 1

)(
t

4p− 1

)
,

where Ap is a nonzero constant.

It is very interesting to note that Conjectures A.2 and A.3 have no common natural genera-
lization. We close this paper with another beautiful constant term identity of type D2 which we
have verified for p ≤ 6:

Conjecture A.5 (Constant term identity of type D2, II).

Resx0,x1,x2,x3,x4
(1 + x0)6p−2−2t

x−8p+2
0 (x1x2x3x4)4p

(1 + x1)t(1 + x2)t(1 + x3)t(1 + x4)t

× (x0 − x1)−4p(x0 − x2)−4p(x3 − x0)−4p(x4 − x0)−4p
∏

1≤i<j≤4

(xi − xj)2p

= Dp

(
t+ 2p

6p− 1

)(
t+ p

4p− 1

)(
t

2p− 1

)
,

where Dp is a nonzero constant.

Remark A.6. In all conjectural identities we expect constants λp,m, µp,m, αp,m, Ap and Dp to
be expressible in terms of quotients of binomial coefficients which depend on m and p linearly.
This is further supported by our numerical calculations.
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