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Abstract. In the classical Kostant–Souriau prequantization procedure, the Poisson algebra
of a symplectic manifold (M,ω) is realized as the space of infinitesimal quantomorphisms
of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to
the Kostant–Souriau quantization process in which the prequantization circle bundle and
metaplectic structure for (M,ω) are replaced by a metaplectic-c prequantization. They
proved that metaplectic-c quantization can be applied to a larger class of manifolds than the
classical recipe. This paper presents a definition for a metaplectic-c quantomorphism, which
is a diffeomorphism of metaplectic-c prequantizations that preserves all of their structures.
Since the structure of a metaplectic-c prequantization is more complicated than that of
a circle bundle, we find that the definition must include an extra condition that does not have
an analogue in the Kostant–Souriau case. We then define an infinitesimal quantomorphism
to be a vector field whose flow consists of metaplectic-c quantomorphisms, and prove that
the space of infinitesimal metaplectic-c quantomorphisms exhibits all of the same properties
that are seen for the infinitesimal quantomorphisms of a prequantization circle bundle. In
particular, this space is isomorphic to the Poisson algebra C∞(M).
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1 Introduction

Recall that a prequantization circle bundle for a symplectic manifold (M,ω) consists of a cir-
cle bundle Y → M and a connection one-form γ on Y such that dγ = 1

i~ω. The Kostant–
Souriau quantization recipe with half-form correction requires a prequantization circle bundle
and a choice of metaplectic structure for (M,ω).

Souriau [5] defined a quantomorphism between two prequantization circle bundles (Y1, γ1)→
(M1, ω1) and (Y2, γ2) → (M2, ω2) to be a diffeomorphism K : Y1 → Y2 such that K∗γ2 = γ1.
This condition implies that K is equivariant with respect to the principal circle actions. Souriau
then defined the infinitesimal quantomorphisms of a prequantization circle bundle (Y, γ) to
be the vector fields on Y whose flows are quantomorphisms. Kostant [2] proved that the
space of infinitesimal quantomorphisms, which we denote Q(Y, γ), is isomorphic to the Poisson
algebra C∞(M).

The metaplectic-c group is a circle extension of the symplectic group. Metaplectic-c quan-
tization, which was developed by Robinson and Rawnsley [3], is a variant of Kostant–Souriau
quantization in which the prequantization bundle and metaplectic structure are replaced by
a metaplectic-c structure (P,Σ) and a prequantization one-form γ. Robinson and Rawnsley
proved that metaplectic-c quantization can be applied to all systems that admit metaplectic
quantizations, and to some where the Kostant–Souriau process fails.

In Section 2, we present an explicit construction of the isomorphism from Q(Y, γ) to C∞(M).
In Section 3, after describing the metaplectic-c prequantization (P,Σ, γ), we define a metaplectic-
c quantomorphism, which is a diffeomorphism of metaplectic-c prequantizations that preserves
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all of their structures. Our definition is based on Souriau’s, but includes a condition that is
unique to the metaplectic-c context. We then use the metaplectic-c quantomorphisms to defi-
ne Q(P,Σ, γ), the space of infinitesimal metaplectic-c quantomorphisms of (P,Σ, γ). We show
that every property that was proved for Q(Y, γ) has a parallel for Q(P,Σ, γ). In particular,
Q(P,Σ, γ) is isomorphic to the Poisson algebra C∞(M). The construction in Section 2 is used
as a model for the proofs in Section 3. We indicate when the calculations are analogous, and
when the metaplectic-c case requires additional steps.

Some global remarks concerning notation: for any vector field ξ, the Lie derivative with
respect to ξ is written Lξ. The space of smooth vector fields on a manifold P is denoted
by X (P ). Given a smooth map F : P → M and a vector field ξ ∈ X (P ), we write F∗ξ for the
pushforward of ξ if and only if the result is a well-defined vector field on M . If P is a bundle
over M , Γ(P ) denotes the space of smooth sections of P , where the base is always taken to be
the symplectic manifold M . Planck’s constant will only appear in the form ~.

2 Kostant–Souriau quantomorphisms

In this section, after reviewing the Kostant–Souriau prequantization of a symplectic mani-
fold (M,ω), we construct a Lie algebra isomorphism from C∞(M) to the space of infinitesimal
quantomorphisms. As we have already noted, the fact that these algebras are isomorphic was
originally stated by Kostant [2] in the context of line bundles with connection. His proof can
be reconstructed from several propositions across Sections 2–4 of [2]. Kostant’s isomorphism is
also stated by Śniatycki [4], but much of the proof is left as an exercise. We are not aware of
a source in the literature for a self-contained proof that uses the language of principal bundles,
and this is one of our reasons for performing an explicit construction here.

The other goal of this section is to motivate the analogous constructions for a metaplectic-c
prequantization, which will be the subject of Section 3. Each result that we present for Kostant–
Souriau prequantization will have a parallel in the metaplectic-c case. When the proofs are
identical, we will simply refer back to the work shown here, thereby allowing Section 3 to focus
on those features that are unique to metaplectic-c structures.

2.1 Basic definitions and notation

2.1.1 Hamiltonian vector fields and the Poisson algebra

Let (M,ω) be a symplectic manifold. Given f ∈ C∞(M), define its Hamiltonian vector field
ξf ∈ X (M) by

ξfyω = df.

Define the Poisson bracket on C∞(M) by

{f, g} = −ω(ξf , ξg), ∀ f, g ∈ C∞(M).

These choices imply that

ξfg = {f, g}, ∀ f, g ∈ C∞(M).

A standard calculation establishes the following fact.

Lemma 2.1. For all f, g ∈ C∞(M), [ξf , ξg] = ξ{f,g}.
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2.1.2 Circle bundles and connections

Let Y
p−→M be a right principal U(1) bundle over a manifold M .

• For any λ ∈ U(1), let Rλ : Y → Y represent the right action by λ. That is, Rλ(y) = y · λ
for all y ∈ Y .

• For any θ ∈ u(1), the Lie algebra of U(1), let ∂θ be the vector field on Y with flow Rexp(tθ),
where t ∈ R. In particular, we will consider ∂2πi.

Let γ be a connection one-form on Y . By definition, γ is invariant under the right principal
action, and for all θ ∈ u(1), γ(∂θ) = θ. There is a two-form $ on M , called the curvature of γ,
such that dγ = p∗$.

For any ξ ∈ X (M), let ξ̃ be the lift of ξ to Y that is horizontal with respect to γ. That is,
p∗ξ̃ = ξ and γ(ξ̃) = 0. For any θ ∈ u(1), note that p∗∂θ = 0, which implies that p∗[ξ̃, ∂θ] =
[p∗ξ̃, p∗∂θ] = 0 and γ([ξ̃, ∂θ]) = −(p∗$)(ξ̃, ∂θ) = 0. Therefore [ξ̃, ∂θ] = 0 for all θ.

Associated to Y is a complex line bundle L over M , given by L = Y ×U(1) C. We write an
element of L as an equivalence class [y, z] with y ∈ Y and z ∈ C. There is a connection ∇ on L
that is constructed from the connection one-form γ through the following process.

• Given any s ∈ Γ(L), define the map s̃ : Y → C so that [y, s̃(y)] = s(p(y)) for all y ∈ Y .
Then s̃ has the equivariance property

s̃(y · λ) = λ−1s̃(y), ∀ y ∈ Y, λ ∈ U(1).

• Conversely, any map s̃ : Y → C with the above equivariance property can be used to
construct a section s of L by setting s(m) = [y, s̃(y)] for all m ∈ M and any y ∈ Y such
that p(y) = m.

• Let ξ ∈ X (M) be given, and let ξ̃ be its horizontal lift to Y . If s̃ : Y → C is an equivariant
map, then so is ξ̃s̃. This follows from the fact that [ξ̃, ∂θ] = 0 for all θ ∈ u(1).

• Define the connection ∇ on L so that for any ξ ∈ X (M) and s ∈ Γ(L), ∇ξs is the section
of L that satisfies

∇̃ξs = ξ̃s̃.

2.2 The prequantization circle bundle and its infinitesimal quantomorphisms

Definition 2.2. Let (M,ω) be a symplectic manifold. A prequantization circle bundle for (M,ω)

is a right principal U(1) bundle Y
p−→M , together with a connection one-form γ on Y satisfying

dγ = 1
i~p
∗ω.

Definition 2.3. Let (Y1, γ1)
p1−→ (M1, ω1) and (Y2, γ2)

p2−→ (M2, ω2) be prequantization circle
bundles for two symplectic manifolds. A diffeomorphism K : Y1 → Y2 is called a quantomor-
phism if K∗γ2 = γ1.

Let K : Y1 → Y2 be a quantomorphism. Notice that for any θ ∈ u(1), the vector field ∂θ
on Y1 is completely specified by the conditions γ1(∂θ) = θ and ∂θydγ1 = 0, and the same is true
on Y2. Since K∗γ2 = γ1, we see that K∗∂θ = ∂θ for all θ, and so K is equivariant with respect
to the principal circle actions.

Definition 2.4. Let (Y, γ)
p−→ (M,ω) be a prequantization circle bundle. An infinitesimal

quantomorphism of (Y, γ) is a vector field ζ ∈ X (Y ) whose flow φt on Y is a quantomorphism
from its domain to its range for each t. The space of infinitesimal quantomorphisms of (Y, γ) is
denoted by Q(Y, γ).



4 J. Vaughan

Let ζ ∈ X (Y ) have flow φt. The connection form γ is preserved by φt if and only if Lζγ = 0.
Therefore the space of infinitesimal quantomorphisms of (Y, γ) is

Q(Y, γ) = {ζ ∈ X (Y ) |Lζγ = 0}.

If K : Y1 → Y2 is a quantomorphism, then it induces a diffeomorphism (in fact, a symplec-
tomorphism) K ′ : M1 →M2 such that the following diagram commutes:

Y1
K //

p1
��

Y2

p2
��

M1
K′
//M2

This implies that for any ζ ∈ Q(Y, γ) with flow φt, there is a flow φ′t on M that satisfies
p ◦ φt = φ′t ◦ p. If ζ ′ is the vector field on M with flow φ′t, then p∗ζ = ζ ′. In other words,
elements of Q(Y, γ) descend via p∗ to well-defined vector fields on M .

2.3 The Lie algebra isomorphism

Let (Y, γ)
p−→ (M,ω) be a prequantization circle bundle. We will now present an explicit

construction of a Lie algebra isomorphism from C∞(M) to Q(Y, γ). Recall that the vector field
∂2πi on Y satisfies γ(∂2πi) = 2πi ∈ u(1) and p∗∂2πi = 0.

Lemma 2.5. For all f, g ∈ C∞(M),

[ξ̃f , ξ̃g] = ξ̃{f,g} −
1

2π~
p∗{f, g}∂2πi.

Proof. It suffices to show that

p∗[ξ̃f , ξ̃g] = p∗

(
ξ̃{f,g} −

1

2π~
p∗{f, g}∂2πi

)
and

γ([ξ̃f , ξ̃g]) = γ

(
ξ̃{f,g} −

1

2π~
p∗{f, g}∂2πi

)
.

Using Lemma 2.1, we see that

p∗

(
ξ̃{f,g} −

1

2π~
p∗{f, g}∂2πi

)
= ξ{f,g} = [ξf , ξg].

Since p∗ξ̃f = ξf and p∗ξ̃g = ξg, it follows that p∗[ξ̃f , ξ̃g] = [ξf , ξg]. Thus the first equation is
verified.

Next, note that

γ

(
ξ̃{f,g} −

1

2π~
p∗{f, g}∂2πi

)
=

1

i~
p∗{f, g},

and

γ([ξ̃f , ξ̃g]) = − 1

i~
(p∗ω)(ξ̃f , ξ̃g) =

1

i~
p∗{f, g}.

Therefore the second equation is also verified. �
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Lemma 2.6. The map E : C∞(M)→ X (Y ) given by

E(f) = ξ̃f +
1

2π~
p∗f∂2πi, ∀ f ∈ C∞(M)

is a Lie algebra homomorphism.

Proof. Let f, g ∈ C∞(M) be arbitrary. We need to show that

ξ̃{f,g} +
1

2π~
p∗{f, g}∂2πi =

[
ξ̃f +

1

2π~
p∗f∂2πi, ξ̃g +

1

2π~
p∗g∂2πi

]
.

Using Lemma 2.5, the left-hand side becomes

[ξ̃f , ξ̃g] + 2
1

2π~
p∗{f, g}∂2πi.

Expanding the right-hand side yields

[ξ̃f , ξ̃g] +

[
ξ̃f ,

1

2π~
p∗g∂2πi

]
+

[
1

2π~
p∗f∂2πi, ξ̃g

]
+

[
1

2π~
p∗f∂2πi,

1

2π~
p∗g∂2πi

]
.

The fourth term vanishes because ∂θ(p
∗f) = ∂θ(p

∗g) = 0 for any θ ∈ u(1). To evaluate the third
term, recall that that [∂θ, ξ̃] = 0 for any θ ∈ u(1) and ξ ∈ X (M). Therefore [∂2πi, ξ̃g] = 0, so
this term reduces to

− 1

2π~
(
ξ̃gp
∗f
)
∂2πi =

1

2π~
p∗{f, g}∂2πi.

By the same argument, the second term also reduces to

1

2π~
p∗{f, g}∂2πi.

Combining these results, we find that the right-hand side of the desired equation is[
ξ̃f , ξ̃g

]
+ 2

1

i~
p∗{f, g}∂2πi,

which equals the left-hand side. �

Lemma 2.7. For all f ∈ C∞(M), E(f) ∈ Q(Y, γ).

Proof. We need to show that LE(f)γ = 0. We calculate

LE(f)γ = E(f)ydγ + d(E(f)yγ) =
1

i~
p∗(ξfyω)− 1

i~
p∗df = 0. �

So far, we have shown that E : C∞(M)→ Q(Y, γ) is a Lie algebra homomorphism. We will
now construct a map F : Q(Y, γ) → C∞(M), and show that E and F are inverses. This will
complete the proof that C∞(M) and Q(Y, γ) are isomorphic.

Let ζ ∈ Q(Y, γ) be arbitrary. Then Lζγ = ζydγ + d(γ(ζ)) = 0. This implies that ∂θy(ζydγ +
d(γ(ζ))) = 0 for any θ ∈ u(1). Since dγ(ζ, ∂θ) = 1

i~(p∗ω)(ζ, ∂θ) = 0, it follows that ∂θyd(γ(ζ)) =
L∂θγ(ζ) = 0. We can therefore define the map F : Q(Y, γ)→ C∞(M) so that

− 1

i~
p∗F (ζ) = γ(ζ), ∀ ζ ∈ Q(Y, γ).

Theorem 2.8. The map E : C∞(M)→ Q(Y, γ) is a Lie algebra isomorphism with inverse F .
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Proof. Let f ∈ C∞(M) and ζ ∈ Q(Y, γ) be arbitrary. We will show that F (E(f)) = f and
E(F (ζ)) = ζ. Using the definitions of E and F , we have

− 1

i~
p∗F (E(f)) = γ(E(f)) = γ

(
ξ̃f +

1

2π~
p∗f∂2πi

)
= − 1

i~
p∗f.

This implies that F (E(f)) = f .

To show that E(F (ζ)) = ζ, it suffices to show that γ(E(F (ζ))) = γ(ζ) and p∗E(F (ζ)) = p∗ζ.
By definition,

E(F (ζ)) = ξ̃F (ζ) +
1

2π~
p∗F (ζ)∂2πi = ξ̃F (ζ) +

1

2πi
γ(ζ)∂2πi.

It is immediate that γ(E(F (ζ))) = γ(ζ), and that p∗E(F (ζ)) = ξF (ζ). Observe that

ζyp∗ω = i~ζydγ = −i~d(γ(ζ)) = p∗(dF (ζ)),

having used Lζγ = 0. Therefore (p∗ζ)yω = dF (ζ), which implies that p∗ζ = ξF (ζ). Thus
p∗E(F (ζ)) = p∗ζ. This concludes the proof that E(F (ζ)) = ζ.

Since E and F are inverses, and we know from Lemma 2.7 that E : C∞(M)→ Q(Y, γ) is a Lie
algebra homomorphism, it follows that E and F are the desired Lie algebra isomorphisms. �

The primary goal of Section 3 is to duplicate the above construction for the infinitesimal quan-
tomorphisms of a metaplectic-c prequantization. However, before moving on to the metaplectic-c
case, we will show how the map E can be used to represent the elements of C∞(M) as operators
on the space of sections of the prequantization line bundle for (M,ω). This result will also have
an analogue in the metaplectic-c case, which we will discuss in Section 3.5.

2.4 An operator representation of C∞(M)

Let (L,∇) be the complex line bundle with connection associated to (Y, γ). One of the goals
of the Kostant–Souriau prequantization process is to produce a representation r : C∞(M) →
End Γ(L). To be consistent with quantum mechanics in the case of a physically realizable system,
the map r is required to satisfy the following axioms:

(1) r(1) is the identity map on Γ(L),

(2) for all f, g ∈ C∞(M), [r(f), r(g)] = i~r({f, g}) (up to sign convention).

These axioms are based on an analysis by Dirac [1] of the relationship between classical and
quantum mechanical observables. For more detail in the context of geometric quantization, see,
for example, Śniatycki [4] or Woodhouse [6].

Recall the association between a section s of L and an equivariant function s̃ : Y → C. We
note the following properties.

• For any f ∈ C∞(M) and s ∈ Γ(L), the equivariant function corresponding to the section fs

is f̃ s = p∗fs̃.

• The vector field ∂2πi has flow Rexp(2πit). Thus, for all y ∈ Y ,

(∂2πis̃)(y) =
d

dt

∣∣∣∣
t=0

s̃
(
y · e2πit

)
= −2πis̃(y).
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The Kostant–Souriau representation r : C∞(M)→ End Γ(L) is defined by

r(f)s =
(
i~∇ξf + f

)
s, ∀ f ∈ C∞(M), s ∈ Γ(L).

Using the preceding observations, we see that

r̃(f)s =
(
i~ξ̃f + p∗f

)
s̃ =

(
i~ξ̃f −

1

2πi
p∗f∂2πi

)
s̃ = i~E(f)s̃.

Since we proved in Lemma 2.6 that E({f, g}) = [E(f), E(g)] for all f, g ∈ C∞(M), the following
is immediate.

Theorem 2.9. The map r : C∞(M)→ End Γ(L) satisfies Dirac axioms (1) and (2).

Thus the same map that provides the isomorphism from C∞(M) to Q(Y, γ) also yields the
usual Kostant–Souriau representation of C∞(M) as a space of operators on Γ(L). We will see
a similar result in the case of metaplectic-c prequantization.

3 Metaplectic-c quantomorphisms

Having reviewed the properties of infinitesimal quantomorphisms in Kostant–Souriau prequan-
tization, we will now explore their parallels in metaplectic-c prequantization. In Sections 3.1
and 3.2, we summarize the prequantization stage of the metaplectic-c quantization process deve-
loped by Robinson and Rawnsley [3]. In Section 3.3, we develop our definition for a metaplectic-c
quantomorphism, and use it to define an infinitesimal metaplectic-c quantomorphism. The re-
mainder of the paper is dedicated to proving the metaplectic-c analogues of the results presented
in Section 2.

3.1 The metaplectic-c group

Fix a 2n-dimensional real vector space V , and equip it with a symplectic structure Ω. Let Sp(V )
be the symplectic group of (V,Ω); that is, Sp(V ) is the group of linear automorphisms of V that
preserve Ω. The metaplectic group Mp(V ) is the unique connected double cover of Sp(V ). The
metaplectic-c group Mpc(V ) is defined by

Mpc(V ) = Mp(V )×Z2 U(1),

where Z2 ⊂ Mp(V ) consists of the two preimages of I ∈ Sp(V ), and Z2 ⊂ U(1) is the usual
subgroup {1,−1}.

Two important group homomorphisms can be defined on Mpc(V ). The first is the projection
map σ : Mpc(V )→ Sp(V ), which is part of the short exact sequence

1→ U(1)→ Mpc(V )
σ−→ Sp(V )→ 1.

The second is the determinant map η : Mpc(V )→ U(1), which is part of the short exact sequence

1→ Mp(V )→ Mpc(V )
η−→ U(1)→ 1.

This latter map has the property that if λ ∈ U(1) ⊂ Mpc(V ), then η(λ) = λ2. The Lie algebra
mpc(V ) is identified with sp(V )⊕ u(1) under the map σ∗ ⊕ 1

2η∗.
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3.2 Metaplectic-c prequantization

Let (M,ω) be a 2n-dimensional symplectic manifold. The symplectic frame bundle for (M,ω),
modeled on (V,Ω), is denoted Sp(M,ω), and is defined fiberwise for each m ∈M by

Sp(M,ω)m = {b : V → TmM | b is an isomorphism and b∗ωm = Ω}.

Then Sp(M,ω) is a right principal Sp(V ) bundle over M , where g ∈ Sp(V ) acts by precompo-

sition. Let Sp(M,ω)
ρ−→M be the bundle projection map.

Definition 3.1. A metaplectic-c structure for (M,ω) is a pair (P,Σ), where P is a right principal

Mpc(V ) bundle P
Π−→M , and Σ is a map P

Σ−→ Sp(M,ω) that satisfies

Σ(q · a) = Σ(q) · σ(a), ∀ q ∈ P, a ∈ Mpc(V ),

and Π = ρ ◦ Σ.

We will need the following definitions and observations concerning Lie algebras and vector
fields.

• Given κ ∈ sp(V ), let ∂κ be the vector field on Sp(M,ω) whose flow is Rexp(tκ).

• Given α ∈ mpc(V ), let ∂̂α be the vector field on P whose flow is Rexp(tα). Under the
identification mpc(V ) = sp(V ) ⊕ u(1), we can write α = κ ⊕ τ for some κ ∈ sp(V ) and
τ ∈ u(1). Naturality of the exponential map and equivariance of Σ with respect to σ
ensure that Σ∗∂̂α = ∂κ.

Definition 3.2. A metaplectic-c prequantization of (M,ω) is a triple (P,Σ, γ), where (P,Σ) is
a metaplectic-c structure for (M,ω) and γ is a u(1)-valued one-form on P such that:

(1) γ is invariant under the principal Mpc(V ) action,

(2) γ(∂̂α) = 1
2η∗α for all α ∈ mpc(V ),

(3) dγ = 1
i~Π∗ω.

When P is viewed as a bundle over Sp(M,ω) with projection map Σ, it becomes a principal
circle bundle with connection one-form γ. The circle that acts on the fibers of P is the center
U(1) ⊂ Mpc(V ).

The space of infinitesimal quantomorphisms of (P,Σ, γ) consists of those vector fields on P
whose flows preserve all of the structures on (P,Σ, γ). Note that one of these structures is the

map P
Σ−→ Sp(M,ω), which does not have a direct analogue in the Kostant–Souriau case. We

will show how to incorporate this additional piece of information in the next section.

3.3 Infinitesimal metaplectic-c quantomorphisms

As in Section 2.2, we begin by developing the idea of a quantomorphism between metaplectic-c

prequantizations. Let (P1,Σ1, γ1)
Σ1−→ Sp(M1, ω1)

ρ1−→ (M1, ω1) and (P2,Σ2, γ2)
Σ2−→ Sp(M2, ω2)

ρ2−→ (M2, ω2) be metaplectic-c prequantizations for two symplectic manifolds, and let Πj = ρj◦Σj

for j = 1, 2. Let K : P1 → P2 be a diffeomorphism. We will determine the conditions that K
must satisfy in order for it to preserve all of the structures of the metaplectic-c prequantizations.
First, by analogy with the Kostant–Souriau definition, assume that K satisfies K∗γ2 = γ1.

Fix m ∈M1, and consider the fiber P1m. For any q ∈ P1m, notice that

TqP1m = {ξ ∈ TqP1 |Π1∗ξ = 0} = ker dγ1q.
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The same property holds for a fiber of P2 over a point in M2. By assumption, K∗ is an
isomorphism from ker dγ1q to ker dγ2K(q) for all q ∈ P1. Therefore Π2 is constant on K(P1m).
Moreover, since K is a diffeomorphism, K(P1m) is in fact a fiber of P2 over M2, and every fiber
of P2 is the image of a fiber of P1. Thus K induces a diffeomorphism K ′′ : M1 →M2 such that
the following diagram commutes:

P1
K //

Π1

��

P2

Π2

��
M1

K′′
//M2

Lemma 3.3. The map K ′′ : M1 →M2 is a symplectomorphism.

Proof. It suffices to show that K ′′∗ω2 = ω1. Using the properties of K, γ1 and γ2, we calculate

Π∗1(K ′′
∗
ω2) = (K ′′ ◦Π1)∗ω2 = (Π2 ◦K)∗ω2 = K∗(i~dγ2) = i~dγ1 = Π∗1ω1.

Therefore K ′′∗ω2 = ω1, as required. �

Recall from the beginning of Section 3.2 that an element b ∈ Sp(M1, ω1)m is a map b : V →
TmM1 such that b∗ω1m = Ω. Since K ′′ is a symplectomorphism, the composition K ′′∗ ◦ b : V →
TK′′(m)M2 satisfies (K ′′∗ ◦ b)∗ω2K′′(m) = Ω, which implies that K ′′∗ ◦ b ∈ Sp(M2, ω2)K′′(m). Let

K̃ ′′ : Sp(M1, ω1)→ Sp(M2, ω2) be the lift of K ′′ given by

K̃ ′′(b) = K ′′∗ ◦ b, ∀ b ∈ Sp(M1, ω1).

Then K̃ ′′ is a diffeomorphism, and it is equivariant with respect to the principal Sp(V ) actions.

Thus, if we assume that K∗γ2 = γ1, we obtain the diffeomorphisms K ′′ : M1 → M2 and
K̃ ′′ : Sp(M1, ω1) → Sp(M2, ω2), where both K and K̃ ′′ are lifts of K ′′. However, K is not

necessarily a lift of K̃ ′′. Indeed, there might not be any map K ′ : Sp(M1, ω1) → Sp(M2, ω2)
of which K is a lift. A map K for which there is no corresponding K ′ is constructed in Ap-
pendix A, Example A.1. In Section 2.2, we showed that a diffeomorphism of prequantization
circle bundles that preserves the connection forms must be equivariant with respect to the prin-
cipal circle actions. By contrast, Example A.1 demonstrates that it is possible for K to preserve
the prequantization one-forms without being equivariant with respect to the principal Mpc(V )
actions.

Suppose we make the additional assumption that K(q · a) = K(q) · a for all q ∈ P1 and
a ∈ Mpc(V ). Then K induces a diffeomorphism K ′ : Sp(M1, ω1) → Sp(M2, ω2) that satisfies
K ′◦Σ1 = Σ2◦K. Combining this with the map K ′′ : M1 →M2 yields the following commutative
diagram:

P1
K //

Σ1

��

P2

Σ2

��
Sp(M1, ω1)

K′
//

ρ1

��

Sp(M2, ω2)

ρ2

��
M1

K′′
//M2

We now have two maps, K ′ and K̃ ′′, which are diffeomorphisms from Sp(M1, ω1) to Sp(M2, ω2).

By construction, ρ2 ◦ K ′ = ρ2 ◦ K̃ ′′, and both K ′ and K̃ ′′ are equivariant with respect to the
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principal Sp(V ) actions. However, it is still possible for K ′ and K̃ ′′ to be different. A map K

for which K ′ 6= K̃ ′′ is given in Example A.2.

As will be shown in Section 3.4, this potential discrepancy between K ′ and K̃ ′′ must be
prevented in order to construct the desired isomorphism between C∞(M) and the infinitesimal
quantomorphisms. We therefore propose the following definition.

Definition 3.4. The diffeomorphism K : P1 → P2 is a metaplectic-c quantomorphism if

(1) K∗γ2 = γ1,

(2) the induced diffeomorphism K ′′ : M1 →M2 satisfies K̃ ′′ ◦ Σ1 = Σ2 ◦K.

Let K : P1 → P2 be a metaplectic-c quantomorphism. Given our concept of a quantomor-
phism as a diffeomorphism that preserves all of the structures of a metaplectic-c prequantization,
we would expect that K is equivariant with respect to the Mpc(V ) actions. Let α ∈ mpc(V ) be
arbitrary, and write α = κ⊕ τ under the identification of mpc(V ) with sp(V )⊕u(1). The vector
field ∂̂α on P1 is completely specified by the conditions γ1(∂̂α) = τ and Σ1∗∂̂α = ∂κ, and the
same is true on P2. Notice that

γ2(K∗∂̂α) = γ1(∂̂α) = τ,

and

Σ2∗K∗∂̂α = K̃ ′′∗Σ1∗∂̂α = K̃ ′′∗∂κ = ∂κ,

where the final equality follows from the fact that K̃ ′′ is equivariant with respect to Sp(V ). Thus
K∗∂̂α = ∂̂α for all α ∈ mpc(V ), which implies that K is equivariant with respect to Mpc(V ), as
desired.

Now consider a single metaplectic-c prequantized space (P,Σ, γ)
Σ−→ Sp(M,ω)

ρ−→ (M,ω)
with Π = ρ ◦ Σ.

Definition 3.5. A vector field ζ ∈ X (P ) is an infinitesimal metaplectic-c quantomorphism if
its flow φt is a metaplectic-c quantomorphism from its domain to its range for each t.

Let ζ ∈ X (P ) have flow φt. Property (1) of a quantomorphism holds for φt if and only if
Lζγ = 0. If we assume that φt satisfies property (1), then we can make the following observa-
tions.

• There is a flow φt
′′ on M such that Π ◦ φt = φt

′′ ◦ Π. The vector field that it generates
on M is Π∗ζ.

• Lemma 3.3 shows that φt
′′ is a family of symplectomorphisms. Therefore we can lift φt

′′

to a flow on Sp(M,ω), denoted by φ̃t
′′, where φ̃t

′′(b) = (φt
′′)∗ ◦ b for all b ∈ Sp(M,ω). Let

the vector field on Sp(M,ω) that has flow φ̃t
′′ be Π̃∗ζ.

• Property (2) of a quantomorphism holds for φt if and only if Σ∗ζ is a well-defined vector

field on Sp(M,ω) and Σ∗ζ = Π̃∗ζ.

We conclude that the space of infinitesimal metaplectic-c quantomorphisms of (P,Σ, γ) is

Q(P,Σ, γ) =
{
ζ ∈ X (P )

∣∣Lζγ = 0 and Σ∗ζ = Π̃∗ζ
}
,

where it is understood that the condition Σ∗ζ = Π̃∗ζ can only be satisfied if Σ∗ζ is well defined.
In the next section, we will construct a Lie algebra isomorphism from C∞(M) to Q(P,Σ, γ).
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3.4 The Lie algebra isomorphism

We begin with a procedure, given by Robinson and Rawnsley in [3, Section 7], for lifting a Hamil-
tonian vector field on M to Sp(M,ω) and then to P . These steps will be used in constructing
the isomorphism E : C∞(M)→ Q(P,Σ, γ).

Fix f ∈ C∞(M), and let its Hamiltonian vector field ξf have flow ϕt on M . We know
that ϕt∗ preserves ω because Lξfω = 0. Let ϕ̃t be the lift of ϕt to Sp(M,ω) given by

ϕ̃t(b) = ϕt∗ ◦ b, ∀ b ∈ Sp(M,ω),

and let the vector field on Sp(M,ω) with flow ϕ̃t be ξ̃f . We have ρ∗ξ̃f = ξf by construction.
Also, ϕ̃t commutes with the right principal Sp(V ) action on Sp(M,ω), so [ξ̃f , ∂κ] = 0 for all

κ ∈ sp(V ). Now let ξ̂f be the lift of ξ̃f to P that is horizontal with respect to γ. Then Σ∗ξ̂f = ξ̃f
and γ(ξ̂f ) = 0. A summary of the key properties of ξf , ξ̃f and ξ̂f is below:

(P,Σ, γ)

Σ

��

ξ̂f γ(ξ̂f ) = 0, Σ∗ξ̂f = ξ̃f , Π∗ξ̂f = ξf

Sp(M,ω)

ρ

��

ξ̃f [ξ̃f , ∂κ] = 0 ∀κ ∈ sp(V ), ρ∗ξ̃f = ξf

(M,ω) ξf

The following is a consequence of Lemma 2.1.

Lemma 3.6. For all f, g ∈ C∞(M), ξ̃{f,g} = [ξ̃f , ξ̃g].

In Section 2.3, we made use of the vector field ∂2πi on Y . The corresponding object in this
context is the vector field ∂̂2πi on P , which satisfies γ(∂̂2πi) = 2πi and Σ∗(∂̂2πi) = 0.

Lemma 3.7. For all f, g ∈ C∞(M),

[
ξ̂f , ξ̂g

]
= ξ̂{f,g} −

1

2π~
Π∗{f, g}∂̂2πi.

Proof. It suffices to show that

Σ∗
[
ξ̂f , ξ̂g

]
= Σ∗

(
ξ̂{f,g} −

1

2π~
Π∗{f, g}∂̂2πi

)
and

γ
([
ξ̂f , ξ̂g

])
= γ

(
ξ̂{f,g} −

1

2π~
Π∗{f, g}∂̂2πi

)
.

The proof proceeds identically to that of Lemma 2.5. �

Lemma 3.8. The map E : C∞(M)→ X (P ) given by

E(f) = ξ̂f +
1

2π~
Π∗f∂̂2πi, ∀ f ∈ C∞(M)

is a Lie algebra homomorphism.

Proof. Precisely analogous to Lemma 2.6. �
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Lemma 3.9. For all f ∈ C∞(M), E(f) ∈ Q(P,Σ, γ).

Proof. We need to show that LE(f)γ = 0 and Σ∗E(f) = Π̃∗E(f). The verification that

LE(f)γ = 0 is the same as that in Lemma 2.7. Note that Σ∗E(f) = ξ̃f and Π∗E(f) = ξf , so

Π̃∗E(f) = ξ̃f = Σ∗E(f). Thus the necessary conditions are satisfied, and E(f) ∈ Q(P,Σ, γ). �

As before, we will construct an inverse for E, and conclude that E is a Lie algebra isomor-
phism. Let ζ ∈ Q(P,Σ, γ) and α ∈ mpc(V ) be arbitrary. Using an identical argument to the one
that precedes Theorem 2.8, the fact that ∂̂αy(Lζγ) = 0 implies that L∂̂αγ(ζ) = 0. Therefore we
can define F : Q(P,Σ, γ)→ C∞(M) so that

− 1

i~
Π∗F (ζ) = γ(ζ), ∀ ζ ∈ Q(P,Σ, γ).

Theorem 3.10. The map E : C∞(M) → Q(P,Σ, γ) is a Lie algebra isomorphism with in-
verse F .

Proof. Let f ∈ C∞(M) and ζ ∈ Q(P,Σ, γ) be arbitrary. From the definitions of E and F ,
F (E(f)) satisfies

− 1

i~
Π∗F (E(f)) = γ(E(f)) = γ

(
ξ̂f +

1

2π~
Π∗f∂̂2πi

)
= − 1

i~
Π∗f.

Thus F (E(f)) = f .
Next, we claim that γ(E(F (ζ))) = γ(ζ) and Σ∗E(F (ζ)) = Σ∗ζ. Observe that

E(F (ζ)) = ξ̂F (ζ) +
1

2π~
Π∗F (ζ)∂̂2πi = ξ̂F (ζ) +

1

2πi
γ(ζ)∂̂2πi.

It is immediate that γ(E(F (ζ))) = γ(ζ) and Σ∗E(F (ζ)) = ξ̃F (ζ). From the definition of

Q(P,Σ, γ), we know that Σ∗ζ = Π̃∗ζ. It remains to show that Π∗ζ = ξF (ζ). We calculate

ζyΠ∗ω = ζyi~dγ = −i~d(γ(ζ)) = Π∗dF (ζ).

This demonstrates that (Π∗ζ)yω = dF (ζ), which implies that Π∗ζ = ξF (ζ) as needed. Thus we
have shown that E(F (ζ)) = ζ, and this completes the proof that E and F are inverses. �

If the definition of Q(P,Σ, γ) did not include the condition that Σ∗ζ = Π̃∗ζ, this proof would

fail in the final step. We would be able to show that Σ∗E(F (ζ)) = ξ̃F (ζ) = Π̃∗ζ, but this vector
field would not necessarily equal Σ∗ζ, and so F would not be the inverse of E. This explains
why property (2) of a metaplectic-c quantomorphism is necessary in order to obtain a subalgebra
of X (P ) that is isomorphic to C∞(M).

3.5 An operator representation of C∞(M)

In [3], Robinson and Rawnsley construct an infinite-dimensional Hilbert space E ′(V ) of holo-
morphic functions on V ∼= Cn, on which the group Mpc(V ) acts via the metaplectic repre-
sentation. They then define the bundle of symplectic spinors for the prequantized system

(P,Σ, γ)
Π−→ (M,ω) to be

E ′(P ) = P ×Mpc(V ) E ′(V ).

We omit the details of the metaplectic representation here; the only fact we need is that the
subgroup U(1) ⊂ Mpc(V ) acts on elements of E ′(V ) by scalar multiplication. We write an
element of E ′(P ) as an equivalence class [q, ψ] with q ∈ P and ψ ∈ E ′(V ).

Section 7 of [3] contains the following construction.
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• Let s ∈ Γ(E ′(P )) be given, and define the map s̃ : P → E ′(V ) so that [q, s̃(q)] = s(Π(q))
for all q ∈ P . This map s̃ satisfies the equivariance condition

s̃(q · a) = a−1s̃(q), ∀ q ∈ P, a ∈ Mpc(V ),

where the action on the right-hand side is that of the metaplectic representation.

• Conversely, if s̃ : P → E ′(V ) is any map with the equivariance property above, it can be
used to define a section s ∈ Γ(E ′(P )) by setting s(m) = [q, s̃(q)] for each m ∈M and any
q ∈ P such that Π(q) = m.

• Let f ∈ C∞(M) be arbitrary, and recall the lifting ξf → ξ̃f → ξ̂f of ξf to P . A standard

calculation establishes that [ξ̂f , ∂̂α] = 0 for all α ∈ mpc(V ). Thus, if s̃ : P → E ′(V ) is an

equivariant map, then so is ξ̂f s̃.

• Define the map D : C∞(M) → End Γ(E ′(P )) such that for all f ∈ C∞(M) and s ∈
Γ(E ′(P )), Dfs is the section of E ′(P ) that satisfies

D̃fs = ξ̂f s̃.

Further, define δ : C∞(M)→ End Γ(E ′(P )) by

δfs = Dfs+
1

i~
fs, ∀ f ∈ C∞(M), s ∈ Γ(E ′(P )).

Theorem 7.8 of [3] states that δ is a Lie algebra homomorphism.
We see that the construction of D precisely parallels the construction of the connection ∇

on the prequantization line bundle L associated to a prequantization circle bundle (Y, γ). As in
Section 2.4, we make two observations.

• For any s ∈ Γ(E ′(P )) and f ∈ C∞(M), f̃ s = Π∗fs̃.

• For any equivariant map s̃ : P → E ′(V ), ∂̂2πis̃ = −2πis̃.

Therefore

δ̃fs =

(
ξ̂f +

1

2π~
Π∗f∂̂2πi

)
s̃ = E(f)s̃.

The fact that δ is a Lie algebra homomorphism then follows immediately from Lemma 3.8. This
construction would apply equally well to any associated bundle where the subgroup U(1) ⊂
Mpc(V ) acts on the fiber by scalar multiplication.

A Example of a metaplectic-c prequantization

Recall from Section 3.3 that a metaplectic-c quantomorphism K between two metaplectic-c

prequantizations (P1,Σ1, γ1)
Σ1−→ Sp(M1, ω1)

ρ1−→ (M1, ω1) and (P2,Σ2, γ2)
Σ2−→ Sp(M2, ω2)

ρ2−→
(M2, ω2) is a diffeomorphism K : P1 → P2 such that

(1) K∗γ2 = γ1,

(2) the induced diffeomorphism K ′′ : M1 →M2 satisfies K̃ ′′ ◦ Σ1 = Σ2 ◦K,

where K̃ ′′ : Sp(M1, ω1)→ Sp(M2, ω2) is the lift of K ′′ given by

K̃ ′′(b) = K ′′∗ ◦ b, ∀ b ∈ Sp(M1, ω1).
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We claimed that condition (1) is insufficient to guarantee that K is the lift of some map K ′ :
Sp(M1, ω1) → Sp(M2, ω2). In particular, a diffeomorphism K that only satisfies condition (1)
might not be equivariant with respect to the principal Mpc(V ) actions. We further claimed
that K might be equivariant and satisfy condition (1), yet fail to satisfy condition (2). We will
now construct examples to support these claims.

Let M = R2\{(0, 0)} with Cartesian coordinates (p, q) and polar coordinates (r, θ). Equip M
with the symplectic form ω = dp ∧ dq = rdr ∧ dθ, and observe that the one-form β = 1

2r
2dθ

satisfies dβ = ω. Let V = R2 with basis {x̂, ŷ} and symplectic form Ω = x̂∗ ∧ ŷ∗, and consider
the global trivialization of the tangent bundle TM such that for all m ∈M , TmM is identified

with V by mapping x̂ → ∂
∂p

∣∣∣
m

and ŷ → ∂
∂q

∣∣∣
m

. Identify Sp(M,ω) with M × Sp(V ) using this

trivialization.
Let P = M ×Mpc(V ), and define the map Σ : P → Sp(M,ω) by Σ(m, a) = (m,σ(a)) for all

m ∈M and a ∈ Mpc(V ). Let ϑ0 be the trivial connection on the product bundle M ×Mpc(V ),
and let γ = 1

i~β + 1
2η∗ϑ0. Then (P,Σ, γ) is a metaplectic-c prequantization of (M,ω). In both

of the examples below, we will give a diffeomorphism K : P → P .
To facilitate the construction in Example A.1, we introduce a more explicit representation

for elements of the metaplectic-c group. By definition, Mpc(V ) = Mp(V ) ×Z2 U(1). The
restriction of the projection map Mpc(V )

σ−→ Sp(V ) to Mp(V ) yields the double covering
Mp(V )

σ−→ Sp(V ). Write an element of Mpc(V ) as an equivalence class [h, e2πit] with h ∈ Mp(V )
and t ∈ R. In terms of this parametrization, the projection map is given by

σ
[
h, e2πit

]
= σ(h),

and the determinant map Mpc(V )
η−→ U(1) is given by

η
[
h, e2πit

]
=
(
e2πit

)2
.

Example A.1. We will define a diffeomorphism K : P → P that preserves γ, but that does
not descend through Σ to a well-defined map on Sp(M,ω).

Let µ : R → Mp(V ) be any smooth nonconstant path such that µ(t + 1) = µ(t) for all
t ∈ R. Note that the composition σ ◦ µ : R → Sp(V ) is also nonconstant. Now define F :
Mp(V )× U(1)→ Mp(V )× U(1) by

F
(
h, e2πit

)
=
(
hµ(2t), e2πit

)
, ∀h ∈ Mp(V ), t ∈ R.

This map is a diffeomorphism of Mp(V )×U(1), and it descends to a diffeomorphism of Mpc(V ),
which we also denote F . For any [h, e2πit] ∈ Mpc(V ), observe that

η
(
F
[
h, e2πit

])
= η

[
hµ(2t), e2πit

]
=
(
e2πit

)2
= η

[
h, e2πit

]
.

This implies that for any α ∈ mpc(V ), 1
2η∗F∗α = 1

2η∗α.
Define the diffeomorphism K : P → P by K(m, a) = (m,F (a)) for all m ∈ M and a ∈

Mpc(V ). Since K is the identity on M , it preserves β. From the property of F shown above, K
also preserves 1

2η∗ϑ0, and thus it preserves γ. Fix (m, g) ∈ Sp(M,ω), and let h ∈ Mp(V ) be
such that σ(h) = g. Then the fiber of P over (m, g) is P(m,g) = {(m, [h, e2πit]) | t ∈ R}. Notice
that

Σ ◦K
(
m,
[
h, e2πit

])
= Σ

(
m,
[
hµ(2t), e2πit

])
= (m, gσ(µ(2t))),

which is not constant with respect to t. Thus K(P(m,g)) is not contained within a single fiber
of P over Sp(M,ω), which shows that there is no map K ′ : Sp(M,ω) → Sp(M,ω) such that
K ′ ◦ Σ = Σ ◦K.
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If K : P → P is equivariant with respect to Mpc(V ), then it induces a diffeomorphism

K ′ : Sp(M,ω) → Sp(M,ω) that satisfies K ′ ◦ Σ = Σ ◦K. This map and K̃ ′′ are both lifts of
K ′′ : M →M , but they might not be the same map.

Example A.2. We will define a diffeomorphism K : P → P that preserves γ and is equivariant
with respect to Mpc(V ), but where K ′ 6= K̃ ′′.

Let Tλ : M →M be the map that rotates M about the origin by the angle λ, where λ is not
an integer multiple of 2π. Define K : P → P by

K(m, a) = (Tλ(m), a), ∀m ∈M, a ∈ Mpc(V ).

Then K∗γ = γ, and K(q ·a) = K(q) ·a for all q ∈ P and a ∈ Mpc(V ). The map K ′ : Sp(M,ω)→
Sp(M,ω) is given by

K ′(m, g) = (Tλ(m), g), ∀m ∈M, g ∈ Sp(V ),

and the map K ′′ : M →M is simply Tλ. If we let Tλ also denote the automorphism of V given
by rotation about the origin by λ, then under our chosen identification of TM with M × V , we
have

K ′′∗ (m, v) = (Tλ(m), Tλ(v)), ∀m ∈M, v ∈ V.

Therefore K̃ ′′ : Sp(M,ω)→ Sp(M,ω) is given by

K̃ ′′(m, g) = (Tλ(m), Tλ ◦ g), ∀m ∈M, g ∈ Sp(V ).

Hence K ′ 6= K̃ ′′.
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Vol. 149, Birkhäuser Boston, Inc., Boston, MA, 1997.

[6] Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Mathematical Monographs, Oxford Science
Publications, The Clarendon Press, Oxford University Press, New York, 1992.

http://dx.doi.org/10.1098/rspa.1925.0150
http://dx.doi.org/10.1007/BFb0079068
http://dx.doi.org/10.1090/memo/0410
http://dx.doi.org/10.1007/978-1-4612-6066-0
http://dx.doi.org/10.1007/978-1-4612-0281-3

	1 Introduction
	2 Kostant–Souriau quantomorphisms
	2.1 Basic definitions and notation
	2.1.1 Hamiltonian vector fields and the Poisson algebra
	2.1.2 Circle bundles and connections

	2.2 The prequantization circle bundle and its infinitesimal quantomorphisms
	2.3 The Lie algebra isomorphism
	2.4 An operator representation of C(M)

	3 Metaplectic-c quantomorphisms
	3.1 The metaplectic-c group
	3.2 Metaplectic-c prequantization
	3.3 Infinitesimal metaplectic-c quantomorphisms
	3.4 The Lie algebra isomorphism
	3.5 An operator representation of C(M)

	A Example of a metaplectic-c prequantization
	References

